Search results for: product concept
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7217

Search results for: product concept

377 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 79
376 Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages

Authors: Evangelos Kaisar, Anika Tabassum, Taraneh Ardalan, Majed Al-Ghandour

Abstract:

The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other.

Keywords: At-grade intersection, simulation, turbo-roundabout, two-lane roundabout

Procedia PDF Downloads 132
375 Energizing Value Added Farming in Agriculture Economic Aspects towards Sustaining Crop Yield, Quality and Food Safety of Small-Scale Cocoa Farmer in Indonesia

Authors: Burmansyah Muhammad, Supriyoto Supriyoto

Abstract:

Crop yield, quality and food safety are three important components that all estate and food crops must put into consideration to lifting the economic value. These measurements should be evaluated because marketplace demand is simultaneously changing and farmers must adapt quickly to remain competitive. The increase in economic value could be done by producing high quality product that aligns with harvest collector preferences. The purpose of this study is to examine the causal effects of value added farming in agriculture economic aspects towards crop yield, quality and food security. This research is using descriptive survey research by employing data from small-scale cocoa farmers listed to off-taker company, located on Sulawesi area of Indonesia. The questionnaire was obtained from 650 cocoa farmers, selected randomly. Major findings of the study indicate that 78% of respondents agree that agriculture inputs have positive effect on crop yield, quality and food safety. The study recommended that cocoa stakeholders should ensure access to agriculture inputs in first priority and then followed by ensuring access to cocoa supply chain trader and micro-financing. Value Added Farming refers to lifting the economic value of a commodity through particular intervention. Regarding access to agriculture inputs, one of significant intervention is fertilization and plant nutrition management, both organic and inorganic fertilizer. Small-scale cocoa farmers can get access to fertilizer intervention through establishment of demo farm. Ordinary demo farm needs large area, selective requirements, lots of field resources and centralization impact. On the contrary, satellite demo farm is developing to wide-spread the impact of agriculture economic aspects and also the involvement in number of farmers. In Sulawesi Project, we develop leveling strata of small-scale demo farm with group of farmers and local cooperative. With this methodology, all of listed small-scale farmers can get access to agriculture input, micro-financing and how to deliver quality output. PT Pupuk Kaltim is member firm of holding company PT Pupuk Indonesia, private company belongs to the government of Indonesia. The company listed as Indonesia's largest producer of urea fertilizers, besides ammonia, Compound Fertilizer (NPK) and biological fertilizers. To achieve strategic objectives, the company has distinguished award such as SNI Platinum, SGS Award IFA Protect and Sustain Stewardship and Gold Rank of Environment Friendly Company. This achievement has become the strategic foundation for our company to energize value added farming in sustaining food security program. Moreover, to ensure cocoa sustainability farming the company has developed partnership with international companies and Non-Government Organization (NGO).

Keywords: fertilizer and plant nutrition management, good agriculture practices, agriculture economic aspects, value-added farming

Procedia PDF Downloads 87
374 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine

Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri

Abstract:

To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.

Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation

Procedia PDF Downloads 248
373 Influence of the Use of Fruits Byproducts on the Lipid Profile of Hermetia illucens, Tenebrio molitor and Zophoba morio Larvae

Authors: Rebeca P Ramos-Bueno, Maria Jose Gonzalez-Fernandez, Rosa M. Moreno-Zamora, Antonia Barros Heras, Yolanda Serrano Alonso, Carolina Sanchez Barranco

Abstract:

Insects are a new source of fatty acids (FA), so they are considered a sustainable and environmentally friendly alternative for both animal feed and the human diet, and furthermore, their harvesting/rearing require a low-tech and low capital investment. For that reason, lipids obtained by insect breeding open interesting possibilities with alimentary and industrial purposes, i.e., the production of biodiesel. Particularly, certain insect species, especially during the larval stage, contain high proportions of fat which is highly dependent on their feed and stage of development. Among them, Hermetia illucens larvae can be bred on food wastes to produce fat- and protein-rich raw materials for food by-product management. So, insects can act as excellent bioconverters of organic waste to nutrient-rich materials. In this regard, the aim of the study was to evaluate the effects of fruit byproducts on the FA compositions of Tenebrio molitor, Zophoba morio, and H. illucens larvae. Firstly, oil was extracted with the green solvent ethyl acetate, and FA methyl ester was obtained and analyzed by GC to show the FA profile. In addition, the triacylglycerol (TAG) profile was obtained by HPLC. Dehydrated watermelon, tomato, and papaya by-products, as well as wheat-based control feed, were assayed. High FA content was reached by Z. morio larvae fed with all fruits; however, no differences were shown in lipid profile with any change. It is worth highlighting that both Z. morio and H. illucens could be selected as the best candidates for biodiesel production due to their high content of saturated FA. On the other hand, T. molitor larvae showed a higher content of monounsaturated FA than control larvae, whereas the n-6 polyunsaturated FA content decreased in larvae fed with fruits. This result indicates that the improvement of the FA profile of Tenebrio can depend on both the type of feeding and the intended use. The lipid profile of H. illucens larvae fed with papaya and tomato showed a slight increase in the content of α-linoleic acid (ALA, 18:3n3). This FA is the precursor of docosahexaenoic acid (DHA, 22:6n3), which plays an important role as a component of structural lipids in cell membranes as well as in the synthesis of eicosanoids, protecting and resolving. Also, it was evaluated the TAG profile of Z. morio larvae due to their highest oil content. The results showed a high oleic acid (OA, 18:1n9) content, which displays modulatory effects in a wide range of physiological functions, having anti-inflammatory and anti-atherogenic properties. In conclusion, this study clearly shows that Z. morio and H. illucens larvae constitute an alternative source of OA- and ALA-rich oils, respectively, which can be devoted for food use, as well as for using in the food and pharmaceutical industries, with agronomic implications. Finally, although the profile of Z. morio was not improved with fruit feeding, this kind of feeding could be used due to its low environmental impact.

Keywords: fatty acids, fruit byproducts, Hermetia illucens, Zophoba morio, Tenebrio molitor, insect rearing

Procedia PDF Downloads 138
372 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application

Authors: R. P. Naik, A. K. Rakshit

Abstract:

In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.

Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing

Procedia PDF Downloads 99
371 Effects of Temperature and Mechanical Abrasion on Microplastics

Authors: N. Singh, G. K. Darbha

Abstract:

Since the last decade, a wave of research has begun to study the prevalence and impact of ever-increasing plastic pollution in the environment. The wide application and ubiquitous distribution of plastic have become a global concern due to its persistent nature. The disposal of plastics has emerged as one of the major challenges for waste management landfills. Microplastics (MPs) have found its existence in almost every environment, from the high altitude mountain lake to the deep sea sediments, polar icebergs, coral reefs, estuaries, beaches, and river, etc. Microplastics are fragments of plastics with size less than 5 mm. Microplastics can be classified as primary microplastics and secondary microplastics. Primary microplastics includes purposefully introduced microplastics into the end products for consumers (microbeads used in facial cleansers, personal care product, etc.), pellets (used in manufacturing industries) or fibres (from textile industries) which finally enters into the environment. Secondary microplastics are formed by disintegration of larger fragments under the exposure of sunlight, mechanical abrasive forces by rain, waves, wind and/or water. A number of factors affect the quantity of microplastic present in freshwater environments. In addition to physical forces, human population density proximal to the water body, proximity to urban centres, water residence time, and size of the water body also affects plastic properties. With time, other complex processes in nature such as physical, chemical and biological break down plastics by interfering with its structural integrity. Several studies demonstrate that microplastics found in wastewater sludge being used as manure for agricultural fields, thus having the tendency to alter the soil environment condition influencing the microbial population as well. Inadequate data are available on the fate and transport of microplastics under varying environmental conditions that are required to supplement important information for further research. In addition, microplastics have the tendency to absorb heavy metals and hydrophobic organic contaminants such as PAHs and PCBs from its surroundings and thus acting as carriers for these contaminants in the environment system. In this study, three kinds of microplastics (polyethylene, polypropylene and expanded polystyrene) of different densities were chosen. Plastic samples were placed in sand with different aqueous media (distilled water, surface water, groundwater and marine water). It was incubated at varying temperatures (25, 35 and 40 °C) and agitation levels (rpm). The results show that the number of plastic fragments enhanced with increase in temperature and agitation speed. Moreover, the rate of disintegration of expanded polystyrene is high compared to other plastics. These results demonstrate that temperature, salinity, and mechanical abrasion plays a major role in degradation of plastics. Since weathered microplastics are more harmful as compared to the virgin microplastics, long-term studies involving other environmental factors are needed to have a better understanding of degradation of plastics.

Keywords: environmental contamination, fragmentation, microplastics, temperature, weathering

Procedia PDF Downloads 149
370 Assessing the Outcomes of Collaboration with Students on Curriculum Development and Design on an Undergraduate Art History Module

Authors: Helen Potkin

Abstract:

This paper presents a practice-based case study of a project in which the student group designed and planned the curriculum content, classroom activities and assessment briefs in collaboration with the tutor. It focuses on the co-creation of the curriculum within a history and theory module, Researching the Contemporary, which runs for BA (Hons) Fine Art and Art History and for BA (Hons) Art Design History Practice at Kingston University, London. The paper analyses the potential of collaborative approaches to engender students’ investment in their own learning and to encourage reflective and self-conscious understandings of themselves as learners. It also addresses some of the challenges of working in this way, attending to the risks involved and feelings of uncertainty produced in experimental, fluid and open situations of learning. Alongside this, it acknowledges the tensions inherent in adopting such practices within the framework of the institution and within the wider of context of the commodification of higher education in the United Kingdom. The concept underpinning the initiative was to test out co-creation as a creative process and to explore the possibilities of altering the traditional hierarchical relationship between teacher and student in a more active, participatory environment. In other words, the project asked about: what kind of learning could be imagined if we were all in it together? It considered co-creation as producing different ways of being, or becoming, as learners, involving us reconfiguring multiple relationships: to learning, to each other, to research, to the institution and to our emotions. The project provided the opportunity for students to bring their own research and wider interests into the classroom, take ownership of sessions, collaborate with each other and to define the criteria against which they would be assessed. Drawing on students’ reflections on their experience of co-creation alongside theoretical considerations engaging with the processual nature of learning, concepts of equality and the generative qualities of the interrelationships in the classroom, the paper suggests that the dynamic nature of collaborative and participatory modes of engagement have the potential to foster relevant and significant learning experiences. The findings as a result of the project could be quantified in terms of the high level of student engagement in the project, specifically investment in the assessment, alongside the ambition and high quality of the student work produced. However, reflection on the outcomes of the experiment prompts a further set of questions about the nature of positionality in connection to learning, the ways our identities as learners are formed in and through our relationships in the classroom and the potential and productive nature of creative practice in education. Overall, the paper interrogates questions of what it means to work with students to invent and assemble the curriculum and it assesses the benefits and challenges of co-creation. Underpinning it is the argument that, particularly in the current climate of higher education, it is increasingly important to ask what it means to teach and to envisage what kinds of learning can be possible.

Keywords: co-creation, collaboration, learning, participation, risk

Procedia PDF Downloads 110
369 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 210
368 Corrosion Protective Coatings in Machines Design

Authors: Cristina Diaz, Lucia Perez, Simone Visigalli, Giuseppe Di Florio, Gonzalo Fuentes, Roberto Canziani, Paolo Gronchi

Abstract:

During the last 50 years, the selection of materials is one of the main decisions in machine design for different industrial applications. It is due to numerous physical, chemical, mechanical and technological factors to consider in it. Corrosion effects are related with all of these factors and impact in the life cycle, machine incidences and the costs for the life of the machine. Corrosion affects the deterioration or destruction of metals due to the reaction with the environment, generally wet. In food industry, dewatering industry, concrete industry, paper industry, etc. corrosion is an unsolved problem and it might introduce some alterations of some characteristics in the final product. Nowadays, depending on the selected metal, its surface and its environment of work, corrosion prevention might be a change of metal, use a coating, cathodic protection, use of corrosion inhibitors, etc. In the vast majority of the situations, use of a corrosion resistant material or in its defect, a corrosion protection coating is the solution. Stainless steels are widely used in machine design, because of their strength, easily cleaned capacity, corrosion resistance and appearance. Typical used are AISI 304 and AISI 316. However, their benefits don’t fit every application, and some coatings are required against corrosion such as some paintings, galvanizing, chrome plating, SiO₂, TiO₂ or ZrO₂ coatings, etc. In this work, some coatings based in a bilayer made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium or Titanium-Zirconium, have been developed used magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology, for trying to reduce corrosion effects on AISI 304, AISI 316 and comparing it with Titanium alloy substrates. Ti alloy display exceptional corrosion resistance to chlorides, sour and oxidising acidic media and seawater. In this study, Ti alloy (99%) has been included for comparison with coated AISI 304 and AISI 316 stainless steel. Corrosion tests were conducted by a Gamry Instrument under ASTM G5-94 standard, using different electrolytes such as tomato salsa, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl for testing corrosion in different industrial environments. In general, in all tested environments, the results showed an improvement of corrosion resistance of all coated AISI 304 and AISI 316 stainless steel substrates when they were compared to uncoated stainless steel substrates. After that, comparing these results with corrosion studies on uncoated Ti alloy substrate, it was observed that in some cases, coated stainless steel substrates, reached similar current density that uncoated Ti alloy. Moreover, Titanium-Zirconium and Titanium-Tantalum coatings showed for all substrates in study including coated Ti alloy substrates, a reduction in current density more than two order in magnitude. As conclusion, Ti-Ta, Ti-Zr, Ti-Nb and Ti-Hf coatings have been developed for improving corrosion resistance of AISI 304 and AISI 316 materials. After corrosion tests in several industry environments, substrates have shown improvements on corrosion resistance. Similar processes have been carried out in Ti alloy (99%) substrates. Coated AISI 304 and AISI 316 stainless steel, might reach similar corrosion protection on the surface than uncoated Ti alloy (99%). Moreover, coated Ti Alloy (99%) might increase its corrosion resistance using these coatings.

