Search results for: free space optics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6921

Search results for: free space optics

81 Spatial Variation in Urbanization and Slum Development in India: Issues and Challenges in Urban Planning

Authors: Mala Mukherjee

Abstract:

Background: India is urbanizing very fast and urbanisation in India is treated as one of the most crucial components of economic growth. Though the pace of urbanisation (31.6 per cent in 2011) is however slower and lower than the average for Asia but the absolute number of people residing in cities and towns has increased substantially. Rapid urbanization leads to urban poverty and it is well represented in slums. Currently India has four metropolises and 53 million plus cities. All of them have significant slum population but the standard of living and success of slum development programmes varies across regions. Objectives: Objectives of the paper are to show how urbanisation and slum development varies across space; to show spatial variation in the standard of living in Indian slums; to analyse how the implementation of slum development policies like JNNURM, Rajiv Awas Yojana varies across cities and bring different results in different regions and what are the factors responsible for such variation. Data Sources and Methodology: Census 2011 data on urban population and slum households and amenities have been used for analysing the regional variation of urbanisation in 53 million plus cities of India. Special focus has been put on Kolkata Metropolitan Area. Statistical techniques like z-score and PCA have been employed to work out Standard of Living Deprivation score for all the slums of 53 metropolises. ARC-GIS software is used for making maps. Standard of living has been measured in terms of access to basic amenities, infrastructure and assets like drinking water, sanitation, housing condition, bank account, and so on. Findings: 1. The first finding reveals that migration and urbanization is very high in Greater Mumbai, Delhi, Bangaluru, Chennai, Hyderabad and Kolkata; but slum population is high in Greater Mumbai (50% population live in slums), Meerut, Faridabad, Ludhiana, Nagpur, Kolkata etc. Though the rate of urbanization is high in southern and western states but the percentage of slum population is high in northern states (except Greater Mumbai). 2. Standard of Living also varies widely. Slums of Greater Mumbai and North Indian Cities score fairly high in the index indicating the fact that standard of living is high in those slums compare to the slums in eastern India (Dhanbad, Jamshedpur, Kolkata). Therefore, though Kolkata have relatively lesser percentage of slum population compare to north and south Indian cities but the standard of living in Kolkata’s slums is deplorable. 3. It is interesting to note that even within Kolkata Metropolitan Area slums located in the southern and eastern municipal towns like Rajpur-Sonarpur, Pujali, Diamond Harbour, Baduria and Dankuni have lower standard of living compare to the slums located in the Hooghly Industrial belt like Titagarh, Rishrah, Srerampore etc. Slums of the Hooghly Industrial Belt are older than the slums located in eastern and southern part of the urban agglomeration. 4. Therefore, urban development and emergence of slums should not be the only issue of urban governance but standard of living should be the main focus. Slums located in the main cities like Delhi, Mumbai, Kolkata get more attention from the urban planners and similarly, older slums in a city receives greater political attention compare to the slums of smaller cities and newly emerged slums of the peripheral parts.

Keywords: urbanisation, slum, spatial variation, India

Procedia PDF Downloads 343
80 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 106
79 Understanding Responses of the Bee Community to an Urbanizing Landscape in Bengaluru, South India

Authors: Chethana V. Casiker, Jagadishakumara B., Sunil G. M., Chaithra K., M. Soubadra Devy

Abstract:

A majority of the world’s food crops depends on insects for pollination, among which bees are the most dominant taxon. Bees pollinate vegetables, fruits and oilseeds which are rich in essential micronutrients. Besides being a prerequisite for a nutritionally secure diet, agrarian economies such as India depend heavily on pollination for good yield and quality of the product. As cities all over the world expand rapidly, large tracts of green spaces are being built up. This, along with high usage of agricultural chemicals has reduced floral diversity and shrunk bee habitats. Indeed, pollinator decline is being reported from various parts of the world. Further, the FAO has reported a huge increase in the area of land under cultivation of pollinator-dependent crops. In the light of increasing demand for pollination and disappearing natural habitats, it is critical to understand whether and how urban spaces can support pollinators. To this end, this study investigates the influence of landscape and local habitat quality on bee community dynamics. To capture the dynamics of expanding cityscapes, the study employs a space for time substitution, wherein a transect along the gradient of urbanization substitutes a timeframe of increasing urbanization. This will help understand how pollinators would respond to changes induced by increasing intensity of urbanization in the future. Bengaluru, one of the fastest growing cities of Southern India, is an excellent site to study impacts associated with urbanization. With sites moving away from the Bengaluru’s centre and towards its peripheries, this study captures the changes in bee species diversity and richness along a gradient of urbanization. Bees were sampled under different land use types as well as in different types of vegetation, including plantations, croplands, fallow land, parks, lake embankments, and private gardens. The relationship between bee community metrics and key drivers such as a percentage of built-up area, land use practices, and floral resources was examined. Additionally, data collected using questionnaire interviews were used to understand people’s perceptions towards and level of dependence on pollinators. Our results showed that urban areas are capable of supporting bees. In fact, a greater diversity of bees was recorded in urban sites compared to adjoining rural areas. This suggests that bees are able to seek out patchy resources and survive in small fragments of habitat. Bee abundance and species richness correlated positively with floral abundance and richness, indicating the role of vegetation in providing forage and nesting sites which are crucial to their survival. Bee numbers were seen to decrease with increase in built-up area demonstrating that impervious surfaces could act as deterrents. Findings from this study challenge the popular notion of cities being biodiversity-bare spaces. There is indeed scope for conserving bees in urban landscapes, provided that there are city-scale planning and local initiative. Bee conservation can go hand in hand with efforts such as urban gardening and terrace farming that could help cities urbanize sustainably.

Keywords: bee, landscape ecology, urbanization, urban pollination

Procedia PDF Downloads 156
78 The Dark History of American Psychiatry: Racism and Ethical Provider Responsibility

Authors: Mary Katherine Hoth

Abstract:

Despite racial and ethnic disparities in American psychiatry being well-documented, there remains an apathetic attitude among nurses and providers within the field to engage in active antiracism and provide equitable, recovery-oriented care. It is insufficient to be a “colorblind” nurse or provider and state that call care provided is identical for every patient. Maintaining an attitude of “colorblindness” perpetuates the racism prevalent throughout healthcare and leads to negative patient outcomes. The purpose of this literature review is to highlight the how the historical beginnings of psychiatry have evolved into the disparities seen in today’s practice, as well as to provide some insight on methods that providers and nurses can employ to actively participate in challenging these racial disparities. Background The application of psychiatric medicine to White people versus Black, Indigenous, and other People of Color has been distinctly different as a direct result of chattel slavery and the development of pseudoscience “diagnoses” in the 19th century. This weaponization of the mental health of Black people continues to this day. Population The populations discussed are Black, Indigenous, and other People of Color, with a primary focus on Black people’s experiences with their mental health and the field of psychiatry. Methods A literature review was conducted using CINAHL, EBSCO, MEDLINE, and PubMed databases with the following terms: psychiatry, mental health, racism, substance use, suicide, trauma-informed care, disparities and recovery-oriented care. Articles were further filtered based on meeting the criteria of peer-reviewed, full-text availability, written in English, and published between 2018 and 2023. Findings Black patients are more likely to be diagnosed with psychotic disorders and prescribed antipsychotic medications compared to White patients who were more often diagnosed with mood disorders and prescribed antidepressants. This same disparity is also seen in children and adolescents, where Black children are more likely to be diagnosed with behavior problems such as Oppositional Defiant Disorder (ODD) and White children with the same presentation are more likely to be diagnosed with Attention Hyperactivity Disorder. Medications advertisements for antipsychotics like Haldol as recent as 1974 portrayed a Black man, labeled as “agitated” and “aggressive”, a trope we still see today in police violence cases. The majority of nursing and medical school programs do not provide education on racism and how to actively combat it in practice, leaving many healthcare professionals acutely uneducated and unaware of their own biases and racism, as well as structural and institutional racism. Conclusions Racism will continue to grow wherever it is given time, space, and energy. Providers and nurses have an ethical obligation to educate themselves, actively deconstruct their personal racism and bias, and continuously engage in active antiracism by dismantling racism wherever it is encountered, be it structural, institutional, or scientific racism. Agents of change at the patient care level not only improve the outcomes of Black patients, but it will also lead the way in ensuring Black, Indigenous, and other People of Color are included in research of methods and medications in psychiatry in the future.