Keywords: coatings, corrosion, PVD, stainless steel

Procedia PDF Downloads 146
367 Statistical Analysis to Compare between Smart City and Traditional Housing

Authors: Taha Anjamrooz, Sareh Rajabi, Ayman Alzaatreh

Abstract:

Smart cities are playing important roles in real life. Integration and automation between different features of modern cities and information technologies improve smart city efficiency, energy management, human and equipment resource management, life quality and better utilization of resources for the customers. One of difficulties in this path, is use, interface and link between software, hardware, and other IT technologies to develop and optimize processes in various business fields such as construction, supply chain management and transportation in parallel to cost-effective and resource reduction impacts. Also, Smart cities are certainly intended to demonstrate a vital role in offering a sustainable and efficient model for smart houses while mitigating environmental and ecological matters. Energy management is one of the most important matters within smart houses in the smart cities and communities, because of the sensitivity of energy systems, reduction in energy wastage and maximization in utilizing the required energy. Specially, the consumption of energy in the smart houses is important and considerable in the economic balance and energy management in smart city as it causes significant increment in energy-saving and energy-wastage reduction. This research paper develops features and concept of smart city in term of overall efficiency through various effective variables. The selected variables and observations are analyzed through data analysis processes to demonstrate the efficiency of smart city and compare the effectiveness of each variable. There are ten chosen variables in this study to improve overall efficiency of smart city through increasing effectiveness of smart houses using an automated solar photovoltaic system, RFID System, smart meter and other major elements by interfacing between software and hardware devices as well as IT technologies. Secondly to enhance aspect of energy management by energy-saving within smart house through efficient variables. The main objective of smart city and smart houses is to reproduce energy and increase its efficiency through selected variables with a comfortable and harmless atmosphere for the customers within a smart city in combination of control over the energy consumption in smart house using developed IT technologies. Initially the comparison between traditional housing and smart city samples is conducted to indicate more efficient system. Moreover, the main variables involved in measuring overall efficiency of system are analyzed through various processes to identify and prioritize the variables in accordance to their influence over the model. The result analysis of this model can be used as comparison and benchmarking with traditional life style to demonstrate the privileges of smart cities. Furthermore, due to expensive and expected shortage of natural resources in near future, insufficient and developed research study in the region, and available potential due to climate and governmental vision, the result and analysis of this study can be used as key indicator to select most effective variables or devices during construction phase and design

Keywords: smart city, traditional housing, RFID, photovoltaic system, energy efficiency, energy saving

Procedia PDF Downloads 102
366 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 153
365 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 168
364 Ultrasonic Atomizer for Turbojet Engines

Authors: Aman Johri, Sidhant Sood, Pooja Suresh

Abstract:

This paper suggests a new and more efficient method of atomization of fuel in a combustor nozzle of a high bypass turbofan engine, using ultrasonic vibrations. Since atomization of fuel just before the fuel spray is injected into the combustion chamber is an important and crucial aspect related to functioning of a propulsion system, the technology suggested by this paper and the experimental analysis on the system components eventually proves to assist in complete and rapid combustion of the fuel in the combustor module of the engine. Current propulsion systems use carburetors, atomization nozzles and apertures in air intake pipes for atomization. The idea of this paper is to deploy new age hybrid technology, namely the Ultrasound Field Effect (UFE) to effectively atomize fuel before it enters the combustion chamber, as a viable and effective method to increase efficiency and improve upon existing designs. The Ultrasound Field Effect is applied axially, on diametrically opposite ends of an atomizer tube that gloves onto the combustor nozzle, where the fuel enters and exits under a pre-defined pressure. The Ultrasound energy vibrates the fuel particles to a breakup frequency. At reaching this frequency, the fuel particles start disintegrating into smaller diameter particles perpendicular to the axis of application of the field from the parent boundary layer of fuel flow over the baseplate. These broken up fuel droplets then undergo swirling effect as per the original nozzle design, with a higher breakup ratio than before. A significant reduction of the size of fuel particles eventually results in an increment in the propulsive efficiency of the engine. Moreover, the Ultrasound atomizer operates within a control frequency such that effects of overheating and induced vibrations are least felt on the overall performance of the engine. The design of an electrical manifold for the multiple-nozzle system over a typical can-annular combustor is developed along with this study, such that the product can be installed and removed easily for maintenance and repairing, can allow for easy access for inspections and transmits least amount of vibrational energy to the surface of the combustor. Since near-field ultrasound is used, the vibrations are easily controlled, thereby successfully reducing vibrations on the outer shell of the combustor. Experimental analysis is carried out on the effect of ultrasonic vibrations on flowing jet turbine fuel using an ultrasound generator probe and results of an effective decrease in droplet size across a constant diameter, away from the boundary layer of flow is noted using visual aid by observing under ultraviolet light. The choice of material for the Ultrasound inducer tube and crystal along with the operating range of temperatures, pressures, and frequencies of the Ultrasound field effect are also studied in this paper, while taking into account the losses incurred due to constant vibrations and thermal loads on the tube surface.

Keywords: atomization, ultrasound field effect, titanium mesh, breakup frequency, parent boundary layer, baseplate, propulsive efficiency, jet turbine fuel, induced vibrations

Procedia PDF Downloads 229
363 Research on the Effect of Coal Ash Slag Structure Evolution on Its Flow Behavior During Co-gasification of Coal and Indirect Coal Liquefaction Residue

Authors: Linmin Zhang

Abstract:

Entrained-flow gasification technology is considered the most promising gasification technology because of its clean and efficient utilization characteristics. The stable fluidity of slag at high temperatures is the key to affecting the long-period operation of the gasifier. The diversity and differences of coal ash-slag systems make it difficult to meet the requirements for stable slagging in entrained-flow gasifiers. Therefore, coal blending or adding fluxes has been used in industry for a long time to improve the flow behavior of coal ash. As a by-product of the indirect coal liquefaction process, indirect coal liquefaction residue (ICLR) is a kind of industrial solid waste that is usually disposed of by stacking or landfilling. However, this disposal method will not only occupy land resources but also cause serious pollution to soil and water bodies by leachate containing toxic and harmful metals. As a carbon-containing matrix, ICLR is not only a kind of waste but also a kind of energy substance. Utilizing existing industrial gasifiers to blend combustion ICLR can not only transform industrial solid waste into fuel but also save coal resources. Moreover, the ICLR usually contains a unique ash chemical composition different from coal, which will affect the slagging performance of the gasifier. Therefore, exploring the effect of the ash addition in ICLR on the coal ash flow behavior can not only improve the slagging performance and gasification efficiency of entrained-flow gasifier by using the unique ash chemical composition of ICLR but also provide some theoretical support for the large-scale consumption of industrial solid waste. Combining molecular dynamics simulation with Raman spectroscopy experiment, the effect of ICLR addition on slag structure and fluidity was explained, and the relationship between the evolution law of slag short/medium range microstructure and macroscopic flow behavior was discussed. The research found that the high silicon and aluminum content in coal ash led to the formation of complex [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron structures at high temperature, and the [SiO₄]⁴- tetrahedron and [AlO₄]⁵- tetrahedron were connected by oxygen atoms to form a multi-membered ring structure with high polymerization degree. Due to the action of the multi-membered ring structure, the internal friction in the slag increased, and the viscosity value was higher on the macro-level. As a network-modified ion, Fe2+ could replace Si4+ and Al3+ in the multi-membered ring structure and combine with O2-, which will destroy the bridge oxygen (BO) structure and transform more complex tri cluster oxygen (TO) and bridge oxygen (BO) into simple non-bridge oxygen (NBO) structure. As a result, a large number of multi-membered rings with high polymerization degrees were depolymerized into low-membered rings with low polymerization degrees. The evolution of oxygen types and ring structures in slag reduced the structure complexity and polymerization degree of coal ash slag, resulting in a decrease in the viscosity of coal ash slag.

Keywords: ash slag, coal gasification, fluidity, industrial solid waste, slag structure

Procedia PDF Downloads 7
362 Collaborative Program Student Community Service as a New Approach for Development in Rural Area in Case of Western Java

Authors: Brian Yulianto, Syachrial, Saeful Aziz, Anggita Clara Shinta

Abstract:

Indonesia, with a population of about two hundred and fifty million people in quantity, indicates the outstanding wealth of human resources. Hundreds of millions of the population scattered in various communities in various regions in Indonesia with the different characteristics of economic, social and unique culture. Broadly speaking, the community in Indonesia is divided into two classes, namely urban communities and rural communities. The rural communities characterized by low potential and management of natural and human resources, limited access of development, and lack of social and economic infrastructure, and scattered and isolated population. West Java is one of the provinces with the largest population in Indonesia. Based on data from the Central Bureau of Statistics in 2015 the number of population in West Java reached 46.7096 million souls spread over 18 districts and 9 cities. The big difference in geographical and social conditions of people in West Java from one region to another, especially the south to the north causing the gap is high. It is closely related to the flow of investment to promote the area. Poverty and underdevelopment are the classic problems that occur on a massive scale in the region as the effects of inequity in development. South Cianjur and Tasikmalaya area South became one of the portraits area where the existing potential has not been capable of prospering society. Tri Dharma College not only define the College as a pioneer implementation of education and research to improve the quality of human resources but also demanded to be a pioneer in the development through the concept of public service. Bandung Institute of Technology as one of the institutions of higher education to implement community service system through collaborative community work program "one of the university community" as one approach to developing villages. The program is based Community Service, where students are not only required to be able to take part in community service, but also able to develop a community development strategy that is comprehensive and integrity in cooperation with government agencies and non-government related as a real form of effort alignment potential, position and role from various parties. Areas of western Java in particular have high poverty rates and disparity. On the other hand, there are three fundamental pillars in the development of rural communities, namely economic development, community development, and the integrated infrastructure development. These pillars require the commitment of all components of community, including the students and colleges for upholding success. College’s community program is one of the approaches in the development of rural communities. ITB is committed to implement as one form of student community service as community-college programs that integrate all elements of the community which is called Kuliah Kerja Nyata-Thematic.

Keywords: development in rural area, collaborative, student community service, Kuliah Kerja Nyata-Thematic ITB

Procedia PDF Downloads 213
361 The Home as Memory Palace: Three Case Studies of Artistic Representations of the Relationship between Individual and Collective Memory and the Home

Authors: Laura M. F. Bertens

Abstract:

The houses we inhabit are important containers of memory. As homes, they take on meaning for those who live inside, and memories of family life become intimately tied up with rooms, windows, and gardens. Each new family creates a new layer of meaning, resulting in a palimpsest of family memory. These houses function quite literally as memory palaces, as a walk through a childhood home will show; each room conjures up images of past events. Over time, these personal memories become woven together with the cultural memory of countries and generations. The importance of the home is a central theme in art, and several contemporary artists have a special interest in the relationship between memory and the home. This paper analyses three case studies in order to get a deeper understanding of the ways in which the home functions and feels like a memory palace, both on an individual and on a collective, cultural level. Close reading of the artworks is performed on the theoretical intersection between Art History and Cultural Memory Studies. The first case study concerns works from the exhibition Mnemosyne by the artist duo Anne and Patrick Poirier. These works combine interests in architecture, archaeology, and psychology. Models of cities and fantastical architectural designs resemble physical structures (such as the brain), architectural metaphors used in representing the concept of memory (such as the memory palace), and archaeological remains, essential to our shared cultural memories. Secondly, works by Do Ho Suh will help us understand the relationship between the home and memory on a far more personal level; outlines of rooms from his former homes, made of colourful, transparent fabric and combined into new structures, provide an insight into the way these spaces retain individual memories. The spaces have been emptied out, and only the husks remain. Although the remnants of walls, light switches, doors, electricity outlets, etc. are standard, mass-produced elements found in many homes and devoid of inherent meaning, together they remind us of the emotional significance attached to the muscle memory of spaces we once inhabited. The third case study concerns an exhibition in a house put up for sale on the Dutch real estate website Funda. The house was built in 1933 by a Jewish family fleeing from Germany, and the father and son were later deported and killed. The artists Anne van As and CA Wertheim have used the history and memories of the house as a starting point for an exhibition called (T)huis, a combination of the Dutch words for home and house. This case study illustrates the way houses become containers of memories; each new family ‘resets’ the meaning of a house, but traces of earlier memories remain. The exhibition allows us to explore the transition of individual memories into shared cultural memory, in this case of WWII. Taken together, the analyses provide a deeper understanding of different facets of the relationship between the home and memory, both individual and collective, and the ways in which art can represent these.