Keywords: disparities, psychiatry, racism, recovery-oriented care, trauma-informed care

Procedia PDF Downloads 111
77 Regulation of Cultural Relationship between Russia and Ukraine after Crimea’s Annexation: A Comparative Socio-Legal Study

Authors: Elena Sherstoboeva, Elena Karzanova

Abstract:

This paper explores the impact of the annexation of Crimea on the regulation of live performances and tour management of Russian pop music performers in Ukraine and of Ukrainian performers in Russia. Without a doubt, the cultural relationship between Russia and Ukraine is not limited to this issue. Yet concert markets tend to respond particularly rapidly to political, economic, and social changes, especially in Russia and Ukraine, where the high level of digital piracy means that the music businesses mainly depend upon income from performances rather than from digital rights sales. This paper argues that the rules formed in both countries after Russia’s annexation of Crimea in 2014 have contributed to the separation of a single cultural space that had existed in Soviet and Post-Soviet Russia and Ukraine before the annexation. These rules have also facilitated performers’ self-censorship and increased the politicisation of the music businesses in the two neighbouring countries. This study applies a comparative socio-legal approach to study Russian and Ukrainian live events and tour regulation. A qualitative analysis of Russian and Ukrainian national and intergovernmental legal frameworks is applied to examine formal regulations. Soviet and early post-Soviet laws and policies are also studied, but only to the extent that they help to track the changes in the Russian–Ukrainian cultural relationship. To identify and analyse the current informal rules, the study design includes in-depth semi-structured interviews with 30 live event or tour managers working in Russia and Ukraine. A case study is used to examine how the Eurovision Song Contest, an annual international competition, has played out within the Russian–Ukrainian conflict. The study suggests that modern Russian and Ukrainian frameworks for live events and tours have developed Soviet regulatory traditions when cultural policies served as a means of ideological control. At the same time, contemporary regulations mark a considerable perspective shift, as the previous rules have been aimed at maintaining close cultural connections between the Russian and Ukrainian nations. Instead of collaboration, their current frameworks mostly serve as forms of repression, implying that performers must choose only one national market in which to work. The regulatory instruments vary and often impose limitations that typically exist in non-democratic regimes to restrict foreign journalism, such as visa barriers or bans on entry. The more unexpected finding is that, in comparison with Russian law, Ukrainian regulations have created more obstacles to the organisation of live tours and performances by Russian artists in Ukraine. Yet this stems from commercial rather than political factors. This study predicts that the more economic challenges the Russian or Ukrainian music businesses face, the harsher the regulations will be regarding the organisation of live events or tours in the other country. This study recommends that international human rights organisations and non-governmental organisations develop and promote specific standards for artistic rights and freedoms, given the negative effects of the increasing politicisation of the entertainment business and cultural spheres to freedom of expression and cultural rights and pluralism.

Keywords: annexation of Crimea, artistic freedom, censorship, cultural policy

Procedia PDF Downloads 105
76 How Can Personal Protective Equipment Be Best Used and Reused: A Human Factors based Look at Donning and Doffing Procedures

Authors: Devin Doos, Ashley Hughes, Trang Pham, Paul Barach, Rami Ahmed

Abstract:

Over 115,000 Health Care Workers (HCWs) have died from COVID-19, and millions have been infected while caring for patients. HCWs have filed thousands of safety complaints surrounding safety concerns due to Personal Protective Equipment (PPE) shortages, which included concerns around inadequate and PPE reuse. Protocols for donning and doffing PPE remain ambiguous, lacking an evidence-base, and often result in wide deviations in practice. PPE donning and doffing protocol deviations commonly result in self-contamination but have not been thoroughly addressed. No evidence-driven protocols provide guidance on protecting HCW during periods of PPE reuse. Objective: The aim of this study was to examine safety-related threats and risks to Health Care Workers (HCWs) due to the reuse of PPE among Emergency Department personnel. Method: We conducted a prospective observational study to examine the risks of reusing PPE. First, ED personnel were asked to don and doff PPE in a simulation lab. Each participant was asked to don and doff PPE five times, according to the maximum reuse recommendation set by the Centers for Disease Control and Prevention (CDC). Each participant was videorecorded; video recordings were reviewed and coded independently by at least 2 of the 3trained coders for safety behaviors and riskiness of actions. A third coder was brought in when the agreement between the 2 coders could not be reached. Agreement between coders was high (81.9%), and all disagreements (100%) were resolved via consensus. A bowtie risk assessment chart was constructed analyzing the factors that contribute to increased risks HCW are faced with due to PPE use and reuse. Agreement amongst content experts in the field of Emergency Medicine, Human Factors, and Anesthesiology was used to select aspects of health care that both contribute and mitigate risks associated with PPE reuse. Findings: Twenty-eight clinician participants completed five rounds of donning/doffing PPE, yielding 140 PPE donning/doffing sequences. Two emerging threats were associated with behaviors in donning, doffing, and re-using PPE: (i) direct exposure to contaminant, and (ii) transmission/spread of contaminant. Protective behaviors included: hand hygiene, not touching the patient-facing surface of PPE, and ensuring a proper fit and closure of all PPE materials. 100% of participants (n= 28) deviated from the CDC recommended order, and most participants (92.85%, n=26) self-contaminated at least once during reuse. Other frequent errors included failure to tie all ties on the PPE (92.85%, n=26) and failure to wash hands after a contamination event occurred (39.28%, n=11). Conclusions: There is wide variation and regular errors in how HCW don and doffPPE while including in reusing PPE that led to self-contamination. Some errors were deemed “recoverable”, such as hand washing after touching a patient-facing surface to remove the contaminant. Other errors, such as using a contaminated mask and accidentally spreading to the neck and face, can lead to compound risks that are unique to repeated PPE use. A more comprehensive understanding of the contributing threats to HCW safety and complete approach to mitigating underlying risks, including visualizing with risk management toolsmay, aid future PPE designand workflow and space solutions.