Keywords: Anne and Patrick Poirier, cultural memory, Do Ho Suh, home, memory palace

Procedia PDF Downloads 149
360 WhatsApp as a Public Health Management Tool in India

Authors: Drishti Sharma, Mona Duggal

Abstract:

Background: WhatsApp can serve as a cost-effective, scalable, convenient, and popular medium for public health management related communication in the developing world where the existing system of communication is top-down and slow. The product supports sending and receiving a variety of media: text, photos, videos, documents, and location, as well as voice/video calls. With growing number of users of smartphones and improving access and penetration of internet, the scope of information technology remains immense in resolving the hurdles faced by traditional public health system. Poor infrastructure, gap in digital literacy, faulty documentation, strict organizational hierarchy and slow movement of information across desks and offices- all these, make WhatsApp an efficient prospect to complement the existing system for communication, feedback and leadership for public health system in India. Objective: This study investigates the benefits, challenges and limitations associated with WhatsApp usage as a public health management tool. Methods: The study was conducted within the Chandigarh Union Territory. We used a qualitative approach and conducted individual semi-structured interviews and group interviews (n = 10). Participants included medical officers (n 20), Program managers (n = 4), academicians (n=2) and administrators (n=2). Thematic and content qualitative analyses were conducted. Message log of the WhatsApp group of one of the health program was assessed. Results: Medical Officers said that WhatsApp helped them remain in touch with the program officer. They could easily give feedback and highlight those challenges which needed immediate intervention from the program managers, hence they felt supported. Also, the application helped them share pictures of their activities (meetings and field activities) with the group which they thought inspired others and gave themselves immense satisfaction. Also, it helped build stronger relationships and better coordination among themselves, the same being important in team events. For program managers, it had become a portal for coordinating large scale campaigns. Its reach and the fact that the feedback is real-time make WhatsApp ideal for district level events. Though the easy informal connectivity made them answerable to their staff but it also provided them with flexibility in operations. It turned out to be an important portal for sharing outcome and goals related feedback (both positive and negative) to the team. To be sure, using WhatsApp for the purpose of public health program presents considerable challenges, including technological barriers, organizational challenges, gender issues, confidentiality concerns and unplanned aftereffects. Nevertheless, its advantages in a low-cost setting make it an efficient alternative. Conclusion: WhatsApp has become an integral part of our lives. Use of this app for public health program management within closed groups looks promising and useful. At the same time, addressing the challenges involved would make its usage safer.

Keywords: communication, mobile technology, public health management, WhatsApp

Procedia PDF Downloads 163
359 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 126
358 Japanese and Europe Legal Frameworks on Data Protection and Cybersecurity: Asymmetries from a Comparative Perspective

Authors: S. Fantin

Abstract:

This study is the result of the legal research on cybersecurity and data protection within the EUNITY (Cybersecurity and Privacy Dialogue between Europe and Japan) project, aimed at fostering the dialogue between the European Union and Japan. Based on the research undertaken therein, the author offers an outline of the main asymmetries in the laws governing such fields in the two regions. The research is a comparative analysis of the two legal frameworks, taking into account specific provisions, ratio legis and policy initiatives. Recent doctrine was taken into account, too, as well as empirical interviews with EU and Japanese stakeholders and project partners. With respect to the protection of personal data, the European Union has recently reformed its legal framework with a package which includes a regulation (General Data Protection Regulation), and a directive (Directive 680 on personal data processing in the law enforcement domain). In turn, the Japanese law under scrutiny for this study has been the Act on Protection of Personal Information. Based on a comparative analysis, some asymmetries arise. The main ones refer to the definition of personal information and the scope of the two frameworks. Furthermore, the rights of the data subjects are differently articulated in the two regions, while the nature of sanctions take two opposite approaches. Regarding the cybersecurity framework, the situation looks similarly misaligned. Japan’s main text of reference is the Basic Cybersecurity Act, while the European Union has a more fragmented legal structure (to name a few, Network and Information Security Directive, Critical Infrastructure Directive and Directive on the Attacks at Information Systems). On an relevant note, unlike a more industry-oriented European approach, the concept of cyber hygiene seems to be neatly embedded in the Japanese legal framework, with a number of provisions that alleviate operators’ liability by turning such a burden into a set of recommendations to be primarily observed by citizens. With respect to the reasons to fill such normative gaps, these are mostly grounded on three basis. Firstly, the cross-border nature of cybercrime brings to consider both magnitude of the issue and its regulatory stance globally. Secondly, empirical findings from the EUNITY project showed how recent data breaches and cyber-attacks had shared implications between Europe and Japan. Thirdly, the geopolitical context is currently going through the direction of bringing the two regions to significant agreements from a trade standpoint, but also from a data protection perspective (with an imminent signature by both parts of a so-called ‘Adequacy Decision’). The research conducted in this study reveals two asymmetric legal frameworks on cyber security and data protection. With a view to the future challenges presented by the strengthening of the collaboration between the two regions and the trans-national fashion of cybercrime, it is urged that solutions are found to fill in such gaps, in order to allow European Union and Japan to wisely increment their partnership.

Keywords: cybersecurity, data protection, European Union, Japan

Procedia PDF Downloads 113
357 Understanding the Cause(S) of Social, Emotional and Behavioural Difficulties of Adolescents with ADHD and Its Implications for the Successful Implementation of Intervention(S)

Authors: Elisavet Kechagia

Abstract:

Due to the interplay of different genetic and environmental risk factors and its heterogeneous nature, the concept of attention deficit hyperactivity disorder (ADHD) has shaped controversy and conflicts, which have been, in turn, reflected in the controversial arguments about its treatment. Taking into account recent well evidence-based researches suggesting that ADHD is a condition, in which biopsychosocial factors are all weaved together, the current paper explores the multiple risk-factors that are likely to influence ADHD, with a particular focus on adolescents with ADHD who might experience comorbid social, emotional and behavioural disorders (SEBD). In the first section of this paper, the primary objective was to investigate the conflicting ideas regarding the definition, diagnosis and treatment of ADHD at an international level as well as to critically examine and identify the limitations of the two most prevailing sets of diagnostic criteria that inform current diagnosis, the American Psychiatric Association’s (APA) diagnostic scheme, DSM-V, and the World Health Organisation’s (WHO) classification of diseases, ICD-10. Taking into consideration the findings of current longitudinal studies on ADHD association with high rates of comorbid conditions and social dysfunction, in the second section the author moves towards an investigation of the transitional points −physical, psychological and social ones− that students with ADHD might experience during early adolescence, as informed by neuroscience and developmental contextualism theory. The third section is an exploration of the different perspectives of ADHD as reflected in individuals’ with ADHD self-reports and the KENT project’s findings on school staff’s attitudes and practices. In the last section, given the high rates of SEBDs in adolescents with ADHD, it is examined how cognitive behavioural therapy (CBT), coupled with other interventions, could be effective in ameliorating anti-social behaviours and/or other emotional and behavioral difficulties of students with ADHD. The findings of a range of randomised control studies indicate that CBT might have positive outcomes in adolescents with multiple behavioural problems, hence it is suggested to be considered both in schools and other community settings. Finally, taking into account the heterogeneous nature of ADHD, the different biopsychosocial and environmental risk factors that take place during adolescence and the discourse and practices concerning ADHD and SEBD, it is suggested how it might be possible to make sense of and meaningful improvements to the education of adolescents with ADHD within a multi-modal and multi-disciplinary whole-school approach that addresses the multiple problems that not only students with ADHD but also their peers might experience. Further research that would be based on more large-scale controls and would investigate the effectiveness of various interventions, as well as the profiles of those students who have benefited from particular approaches and those who have not, will generate further evidence concerning the psychoeducation of adolescents with ADHD allowing for generalised conclusions to be drawn.

Keywords: adolescence, attention deficit hyperctivity disorder, cognitive behavioural theory, comorbid social emotional behavioural disorders, treatment

Procedia PDF Downloads 304
356 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 109
355 A Study on Green Building Certification Systems within the Context of Anticipatory Systems

Authors: Taner Izzet Acarer, Ece Ceylan Baba

Abstract:

This paper examines green building certification systems and their current processes in comparison with anticipatory systems. Rapid growth of human population and depletion of natural resources are causing irreparable damage to urban and natural environment. In this context, the concept of ‘sustainable architecture’ has emerged in the 20th century so as to establish and maintain standards for livable urban spaces, to improve quality of urban life, and to preserve natural resources for future generations. The construction industry is responsible for a large part of the resource consumption and it is believed that the ‘green building’ designs that emerge in construction industry can reduce environmental problems and contribute to sustainable development around the world. A building must meet a specific set of criteria, set forth through various certification systems, in order to be eligible for designation as a green building. It is disputable whether methods used by green building certification systems today truly serve the purposes of creating a sustainable world. Accordingly, this study will investigate the sets of rating systems used by the most popular green building certification programs, including LEED (Leadership in Energy and Environmental Design), BREEAM (Building Research Establishment's Environmental Assessment Methods), DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen System), in terms of ‘Anticipatory Systems’ in accordance with the certification processes and their goals, while discussing their contribution to architecture. The basic methodology of the study is as follows. Firstly analyzes of brief historical and literature review of green buildings and certificate systems will be stated. Secondly, processes of green building certificate systems will be disputed by the help of anticipatory systems. Anticipatory Systems is a set of systems designed to generate action-oriented projections and to forecast potential side effects using the most current data. Anticipatory Systems pull the future into the present and take action based on future predictions. Although they do not have a claim to see into the future, they can provide foresight data. When shaping the foresight data, Anticipatory Systems use feedforward instead of feedback, enabling them to forecast the system’s behavior and potential side effects by establishing a correlation between the system’s present/past behavior and projected results. This study indicates the goals and current status of LEED, BREEAM and DGNB rating systems that created by using the feedback technique will be examined and presented in a chart. In addition, by examining these rating systems with the anticipatory system that using the feedforward method, the negative influences of the potential side effects on the purpose and current status of the rating systems will be shown in another chart. By comparing the two obtained data, the findings will be shown that rating systems are used for different goals than the purposes they are aiming for. In conclusion, the side effects of green building certification systems will be stated by using anticipatory system models.

Keywords: anticipatory systems, BREEAM, certificate systems, DGNB, green buildings, LEED

Procedia PDF Downloads 210
354 42CrMo4 Steel Flow Behavior Characterization for High Temperature Closed Dies Hot Forging in Automotive Components Applications

Authors: O. Bilbao, I. Loizaga, F. A. Girot, A. Torregaray

Abstract:

The current energetical situation and the high competitiveness in industrial sectors as the automotive one have become the development of new manufacturing processes with less energy and raw material consumption a real necessity. As consequence, new forming processes related with high temperature hot forging in closed dies have emerged in the last years as new solutions to expand the possibilities of hot forging and iron casting in the automotive industry. These technologies are mid-way between hot forging and semi-solid metal processes, working at temperatures higher than the hot forging but below the solidus temperature or the semi solid range, where no liquid phase is expected. This represents an advantage comparing with semi-solid forming processes as thixoforging, by the reason that no so high temperatures need to be reached in the case of high melting point alloys as steels, reducing the manufacturing costs and the difficulties associated to semi-solid processing of them. Comparing with hot forging, this kind of technologies allow the production of parts with as forged properties and more complex and near-net shapes (thinner sidewalls), enhancing the possibility of designing lightweight components. From the process viewpoint, the forging forces are significantly decreased, and a significant reduction of the raw material, energy consumption, and the forging steps have been demonstrated. Despite the mentioned advantages, from the material behavior point of view, the expansion of these technologies has shown the necessity of developing new material flow behavior models in the process working temperature range to make the simulation or the prediction of these new forming processes feasible. Moreover, the knowledge of the material flow behavior at the working temperature range also allows the design of the new closed dies concept required. In this work, the flow behavior characterization in the mentioned temperature range of the widely used in automotive commercial components 42CrMo4 steel has been studied. For that, hot compression tests have been carried out in a thermomechanical tester in a temperature range that covers the material behavior from the hot forging until the NDT (Nil Ductility Temperature) temperature (1250 ºC, 1275 ºC, 1300 ºC, 1325 ºC, 1350ºC, and 1375 ºC). As for the strain rates, three different orders of magnitudes have been considered (0,1 s-1, 1s-1, and 10s-1). Then, results obtained from the hot compression tests have been treated in order to adapt or re-write the Spittel model, widely used in automotive commercial softwares as FORGE® that restrict the current existing models up to 1250ºC. Finally, the obtained new flow behavior model has been validated by the process simulation in a commercial automotive component and the comparison of the results of the simulation with the already made experimental tests in a laboratory cellule of the new technology. So as a conclusion of the study, a new flow behavior model for the 42CrMo4 steel in the new working temperature range and the new process simulation in its application in automotive commercial components has been achieved and will be shown.