Keywords: bowtie analysis, health care, PPE reuse, risk management

Procedia PDF Downloads 69
75 Digitization and Morphometric Characterization of Botanical Collection of Indian Arid Zones as Informatics Initiatives Addressing Conservation Issues in Climate Change Scenario

Authors: Dipankar Saha, J. P. Singh, C. B. Pandey

Abstract:

Indian Thar desert being the seventh largest in the world is the main hot sand desert occupies nearly 385,000km2 and about 9% of the area of the country harbours several species likely the flora of 682 species (63 introduced species) belonging to 352 genera and 87 families. The degree of endemism of plant species in the Thar desert is 6.4 percent, which is relatively higher than the degree of endemism in the Sahara desert which is very significant for the conservationist to envisage. The advent and development of computer technology for digitization and data base management coupled with the rapidly increasing importance of biodiversity conservation resulted in the invention of biodiversity informatics as discipline of basic sciences with multiple applications. Aichi Target 19 as an outcome of Convention of Biological Diversity (CBD) specifically mandates the development of an advanced and shared biodiversity knowledge base. Information on species distributions in space is the crux of effective management of biodiversity in the rapidly changing world. The efficiency of biodiversity management is being increased rapidly by various stakeholders like researchers, policymakers, and funding agencies with the knowledge and application of biodiversity informatics. Herbarium specimens being a vital repository for biodiversity conservation especially in climate change scenario the digitization process usually aims to improve access and to preserve delicate specimens and in doing so creating large sets of images as a part of the existing repository as arid plant information facility for long-term future usage. As the leaf characters are important for describing taxa and distinguishing between them and they can be measured from herbarium specimens as well. As a part of this activity, laminar characterization (leaves being the most important characters in assessing climate change impact) initially resulted in classification of more than thousands collections belonging to ten families like Acanthaceae, Aizoaceae, Amaranthaceae, Asclepiadaceae, Anacardeaceae, Apocynaceae, Asteraceae, Aristolochiaceae, Berseraceae and Bignoniaceae etc. Taxonomic diversity indices has also been worked out being one of the important domain of biodiversity informatics approaches. The digitization process also encompasses workflows which incorporate automated systems to enable us to expand and speed up the digitisation process. The digitisation workflows used to be on a modular system which has the potential to be scaled up. As they are being developed with a geo-referencing tool and additional quality control elements and finally placing specimen images and data into a fully searchable, web-accessible database. Our effort in this paper is to elucidate the role of BIs, present effort of database development of the existing botanical collection of institute repository. This effort is expected to be considered as a part of various global initiatives having an effective biodiversity information facility. This will enable access to plant biodiversity data that are fit-for-use by scientists and decision makers working on biodiversity conservation and sustainable development in the region and iso-climatic situation of the world.

Keywords: biodiversity informatics, climate change, digitization, herbarium, laminar characters, web accessible interface

Procedia PDF Downloads 207
74 Design, Implementation and Evaluation of Health and Social Justice Trainings in Nigeria

Authors: Juliet Sorensen, Anna Maitland

Abstract:

Introduction: Characterized by lack of water and sanitation, food insecurity, and low access to hospitals and clinics, informal urban settlements in Lagos, Nigeria have very poor health outcomes. With little education and a general inability to demand basic rights, these communities are often disempowered and isolated from understanding, claiming, or owning their health needs. Utilizing community-based participatory research characterized by interdisciplinary, cross-cultural partnerships, evidence-based assessments, and both primary and secondary source research, a holistic health education and advocacy program was developed in Lagos to address health barriers for targeted communities. This includes a first of its kind guide formulated to teach community-based health educators how to transmit health information to low-literacy Nigerian audiences while supporting behavior change models and social support mechanisms. This paper discusses the interdisciplinary contributions to developing a health education program while also looking at the need for greater beneficiary ownership and implementation of health justice and access. Methods: In March 2016, an interdisciplinary group of medical, legal, and business graduate students and faculty from Northwestern University conduced a Health Needs Assessment (HNA) in Lagos with a partner and a local non-governmental organization. The HNA revealed that members of informal urban communities in Lagos were lacking basic health literacy, but desired to remedy this lacuna. Further, the HNA revealed that even where the government mandates specific services, many vulnerable populations are unable to access these services. The HNA concluded that a program focused on education, advocacy, and organizing around anatomy, maternal and sexual health, infectious disease and malaria, HIV/AIDS, emergency care, and water and sanitation would respond to stated needs while also building capacity in communities to address health barriers. Results: Based on the HNA, including both primary and secondary source research on integrated health education approaches and behavior change models and responsive, adaptive material development, a holistic program was developed for the Lagos partners and first implemented in November 2016. This program trained community-nominated health educators in adult, low-literacy, knowledge exchange approaches, utilizing information identified by communities as a priority. After a second training in March 2017, these educators will teach community-based groups and will support and facilitate behavior change models and peer-support methods around basic issues like hand washing and disease transmission. They will be supported by community paralegals who will help ensure that newly trained community groups can act on education around access, such as receiving free vaccinations, maternal health care, and HIV/AIDS medicines. Materials will continue to be updated as needs and issues arise, with a focus on identifying best practices around health improvements that can be shared across these partner communities. Conclusion: These materials are the first of their kind, and address a void of health information and understanding pervasive in informal-urban Lagos communities. Initial feedback indicates high levels of commitment and interest, as well as investment by communities in these materials, largely because they are responsive, targeted, and build community capacity. This methodology is an important step in dignity-based health justice solutions, albeit in the process of refinement.

Keywords: community health educators, interdisciplinary and cross cultural partnerships, health justice and access, Nigeria

Procedia PDF Downloads 235
73 Addressing the Gap in Health and Wellbeing Evidence for Urban Real Estate Brownfield Asset Management Social Needs and Impact Analysis Using Systems Mapping Approach

Authors: Kathy Pain, Nalumino Akakandelwa

Abstract:

The study explores the potential to fill a gap in health and wellbeing evidence for purposeful urban real estate asset management to make investment a powerful force for societal good. Part of a five-year programme investigating the root causes of unhealthy urban development funded by the United Kingdom Prevention Research Partnership (UKPRP), the study pilots the use of a systems mapping approach to identify drivers and barriers to the incorporation of health and wellbeing evidence in urban brownfield asset management decision-making. Urban real estate not only provides space for economic production but also contributes to the quality of life in the local community. Yet market approaches to urban land use have, until recently, insisted that neo-classical technology-driven efficient allocation of economic resources should inform acquisition, operational, and disposal decisions. Buildings in locations with declining economic performance have thus been abandoned, leading to urban decay. Property investors are recognising the inextricable connection between sustainable urban production and quality of life in local communities. The redevelopment and operation of brownfield assets recycle existing buildings, minimising embodied carbon emissions. It also retains established urban spaces with which local communities identify and regenerate places to create a sense of security, economic opportunity, social interaction, and quality of life. Social implications of urban real estate on health and wellbeing and increased adoption of benign sustainability guidance in urban production are driving the need to consider how they affect brownfield real estate asset management decisions. Interviews with real estate upstream decision-makers in the study, find that local social needs and impact analysis is becoming a commercial priority for large-scale urban real estate development projects. Evidence of the social value-added of proposed developments is increasingly considered essential to secure local community support and planning permissions, and to attract sustained inward long-term investment capital flows for urban projects. However, little is known about the contribution of population health and wellbeing to socially sustainable urban projects and the monetary value of the opportunity this presents to improve the urban environment for local communities. We report early findings from collaborations with two leading property companies managing major investments in brownfield urban assets in the UK to consider how the inclusion of health and wellbeing evidence in social valuation can inform perceptions of brownfield development social benefit for asset managers, local communities, public authorities and investors for the benefit of all parties. Using holistic case studies and systems mapping approaches, we explore complex relationships between public health considerations and asset management decisions in urban production. Findings indicate a strong real estate investment industry appetite and potential to include health as a vital component of sustainable real estate social value creation in asset management strategies.