Keywords: 42CrMo4 high temperature flow behavior, high temperature hot forging in closed dies, simulation of automotive commercial components, spittel flow behavior model

Procedia PDF Downloads 117
353 Methodological Approach to the Elaboration and Implementation of the Spatial-Urban Plan for the Special Purpose Area: Case-Study of Infrastructure Corridor of Highway E-80, Section Nis-Merdare, Serbia

Authors: Nebojsa Stefanovic, Sasa Milijic, Natasa Danilovic Hristic

Abstract:

Spatial plan of the special purpose area constitutes a basic tool in the planning of infrastructure corridor of a highway. The aim of the plan is to define the planning basis and provision of spatial conditions for the construction and operation of the highway, as well as for developing other infrastructure systems in the corridor. This paper presents a methodology and approach to the preparation of the Spatial Plan for the special purpose area for the infrastructure corridor of the highway E-80, Section Niš-Merdare in Serbia. The applied methodological approach is based on the combined application of the integrative and participatory method in the decision-making process on the sustainable development of the highway corridor. It was found that, for the planning and management of the infrastructure corridor, a key problem is coordination of spatial and urban planning, strategic environmental assessment and sectoral traffic planning and designing. Through the development of the plan, special attention is focused on increasing the accessibility of the local and regional surrounding, reducing the adverse impacts on the development of settlements and the economy, protection of natural resources, natural and cultural heritage, and the development of other infrastructure systems in the corridor of the highway. As a result of the applied methodology, this paper analyzes the basic features such as coverage, the concept, protected zones, service facilities and objects, the rules of development and construction, etc. Special emphasis is placed to methodology and results of the Strategic Environmental Assessment of the Spatial Plan, and to the importance of protection measures, with the special significance of air and noise protection measures. For evaluation in the Strategic Environmental Assessment, a multicriteria expert evaluation (semi-quantitative method) of planned solutions was used in relation to the set of goals and relevant indicators, based on the basic set of indicators of sustainable development. Evaluation of planned solutions encompassed the significance and size, spatial conditions and probability of the impact of planned solutions on the environment, and the defined goals of strategic assessment. The framework of the implementation of the Spatial Plan is presented, which is determined for the simultaneous elaboration of planning solutions at two levels: the strategic level of the spatial plan and detailed urban plan level. It is also analyzed the relationship of the Spatial Plan to other applicable planning documents for the planning area. The effects of this methodological approach relate to enabling integrated planning of the sustainable development of the infrastructure corridor of the highway and its surrounding area, through coordination of spatial, urban and sectoral traffic planning and design, as well as the participation of all key actors in the adoption and implementation of planned decisions. By the conclusions of the paper, it is pointed to the direction for further research, particularly in terms of harmonizing methodology of planning documentation and preparation of technical-design documentation.

Keywords: corridor, environment, highway, impact, methodology, spatial plan, urban

Procedia PDF Downloads 198
352 A Supply Chain Risk Management Model Based on Both Qualitative and Quantitative Approaches

Authors: Henry Lau, Dilupa Nakandala, Li Zhao

Abstract:

In today’s business, it is well-recognized that risk is an important factor that needs to be taken into consideration before a decision is made. Studies indicate that both the number of risks faced by organizations and their potential consequences are growing. Supply chain risk management has become one of the major concerns for practitioners and researchers. Supply chain leaders and scholars are now focusing on the importance of managing supply chain risk. In order to meet the challenge of managing and mitigating supply chain risk (SCR), we must first identify the different dimensions of SCR and assess its relevant probability and severity. SCR has been classified in many different ways, and there are no consistently accepted dimensions of SCRs and several different classifications are reported in the literature. Basically, supply chain risks can be classified into two dimensions namely disruption risk and operational risk. Disruption risks are those caused by events such as bankruptcy, natural disasters and terrorist attack. Operational risks are related to supply and demand coordination and uncertainty, such as uncertain demand and uncertain supply. Disruption risks are rare but severe and hard to manage, while operational risk can be reduced through effective SCM activities. Other SCRs include supply risk, process risk, demand risk and technology risk. In fact, the disorganized classification of SCR has created confusion for SCR scholars. Moreover, practitioners need to identify and assess SCR. As such, it is important to have an overarching framework tying all these SCR dimensions together for two reasons. First, it helps researchers use these terms for communication of ideas based on the same concept. Second, a shared understanding of the SCR dimensions will support the researchers to focus on the more important research objective: operationalization of SCR, which is very important for assessing SCR. In general, fresh food supply chain is subject to certain level of risks, such as supply risk (low quality, delivery failure, hot weather etc.) and demand risk (season food imbalance, new competitors). Effective strategies to mitigate fresh food supply chain risk are required to enhance operations. Before implementing effective mitigation strategies, we need to identify the risk sources and evaluate the risk level. However, assessing the supply chain risk is not an easy matter, and existing research mainly use qualitative method, such as risk assessment matrix. To address the relevant issues, this paper aims to analyze the risk factor of the fresh food supply chain using an approach comprising both fuzzy logic and hierarchical holographic modeling techniques. This novel approach is able to take advantage the benefits of both of these well-known techniques and at the same time offset their drawbacks in certain aspects. In order to develop this integrated approach, substantial research work is needed to effectively combine these two techniques in a seamless way, To validate the proposed integrated approach, a case study in a fresh food supply chain company was conducted to verify the feasibility of its functionality in a real environment.

Keywords: fresh food supply chain, fuzzy logic, hierarchical holographic modelling, operationalization, supply chain risk

Procedia PDF Downloads 229
351 Land Rights, Policy and Cultural Identity in Uganda: Case of the Basongora Community

Authors: Edith Kamakune

Abstract:

As much as Indigenous rights are presumed to be part of the broad human rights regime, members of the indigenous communities have continually suffered violations, exclusions, and threat. There are a number of steps taken from the international community in trying to bridge the gap, and this has been through the inclusion of provisions as well as the passing of conventions and declarations with specific reference to the rights of indigenous peoples. Some examples of indigenous people include theSiberian Yupik of St Lawrence Island; the Ute of Utah; the Cree of Alberta, and the Xosa andKhoiKhoi of Southern Africa. Uganda’s wide cultural heritage has played a key role in the failure to pay special attention to the needs of the rights of indigenous peoples. The 1995 Constitution and the Land Act of 1998 provide for abstract land rights without necessarily paying attention to indigenous communities’ special needs. Basongora are a pastoralist community in Western Uganda whose ancestral land is the present Queen Elizabeth National Park of Western Uganda, Virunga National Park of Eastern Democratic Republic of Congo, and the small percentage of the low lands under the Rwenzori Mountains. Their values and livelihood are embedded in their strong attachment to the land, and this has been at stake for the last about 90 Years. This research was aimed atinvestigating the relationship between land rights and the right to cultural identity among indigenous communities, looking at the policy available on land and culture, and whether the policies are sensitive of the specific issues of vulnerable ethnic groups; and largely the effect of land on the right to cultural identity. The research was guided by three objectives: to examine and contextualize the concept of land rights among the Basongora community; to assess the policy frame work available for the protection of the Basongora community; to investigate the forms of vulnerability of the Basongora community. Quantitative and qualitative methods were used. a case of Kaseseand Kampala Districts were purposefully selected .138 people were recruited through random and nonrandom techniques to participate in the study, and these were 70 questionnaire respondents; 20 face to face interviews respondents; 5 key informants, and 43 participants in focus group discussions; The study established that Land is communally held and used and thatit continues to be a central source of livelihood for the Basongora; land rights are important in multiplication of herds; preservation, development, and promotion of culture and language. Research found gaps in the policy framework since the policies are concerned with tenure issues and the general provisions areambiguous. Oftenly, the Basongora are not called upon to participate in decision making processes, even on issues that affect them. The research findings call forauthorities to allow Basongora to access Queen Elizabeth National Park land for pasture during particular seasons of the year, especially during the dry seasons; land use policy; need for a clear alignment of the description of indigenous communitiesunder the constitution (Uganda, 1995) to the international definition.