Keywords: brownfield urban assets, health and wellbeing, social needs and impact, social valuation, sustainable real estate, systems mapping

Procedia PDF Downloads 50
72 Physiological Effects during Aerobatic Flights on Science Astronaut Candidates

Authors: Pedro Llanos, Diego García

Abstract:

Spaceflight is considered the last frontier in terms of science, technology, and engineering. But it is also the next frontier in terms of human physiology and performance. After more than 200,000 years humans have evolved under earth’s gravity and atmospheric conditions, spaceflight poses environmental stresses for which human physiology is not adapted. Hypoxia, accelerations, and radiation are among such stressors, our research involves suborbital flights aiming to develop effective countermeasures in order to assure sustainable human space presence. The physiologic baseline of spaceflight participants is subject to great variability driven by age, gender, fitness, and metabolic reserve. The objective of the present study is to characterize different physiologic variables in a population of STEM practitioners during an aerobatic flight. Cardiovascular and pulmonary responses were determined in Science Astronaut Candidates (SACs) during unusual attitude aerobatic flight indoctrination. Physiologic data recordings from 20 subjects participating in high-G flight training were analyzed. These recordings were registered by wearable sensor-vest that monitored electrocardiographic tracings (ECGs), signs of dysrhythmias or other electric disturbances during all the flight. The same cardiovascular parameters were also collected approximately 10 min pre-flight, during each high-G/unusual attitude maneuver and 10 min after the flights. The ratio (pre-flight/in-flight/post-flight) of the cardiovascular responses was calculated for comparison of inter-individual differences. The resulting tracings depicting the cardiovascular responses of the subjects were compared against the G-loads (Gs) during the aerobatic flights to analyze cardiovascular variability aspects and fluid/pressure shifts due to the high Gs. In-flight ECG revealed cardiac variability patterns associated with rapid Gs onset in terms of reduced heart rate (HR) and some scattered dysrhythmic patterns (15% premature ventricular contractions-type) that were considered as triggered physiological responses to high-G/unusual attitude training and some were considered as instrument artifact. Variation events were observed in subjects during the +Gz and –Gz maneuvers and these may be due to preload and afterload, sudden shift. Our data reveal that aerobatic flight influenced the breathing rate of the subject, due in part by the various levels of energy expenditure due to the increased use of muscle work during these aerobatic maneuvers. Noteworthy was the high heterogeneity in the different physiological responses among a relatively small group of SACs exposed to similar aerobatic flights with similar Gs exposures. The cardiovascular responses clearly demonstrated that SACs were subjected to significant flight stress. Routine ECG monitoring during high-G/unusual attitude flight training is recommended to capture pathology underlying dangerous dysrhythmias in suborbital flight safety. More research is currently being conducted to further facilitate the development of robust medical screening, medical risk assessment approaches, and suborbital flight training in the context of the evolving commercial human suborbital spaceflight industry. A more mature and integrative medical assessment method is required to understand the physiology state and response variability among highly diverse populations of prospective suborbital flight participants.

Keywords: g force, aerobatic maneuvers, suborbital flight, hypoxia, commercial astronauts

Procedia PDF Downloads 108
71 Provotyping Futures Through Design

Authors: Elisabetta Cianfanelli, Maria Claudia Coppola, Margherita Tufarelli

Abstract:

Design practices throughout history return a critical understanding of society since they always conveyed values and meanings aimed at (re)framing reality by acting in everyday life: here, design gains cultural and normative character, since its artifacts, services, and environments hold the power to intercept, influence and inspire thoughts, behaviors, and relationships. In this sense, design can be persuasive, engaging in the production of worlds and, as such, acting in the space between poietics and politics so that chasing preferable futures and their aesthetic strategies becomes a matter full of political responsibility. This resonates with contemporary landscapes of radical interdependencies challenging designers to focus on complex socio-technical systems and to better support values such as equality and justice for both humans and nonhumans. In fact, it is in times of crisis and structural uncertainty that designers turn into visionaries at the service of society, envisioning scenarios and dwelling in the territories of imagination to conceive new fictions and frictions to be added to the thickness of the real. Here, design’s main tasks are to develop options, to increase the variety of choices, to cultivate its role as scout, jester, agent provocateur for the public, so that design for transformation emerges, making an explicit commitment to society, furthering structural change in a proactive and synergic manner. However, the exploration of possible futures is both a trap and a trampoline because, although it embodies a radical research tool, it raises various challenges when the design process goes further in the translation of such vision into an artefact - whether tangible or intangible -, through which it should deliver that bit of future into everyday experience. Today designers are making up new tools and practices to tackle current wicked challenges, combining their approaches with other disciplinary domains: futuring through design, thus, rises from research strands like speculative design, design fiction, and critical design, where the blending of design approaches and futures thinking brings an action-oriented and product-based approach to strategic insights. The contribution positions at the intersection of those approaches, aiming at discussing design’s tools of inquiry through which it is possible to grasp the agency of imagined futures into present time. Since futures are not remote, they actively participate in creating path-dependent decisions, crystallized into designed artifacts par excellence, prototypes, and their conceptual other, provotypes: with both being unfinished and multifaceted, the first ones are effective in reiterating solutions to problems already framed, while the second ones prove to be useful when the goal is to explore and break boundaries, bringing closer preferable futures. By focusing on some provotypes throughout history which challenged markets and, above all, social and cultural structures, the contribution’s final aim is understanding the knowledge produced by provotypes, understood as design spaces where designs’s humanistic side might help developing a deeper sensibility about uncertainty and, most of all, the unfinished feature of societal artifacts, whose experimentation would leave marks and traces to build up f(r)ictions as vital sparks of plurality and collective life.

Keywords: speculative design, provotypes, design knowledge, political theory

Procedia PDF Downloads 116
70 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 119
69 Implementation of a Web-Based Clinical Outcomes Monitoring and Reporting Platform across the Fortis Network

Authors: Narottam Puri, Bishnu Panigrahi, Narayan Pendse

Abstract:

Background: Clinical Outcomes are the globally agreed upon, evidence-based measurable changes in health or quality of life resulting from the patient care. Reporting of outcomes and its continuous monitoring provides an opportunity for both assessing and improving the quality of patient care. In 2012, International Consortium Of HealthCare Outcome Measurement (ICHOM) was founded which has defined global Standard Sets for measuring the outcome of various treatments. Method: Monitoring of Clinical Outcomes was identified as a pillar of Fortis’ core value of Patient Centricity. The project was started as an in-house developed Clinical Outcomes Reporting Portal by the Fortis Medical IT team. Standard sets of Outcome measurement developed by ICHOM were used. A pilot was run at Fortis Escorts Heart Institute from Aug’13 – Dec’13.Starting Jan’14, it was implemented across 11 hospitals of the group. The scope was hospital-wide and major clinical specialties: Cardiac Sciences, Orthopedics & Joint Replacement were covered. The internally developed portal had its limitations of report generation and also capturing of Patient related outcomes was restricted. A year later, the company provisioned for an ICHOM Certified Software product which could provide a platform for data capturing and reporting to ensure compliance with all ICHOM requirements. Post a year of the launch of the software; Fortis Healthcare has become the 1st Healthcare Provider in Asia to publish Clinical Outcomes data for the Coronary Artery Disease Standard Set comprising of Coronary Artery Bypass Graft and Percutaneous Coronary Interventions) in the public domain. (Jan 2016). Results: This project has helped in firmly establishing a culture of monitoring and reporting Clinical Outcomes across Fortis Hospitals. Given the diverse nature of the healthcare delivery model at Fortis Network, which comprises of hospitals of varying size and specialty-mix and practically covering the entire span of the country, standardization of data collection and reporting methodology is a huge achievement in itself. 95% case reporting was achieved with more than 90% data completion at the end of Phase 1 (March 2016). Post implementation the group now has one year of data from its own hospitals. This has helped identify the gaps and plan towards ways to bridge them and also establish internal benchmarks for continual improvement. Besides the value created for the group includes: 1. Entire Fortis community has been sensitized on the importance of Clinical Outcomes monitoring for patient centric care. Initial skepticism and cynicism has been countered by effective stakeholder engagement and automation of processes. 2. Measuring quality is the first step in improving quality. Data analysis has helped compare clinical results with best-in-class hospitals and identify improvement opportunities. 3. Clinical fraternity is extremely pleased to be part of this initiative and has taken ownership of the project. Conclusion: Fortis Healthcare is the pioneer in the monitoring of Clinical Outcomes. Implementation of ICHOM standards has helped Fortis Clinical Excellence Program in improving patient engagement and strengthening its commitment to its core value of Patient Centricity. Validation and certification of the Clinical Outcomes data by an ICHOM Certified Supplier adds confidence to its claim of being leaders in this space.