Keywords: cultural identity, land rights, protection, uganda

Procedia PDF Downloads 141
350 Impact of Sufism on Indian Cinema: A New Cultural Construct for Mediating Conflict

Authors: Ravi Chaturvedi, Ghanshyam Beniwal

Abstract:

Without going much into the detail of long history of Sufism in the world and the etymological definition of the word ‘Sufi’, it will be sufficient to underline that the concept of Sufism was to focus the mystic power on the spiritual dimension of Islam with a view-shielding the believers from the outwardly and unrealistic dogma of the faith. Sufis adopted rather a liberal view in propagating the religious order of Islam suitable to the cultural and social environment of the land. It is, in fact, a mission of higher religious order of any faith, which disdains strife and conflict in any form. The joy of self-realization being the essence of religion is experienced after a long spiritual practice. India had Sufi and Bhakti (devotion) traditions in Islam and Hinduism, respectively. Both Sufism and Bhakti traditions were based on respect for different religions. The poorer and lower caste Hindus and Muslims were greatly influenced by these traditions. Unlike Ulemas and Brahmans, the Sufi and Bhakti saints were highly tolerant and open to the truth in other faiths. They never adopted sectarian attitudes and were never involved in power struggles. They kept away from power structures. Sufism is integrated with the Indian cinema since its initial days. In the earliest Bollywood movies, Sufism was represented in the form of qawwali which made its way from dargahs (shrines). Mixing it with pop influences, Hindi movies began using Sufi music in a big way only in the current decade. However, of late, songs with Sufi influences have become de rigueur in almost every film being released these days, irrespective of the genre, whether it is a romantic Gangster or a cerebral Corporate. 'Sufi is in the DNA of the Indian sub-continent', according to several contemporary filmmakers, critics, and spectators.The inherent theatricality motivates the performer of the 'Sufi' rituals for a dramatic behavior. The theatrical force of these stages of Sufi practice is so powerful that even the spectator cannot resist himself from being moved. In a multi-cultural country like India, the mediating streams have acquired a multi-layered importance in recent history. The second half of Indian post-colonial era has witnessed a regular chain of some conflicting religio-political waves arising from various sectarian camps in the country, which have compelled the counter forces to activate for keeping the spirit of composite cultural ethos alive. The study has revealed that the Sufi practice methodology is also being adapted for inclusion of spirituality in life at par to Yoga practice. This paper, a part of research study, is an attempt to establish that the Sufism in Indian cinema is one such mediating voice which is very active and alive throughout the length and width of the country continuously bridging the gap between various religious and social factions, and have a significant role to play in future as well.

Keywords: Indian cinema, mediating voice, Sufi, yoga practice

Procedia PDF Downloads 480
349 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 107
348 Aerobic Biodegradation of a Chlorinated Hydrocarbon by Bacillus Cereus 2479

Authors: Srijata Mitra, Mobina Parveen, Pranab Roy, Narayan Chandra Chattopadhyay

Abstract:

Chlorinated hydrocarbon can be a major pollution problem in groundwater as well as soil. Many people interact with these chemicals on daily accidentally or by professionally in the laboratory. One of the most common sources for Chlorinated hydrocarbon contamination of soil and groundwater are industrial effluents. The wide use and discharge of Trichloroethylene (TCE), a volatile chlorohydrocarbon from chemical industry, led to major water pollution in rural areas. TCE is an mainly used as an industrial metal degreaser in industries. Biotransformation of TCE to the potent carcinogen vinyl chloride (VC) by consortia of anaerobic bacteria might have role for the above purpose. For these reasons, the aim of current study was to isolate and characterized the genes involved in TCE metabolism and also to investigate the in silico study of those genes. To our knowledge, only one aromatic dioxygenase system, the toluene dioxygenase in Pseudomonas putida F1 has been shown to be involved in TCE degradation. This is first instance where Bacillus cereus group being used in biodegradation of trichloroethylene. A novel bacterial strain 2479 was isolated from oil depot site at Rajbandh, Durgapur (West Bengal, India) by enrichment culture technique. It was identified based on polyphasic approach and ribotyping. The bacterium was gram positive, rod shaped, endospore forming and capable of degrading trichloroethylene as the sole carbon source. On the basis of phylogenetic data and Fatty Acid Methyl Ester Analysis, strain 2479 should be placed within the genus Bacillus and species cereus. However, the present isolate (strain 2479) is unique and sharply different from the usual Bacillus strains in its biodegrading nature. Fujiwara test was done to estimate that the strain 2479 could degrade TCE efficiently. The gene for TCE biodegradation was PCR amplified from genomic DNA of Bacillus cereus 2479 by using todC1 gene specific primers. The 600bp amplicon was cloned into expression vector pUC I8 in the E. coli host XL1-Blue and expressed under the control of lac promoter and nucleotide sequence was determined. The gene sequence was deposited at NCBI under the Accession no. GU183105. In Silico approach involved predicting the physico-chemical properties of deduced Tce1 protein by using ProtParam tool. The tce1 gene contained 342 bp long ORF encoding 114 amino acids with a predicted molecular weight 12.6 kDa and the theoretical pI value of the polypeptide was 5.17, molecular formula: C559H886N152O165S8, total number of atoms: 1770, aliphatic index: 101.93, instability index: 28.60, Grand Average of Hydropathicity (GRAVY): 0.152. Three differentially expressed proteins (97.1, 40 and 30 kDa) were directly involved in TCE biodegradation, found to react immunologically to the antibodies raised against TCE inducible proteins in Western blot analysis. The present study suggested that cloned gene product (TCE1) was capable of degrading TCE as verified chemically.

Keywords: cloning, Bacillus cereus, in silico analysis, TCE

Procedia PDF Downloads 386