Keywords: clinical outcomes, healthcare delivery, patient centricity, ICHOM

Procedia PDF Downloads 220
68 Familial Exome Sequencing to Decipher the Complex Genetic Basis of Holoprosencephaly

Authors: Artem Kim, Clara Savary, Christele Dubourg, Wilfrid Carre, Houda Hamdi-Roze, Valerie Dupé, Sylvie Odent, Marie De Tayrac, Veronique David

Abstract:

Holoprosencephaly (HPE) is a rare congenital brain malformation resulting from the incomplete separation of the two cerebral hemispheres. It is characterized by a wide phenotypic spectrum and a high degree of locus heterogeneity. Genetic defects in 16 genes have already been implicated in HPE, but account for only 30% of cases, suggesting that a large part of genetic factors remains to be discovered. HPE has been recently redefined as a complex multigenic disorder, requiring the joint effect of multiple mutational events in genes belonging to one or several developmental pathways. The onset of HPE may result from accumulation of the effects of multiple rare variants in functionally-related genes, each conferring a moderate increase in the risk of HPE onset. In order to decipher the genetic basis of HPE, unconventional patterns of inheritance involving multiple genetic factors need to be considered. The primary objective of this study was to uncover possible disease causing combinations of multiple rare variants underlying HPE by performing trio-based Whole Exome Sequencing (WES) of familial cases where no molecular diagnosis could be established. 39 families were selected with no fully-penetrant causal mutation in known HPE gene, no chromosomic aberrations/copy number variants and without any implication of environmental factors. As the main challenge was to identify disease-related variants among a large number of nonpathogenic polymorphisms detected by WES classical scheme, a novel variant prioritization approach was established. It combined WES filtering with complementary gene-level approaches: transcriptome-driven (RNA-Seq data) and clinically-driven (public clinical data) strategies. Briefly, a filtering approach was performed to select variants compatible with disease segregation, population frequency and pathogenicity prediction to identify an exhaustive list of rare deleterious variants. The exome search space was then reduced by restricting the analysis to candidate genes identified by either transcriptome-driven strategy (genes sharing highly similar expression patterns with known HPE genes during cerebral development) or clinically-driven strategy (genes associated to phenotypes of interest overlapping with HPE). Deeper analyses of candidate variants were then performed on a family-by-family basis. These included the exploration of clinical information, expression studies, variant characteristics, recurrence of mutated genes and available biological knowledge. A novel bioinformatics pipeline was designed. Applied to the 39 families, this final integrated workflow identified an average of 11 candidate variants per family. Most of candidate variants were inherited from asymptomatic parents suggesting a multigenic inheritance pattern requiring the association of multiple mutational events. The manual analysis highlighted 5 new strong HPE candidate genes showing recurrences in distinct families. Functional validations of these genes are foreseen.

Keywords: complex genetic disorder, holoprosencephaly, multiple rare variants, whole exome sequencing

Procedia PDF Downloads 186
67 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 178
66 Optimization of Geometric Parameters of Microfluidic Channels for Flow-Based Studies

Authors: Parth Gupta, Ujjawal Singh, Shashank Kumar, Mansi Chandra, Arnab Sarkar

Abstract:

Microfluidic devices have emerged as indispensable tools across various scientific disciplines, offering precise control and manipulation of fluids at the microscale. Their efficacy in flow-based research, spanning engineering, chemistry, and biology, relies heavily on the geometric design of microfluidic channels. This work introduces a novel approach to optimise these channels through Response Surface Methodology (RSM), departing from the conventional practice of addressing one parameter at a time. Traditionally, optimising microfluidic channels involved isolated adjustments to individual parameters, limiting the comprehensive understanding of their combined effects. In contrast, our approach considers the simultaneous impact of multiple parameters, employing RSM to efficiently explore the complex design space. The outcome is an innovative microfluidic channel that consumes an optimal sample volume and minimises flow time, enhancing overall efficiency. The relevance of geometric parameter optimization in microfluidic channels extends significantly in biomedical engineering. The flow characteristics of porous materials within these channels depend on many factors, including fluid viscosity, environmental conditions (such as temperature and humidity), and specific design parameters like sample volume, channel width, channel length, and substrate porosity. This intricate interplay directly influences the performance and efficacy of microfluidic devices, which, if not optimized, can lead to increased costs and errors in disease testing and analysis. In the context of biomedical applications, the proposed approach addresses the critical need for precision in fluid flow. it mitigate manufacturing costs associated with trial-and-error methodologies by optimising multiple geometric parameters concurrently. The resulting microfluidic channels offer enhanced performance and contribute to a streamlined, cost-effective process for testing and analyzing diseases. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing. A key highlight of our methodology is its consideration of the interconnected nature of geometric parameters. For instance, the volume of the sample, when optimized alongside channel width, length, and substrate porosity, creates a synergistic effect that minimizes errors and maximizes efficiency. This holistic optimization approach ensures that microfluidic devices operate at their peak performance, delivering reliable results in disease testing.

Keywords: microfluidic device, minitab, statistical optimization, response surface methodology

Procedia PDF Downloads 38
65 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 70
64 Chemicals to Remove and Prevent Biofilm

Authors: Cynthia K. Burzell

Abstract:

Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.

Keywords: biofilm, potentiation, prevention, removal

Procedia PDF Downloads 80
63 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 124
62 Addressing Primary Care Clinician Burnout in a Value Based Care Setting During the COVID-19 Pandemic

Authors: Robert E. Kenney, Efrain Antunez, Samuel Nodal, Ameer Malik, Richard B. Aguilar

Abstract:

Physician burnout has gained much attention during the COVID pandemic. After-hours workload, HCC coding, HEDIS metrics, and clinical documentation negatively impact career satisfaction. These and other influences have increased the rate of physicians leaving the workforce. In addition, roughly 1% of the entire physician workforce will be retiring earlier than expected based on pre-pandemic trends. The two Medical Specialties with the highest rates of burnout are Family Medicine and Primary Care. With a predicted shortage of primary care physicians looming, the need to address physician burnout is crucial. Commonly reported issues leading to clinician burnout are clerical documentation requirements, increased time working on Electronic Health Records (EHR) after hours, and a decrease in work-life balance. Clinicians experiencing burnout with physical and emotional exhaustion are at an increased likelihood of providing lower quality and less efficient patient care. This may include a lack of suitable clinical documentation, medication reconciliation, clinical assessment, and treatment plans. While the annual baseline turnover rates of physicians hover around 6-7%, the COVID pandemic profoundly disrupted the delivery of healthcare. A report found that 43% of physicians switched jobs during the initial two years of the COVID pandemic (2020 and 2021), tripling the expected average annual rate to 21.5 %/yr. During this same time, an average of 4% and 1.5% of physicians retired or left the workforce for a non-clinical career, respectively. The report notes that 35.2% made career changes for a better work-life balance and another 35% reported the reason as being unhappy with their administration’s response to the pandemic. A physician-led primary care-focused health organization, Cano Health (CH), based out of Florida, sought to preemptively address this problem by implementing several supportive measures. Working with >120 clinics and >280 PCPs from Miami to Tampa and Orlando, managing nearly 120,000 Medicare Advantage lives, CH implemented a number of changes to assist with the clinician’s workload. Supportive services such as after hour and home visits by APRNs, in-clinic care managers, and patient educators were implemented. In 2021, assistive Artificial Intelligence Software (AIS) was integrated into the EHR platform. This AIS converts free text within PDF files into a usable (copy-paste) format facilitating documentation. The software also systematically and chronologically organizes clinical data, including labs, medical records, consultations, diagnostic images, medications, etc., into an easy-to-use organ system or chronic disease state format. This reduced the excess time and documentation burden required to meet payor and CMS guidelines. A clinician Documentation Support team was employed to improve the billing/coding performance. The effects of these newly designed workflow interventions were measured via analysis of clinician turnover from CH’s hiring and termination reporting software. CH’s annualized average clinician turnover rate in 2020 and 2021 were 17.7% and 12.6%, respectively. This represents a 30% relative reduction in turnover rate compared to the reported national average of 21.5%. Retirement rates during both years were 0.1%, demonstrating a relative reduction of >95% compared to the national average (4%). This model successfully promoted the retention of clinicians in a Value-Based Care setting.

Keywords: clinician burnout, COVID-19, value-based care, burnout, clinician retirement

Procedia PDF Downloads 67
61 Cycleloop Personal Rapid Transit: An Exploratory Study for Last Mile Connectivity in Urban Transport

Authors: Suresh Salla

Abstract:

In this paper, author explores for most sustainable last mile transport mode addressing present problems of traffic congestion, jams, pollution and travel stress. Development of energy-efficient sustainable integrated transport system(s) is/are must to make our cities more livable. Emphasis on autonomous, connected, electric, sharing system for effective utilization of systems (vehicles and public infrastructure) is on the rise. Many surface mobility innovations like PBS, Ride hailing, ride sharing, etc. are, although workable but if we analyze holistically, add to the already congested roads, difficult to ride in hostile weather, causes pollution and poses commuter stress. Sustainability of transportation is evaluated with respect to public adoption, average speed, energy consumption, and pollution. Why public prefer certain mode over others? How commute time plays a role in mode selection or shift? What are the factors play-ing role in energy consumption and pollution? Based on the study, it is clear that public prefer a transport mode which is exhaustive (i.e., less need for interchange – network is widespread) and intensive (i.e., less waiting time - vehicles are available at frequent intervals) and convenient with latest technologies. Average speed is dependent on stops, number of intersections, signals, clear route availability, etc. It is clear from Physics that higher the kerb weight of a vehicle; higher is the operational energy consumption. Higher kerb weight also demands heavier infrastructure. Pollution is dependent on source of energy, efficiency of vehicle, average speed. Mode can be made exhaustive when the unit infrastructure cost is less and can be offered intensively when the vehicle cost is less. Reliable and seamless integrated mobility till last ¼ mile (Five Minute Walk-FMW) is a must to encourage sustainable public transportation. Study shows that average speed and reliability of dedicated modes (like Metro, PRT, BRT, etc.) is high compared to road vehicles. Electric vehicles and more so battery-less or 3rd rail vehicles reduce pollution. One potential mode can be Cycleloop PRT, where commuter rides e-cycle in a dedicated path – elevated, at grade or underground. e-Bike with kerb weight per rider at 15 kg being 1/50th of car or 1/10th of other PRT systems makes it sustainable mode. Cycleloop tube will be light, sleek and scalable and can be modular erected, either on modified street lamp-posts or can be hanged/suspended between the two stations. Embarking and dis-embarking points or offline stations can be at an interval which suits FMW to mass public transit. In terms of convenience, guided e-Bike can be made self-balancing thus encouraging driverless on-demand vehicles. e-Bike equipped with smart electronics and drive controls can intelligently respond to field sensors and autonomously move reacting to Central Controller. Smart switching allows travel from origin to destination without interchange of cycles. DC Powered Batteryless e-cycle with voluntary manual pedaling makes it sustainable and provides health benefits. Tandem e-bike, smart switching and Platoon operations algorithm options provide superior through-put of the Cycleloop. Thus Cycleloop PRT will be exhaustive, intensive, convenient, reliable, speedy, sustainable, safe, pollution-free and healthy alternative mode for last mile connectivity in cities.

Keywords: cycleloop PRT, five-minute walk, lean modular infrastructure, self-balanced intelligent e-cycle

Procedia PDF Downloads 115
60 Partnering With Faith-Based Entities to Improve Mental Health Awareness and Decrease Stigma in African American Communities

Authors: Bryana Woodard, Monica Mitchell, Kasey Harry, Ebony Washington, Megan Harris, Marcia Boyd, Regina Lynch, Daphene Baines, Surbi Bankar

Abstract:

Introduction: African Americans experience mental health illnesses (i.e., depression, anxiety, etc.) at higher rates than their white counterparts. Despite this, they utilize mental health resources less and have lower mental health literacy, perhaps due to cultural barriers- including but not limited to mistrust. Research acknowledges African Americans’ close ties to community networks, identifying these linkages as key to establishing comfort and trust. Similarly, the church has historically been a space that creates unity and community among African Americans. Studies show that longstanding academic-community partnerships with organizations, such as churches and faith-based entities, have the capability to effectively address health and mental health barriers and needs in African Americans. The importance of implementing faith-based approaches is supported in the literature, however few empirical studies exist. This project describes the First Ladies for Health and Cincinnati Children's Hospital Medical Center (CCHMC) Partnership (FLFH-CCHMC Partnership) and the implementation and assessment of an annual Mental Health Symposium, the overall aim of which was to increase mental health awareness and decrease stigma in African American communities. Methods: The specific goals of the FLFH Mental Health Symposium were to (1) Collaborate with trusted partners to build trust with community participants; (2) Increase mental health literacy and decrease mental health stigma; (3) Understand the barriers to improving mental health and improving trust; (4) Assess the short-term outcomes two months following the symposium. Data were collected through post-event and follow-up surveys using a mixed methods approach. Results: More than 100 participants attended each year with over 350 total participants over three years. 98.7% of participants were African American, 86.67% female, 11.6% male, and 11.6% LGBTQ+/non-binary; 10.5% of participants were teens, with the remainder aged 20 to 80 plus. The event was successful in achieving its goals: (1a) Eleven different speakers from 8 community and church organizations presented; (1b) 93% of participants rated the overall symposium as very good or excellent (2a) Mental health literacy significantly increased each year with over 90% of participants reporting improvement in their “understanding” and “awareness of mental health (2b) Participants 'personal stigma surrounding mental health illness decreased each year with 92.3% of participants reporting changes in their “willingness to talk about and share” mental health challenges; (3) Barriers to mental health care were identified and included social stigma, lack of trust, and the cost of care. Data were used to develop priorities and an action plan for the FLFH-CCHMC Mental Health Partnership; (4) Follow-up data showed that participants sustained benefits of the FLFH Symposium and took actionable steps (e.g., meditation, referrals, etc.). Additional quantitative and qualitative data will be shared. Conclusions: Lower rates of mental health literacy and higher rates of stigma among participants in this initiative demonstrate the importance of mental health providers building trust and partnerships in communities. Working with faith-based entities provides an opportunity to mitigate and address mental health equity in African American communities.

Keywords: community psychology, faith-based, african-american, culturally competent care, mental health equity

Procedia PDF Downloads 9
59 The Soviet Union-Style of Urban Planning in China: Historical Review and Enlightenment from the Output Mode of Contemporary Cooperative Parks

Authors: Yifeng Shi, Xingping Wang

Abstract:

The Soviet Union-style of urban planning has produced a broad and profound influence on China’s urban planning system. The study on extendibility and development experience of Soviet planning in China helps to change the current embarrassing situation 'one-hand planning practice, second-hand planning theory', and also beneficial to facilitate the establishment of China's domestic urban planning theory from the planning source, especially the overseas cooperation parks rich in 'Chinese characteristics'. In practice, as the world’s major infrastructure country, China is exporting to the world especially countries along 'the Belt and Road' a development model featuring cooperation parks as Chinese characteristics. This is of great significance to evaluate and summarize the experiences of Soviet Union-style of planning for China's development objectively and rationally, from removing ideological factors and extracting positive factors to carry them forward in overseas cooperation parks. This article briefly reviews the Soviet influence on urban planning after the founding of China and divided the influences stages into 'guidance, internalization and absorption, selective learning, decline' four periods. The impact includes production-oriented planning and planning concepts continue to be implemented, the establishment of the regional planning, master planning, detailed planning of the basic framework of urban planning, and homogenized cellular structure of the space, as well as planning techniques, professional training, planning techniques and so on. China and even most socialist countries now still carry such planning genes. At present, in the process of implementing 'the Belt and Road' strategy, the planning and construction of China’s overseas cooperation parks generally encounter many problems as lack of strategic planning and systematic planning, lack of top-level design, uncoordinated planning and layout in parks, and redundant construction in some areas. After sublating the planning genes of the Soviet Union-style of urban planning for the development of the socialist countries, especially the industrial planning system, this paper puts forward some views as follows to realize the overseas output and development of China's planning model and technology. Firstly the future development of overseas cooperation park should be from a rational planning point of view. Secondly the government should not only rigidly and equitably allocate the resources of the parks but also closely integrate the national economic plans or economic development strategies. Lastly management department should frame the threshold of development rationally, give full play to the pragmatic planning style in accordance with the local land system and planning system. It has an important guiding and reference role for the development of China's overseas cooperation park under the 'go global' strategy, after objectively evaluating the impact of the Soviet Union-style urban planning and absorbing the beneficial components on China. However, we should also recognize that the cooperation parks and the urban industrial system behind it are only part of urban development. More attention should be payed on the design of the local and the general rules of urban development to take the lead effect of cooperation parks suitable. Foundation item: Under the auspices of the Specific Plan for Strategic International Cooperation in Scientific and Technological Innovation, the National Key Research and Development Plan 'Research Cooperation and Exemplary Application in Planning of Development of Overseas Industrial Parks' (No 2016YFE0201000).

Keywords: China cooperative parks, history of urban planning, output mode, The Soviet Union

Procedia PDF Downloads 234
58 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 51
57 Microfabrication and Non-Invasive Imaging of Porous Osteogenic Structures Using Laser-Assisted Technologies

Authors: Irina Alexandra Paun, Mona Mihailescu, Marian Zamfirescu, Catalin Romeo Luculescu, Adriana Maria Acasandrei, Cosmin Catalin Mustaciosu, Roxana Cristina Popescu, Maria Dinescu

Abstract:

A major concern in bone tissue engineering is to develop complex 3D architectures that mimic the natural cells environment, facilitate the cells growth in a defined manner and allow the flow transport of nutrients and metabolic waste. In particular, porous structures of controlled pore size and positioning are indispensable for growing human-like bone structures. Another concern is to monitor both the structures and the seeded cells with high spatial resolution and without interfering with the cells natural environment. The present approach relies on laser-based technologies employed for fabricating porous biomimetic structures that support the growth of osteoblast-like cells and for their non-invasive 3D imaging. Specifically, the porous structures were built by two photon polymerization –direct writing (2PP_DW) of the commercially available photoresists IL-L780, using the Photonic Professional 3D lithography system. The structures consist of vertical tubes with micrometer-sized heights and diameters, in a honeycomb-like spatial arrangement. These were fabricated by irradiating the IP-L780 photoresist with focused laser pulses with wavelength centered at 780 nm, 120 fs pulse duration and 80 MHz repetition rate. The samples were precisely scanned in 3D by piezo stages. The coarse positioning was done by XY motorized stages. The scanning path was programmed through a writing language (GWL) script developed by Nanoscribe. Following laser irradiation, the unexposed regions of the photoresist were washed out by immersing the samples in the Propylene Glycol Monomethyl Ether Acetate (PGMEA). The porous structures were seeded with osteoblast like MG-63 cells and their osteogenic potential was tested in vitro. The cell-seeded structures were analyzed in 3D using the digital holographic microscopy technique (DHM). DHM is a marker free and high spatial resolution imaging tool, where the hologram acquisition is performed non-invasively i.e. without interfering with the cells natural environment. Following hologram recording, a digital algorithm provided a 3D image of the sample, as well as information about its refractive index, which is correlated with the intracellular content. The axial resolution of the images went down to the nanoscale, while the temporal scales ranged from milliseconds up to hours. The hologram did not involve sample scanning and the whole image was available in one frame recorded going over 200μm field of view. The digital holograms processing provided 3D quantitative information on the porous structures and allowed a quantitative analysis of the cellular response in respect to the porous architectures. The cellular shape and dimensions were found to be influenced by the underlying micro relief. Furthermore, the intracellular content gave evidence on the beneficial role of the porous structures in promoting osteoblast differentiation. In all, the proposed laser-based protocol emerges as a promising tool for the fabrication and non-invasive imaging of porous constructs for bone tissue engineering. Acknowledgments: This work was supported by a grant of the Romanian Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project PN-II-RU-TE-2014-4-2534 (contract 97 from 01/10/2015) and by UEFISCDI PN-II-PT-PCCA no. 6/2012. A part of this work was performed in the CETAL laser facility, supported by the National Program PN 16 47 - LAPLAS IV.

Keywords: biomimetic, holography, laser, osteoblast, two photon polymerization

Procedia PDF Downloads 258
56 Saving Lives from a Laptop: How to Produce a Live Virtual Media Briefing That Will Inform, Educate, and Protect Communities in Crisis

Authors: Cory B. Portner, Julie A. Grauert, Lisa M. Stromme, Shelby D. Anderson, Franji H. Mayes

Abstract:

Introduction: WASHINGTON state in the Pacific Northwest of the United States is internationally known for its technology industry, fisheries, agriculture, and vistas. On January 21, 2020, Washington state also became known as the first state with a confirmed COVID-19 case in the United States, thrusting the state into the international spotlight as the world came to grips with the global threat of this disease presented. Tourism is Washington state’s fourth-largest industry. Tourism to the state generates over 1.8 billion dollars (USD) in local and state tax revenue and employs over 180,000 people. Communicating with residents, stakeholders, and visitors on the status of disease activity, prevention measures, and response updates was vital to stopping the pandemic and increasing compliance and awareness. Significance: In order to communicate vital public health updates, guidance implementation, and safety measures to the public, the Washington State Department of Health established routine live virtual media briefings to reach audiences via social media, internet television, and broadcast television. Through close partnership with regional broadcast news stations and the state public affairs news network, the Washington State Department of Health hosted 95 media briefings from January 2020 through September 2022 and continues to regularly host live virtual media briefings to accommodate the needs of the public and media. Methods: Our methods quickly evolved from hosting briefings in the cement closet of a military base to being able to produce and stream the briefings live from any home-office location. The content was tailored to the hot topic of the day and to the reporter's questions and needs. Virtual media briefings hosted through inexpensive or free platforms online are extremely cost-effective: the only mandatory components are WiFi, a laptop, and a monitor. There is no longer a need for a fancy studio or expensive production software to achieve the goal of communicating credible, reliable information promptly. With minimal investment and a small learning curve, facilitators and panelists are able to host highly produced and engaging media availabilities from their living rooms. Results: The briefings quickly developed a reputation as the best source for local and national journalists to get the latest and most factually accurate information about the pandemic. In the height of the COVID-19 response, 135 unique media outlets logged on to participate in the briefing. The briefings typically featured 4-5 panelists, with as many as 9 experts in attendance to provide information and respond to media questions. Preparation was always a priority: Public Affairs staff for the Washington State Department of Health produced over 170 presenter remarks, including guidance on talking points for 63 expert guest panelists. Implication For Practice: Information is today’s most valuable currency. The ability to disseminate correct information urgently and on a wide scale is the most effective tool in crisis communication. Due to our role as the first state with a confirmed COVID-19 case, we were forced to develop the most accurate and effective way to get life-saving information to the public. The cost-effective, web-based methods we developed can be applied in any crisis to educate and protect communities under threat, ultimately saving lives from a laptop.

Keywords: crisis communications, public relations, media management, news media

Procedia PDF Downloads 164
55 Resilience Compendium: Strategies to Reduce Communities' Risk to Disasters

Authors: Caroline Spencer, Suzanne Cross, Dudley McArdle, Frank Archer

Abstract:

Objectives: The evolution of the Victorian Compendium of Community-Based Resilience Building Case Studies and its capacity to help communities implement activities that encourage adaptation to disaster risk reduction and promote community resilience in rural and urban locations provide this paper's objectives. Background: Between 2012 and 2019, community groups presented at the Monash University Disaster Resilience Initiative (MUDRI) 'Advancing Community Resilience Annual Forums', provided opportunities for communities to impart local resilience activities, how to solve challenges and share unforeseen learning and be considered for inclusion in the Compendium. A key tenet of the Compendium encourages compiling and sharing of grass-roots resilience building activities to help communities before, during, and after unexpected emergencies. The online Compendium provides free access for anyone wanting to help communities build expertise, reduce program duplication, and save valuable community resources. Identifying case study features across the emergency phases and analyzing critical success factors helps communities understand what worked and what did not work to achieve success and avoid known barriers. International exemplars inform the Compendium, which represents an Australian first and enhances Victorian community resilience initiatives. Emergency Management Victoria provided seed funding for the Compendium. MUDRI matched this support and continues to fund the project. A joint Steering Committee with broad-based user input and Human ethics approval guides its continued growth. Methods: A thematic analysis of the Compendium identified case study features, including critical success factors. Results: The Compendium comprises 38 case studies, representing all eight Victorian regions. Case studies addressed emergency phases, before (29), during (7), and after (17) events. Case studies addressed all hazards (23), bushfires (11), heat (2), fire safety (1), and house fires (1). Twenty case studies used a framework. Thirty received funding, of which nine received less than $20,000 and five received more than $100,000. Twenty-nine addressed a whole of community perspective. Case studies revealed unique and valuable learning in diverse settings. Critical success factors included strong governance; board support, leadership, and trust; partnerships; commitment, adaptability, and stamina; community-led initiatives. Other success factors included a paid facilitator and local government support; external funding, and celebrating success. Anecdotally, we are aware that community groups reference Compendium and that its value adds to community resilience planning. Discussion: The Compendium offers an innovative contribution to resilience research and practice. It augments the seven resilience characteristics to strengthen and encourage communities as outlined in the Statewide Community Resilience Framework for Emergency Management; brings together people from across sectors to deliver distinct, yet connected actions to strengthen resilience as a part of the Rockefeller funded Resilient Melbourne Strategy, and supports communities and economies to be resilient when a shock occurs as identified in the recently published Australian National Disaster Risk Reduction Framework. Each case study offers learning about connecting with community and how to increase their resilience to disaster risks and to keep their community safe from unexpected emergencies. Conclusion: The Compendium enables diverse communities to adopt or adapt proven resilience activities, thereby preserving valuable community resources and offers the opportunity to extend to a national or international Compendium.

Keywords: case study, community, compendium, disaster risk reduction, resilience

Procedia PDF Downloads 102
54 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 415
53 A 2-D and 3-D Embroidered Textrode Testing Framework Adhering to ISO Standards

Authors: Komal K., Cleary F., Wells J S.G., Bennett L

Abstract:

Smart fabric garments enable various monitoring applications across sectors such as healthcare, sports and fitness, and the military. Healthcare smart garments monitoring EEG, EMG, and ECG rely on the use of electrodes (dry or wet). However, such electrodes, when used for long-term monitoring, can cause discomfort and skin irritation for the wearer because of their inflexible structure and weight. Ongoing research has been investigating textile-based electrodes (textrodes) in order to provide more comfortable and usable fabric-based electrodes capable of providing intuitive biopotential monitoring. Progress has been made in this space, but they still face a critical design challenge in maintaining consistent skin contact, which directly impacts signal quality. Furthermore, there is a lack of an ISO-based testing framework to validate the electrode design and assess its ability to achieve enhanced performance, strength, usability, and durability. This study proposes the development and evaluation of an ISO-compliant testing framework for standard 2D and advanced 3D embroidered textrodes designs that have a unique structure in order to establish enhanced skin contact for the wearer. This testing framework leverages ISO standards: ISO 13934-1:2013 for tensile and zone-wise strength tests; ISO 13937-2 for tear tests; and ISO 6330 for washing, validating the textrode's performance, a necessity for wearables health parameter monitoring applications. Five textrodes (C1-C5) were designed using EPC win digitization software. Varying patterns such as running stitches, lock stitches, back-to-back stitches, and moss stitches were used to create various embroidered tetrodes samples using Madeira HC12 conductive thread with a resistivity of 100 ohm/m. The textrode designs were then fabricated using a ZSK technical embroidery machine. A comparative analysis was conducted based on a series of laboratory tests adhering to ISO compliance requirements. Tests focusing on the application of strain were applied to the textrodes, and these included: (1) analysis of the electrode's overall surface area strength; (2) assessment of the robustness of the textrodes boundaries; and (3) the assignment of fault test zones to each textrode, where vertical and horizontal slits of 3mm were applied to evaluate the performance of textrodes and its durability. Specific ISO-compliant tests linked to washing were conducted multiple times on each textrode sample to assess both mechanical and chemical damage. Additionally, abrasion and pilling tests were performed to evaluate mechanical damage on the surface of the textrodes and to compare it with the washing test. Finally, the textrodes were assessed based on morphological and surface resistance changes. Results demonstrate that textrode C4, featuring a 3-D layered structure consisting of foam, fabric, and conductive thread layers, significantly enhances skin-electrode contact for biopotential recording. The inclusion of a 3D foam layer was particularly effective in maintaining the shape of the electrode during strain tests, making it the top-performing textrode sample. Therefore, the layered 3D design structure of textrode C4 ranks highest when tested for durability, reusability, and washability. The ISO testing framework established in this study will support future research, validating the durability and reliability of textrodes for a wide range of applications.

Keywords: smart fabric, textrodes, testing framework, ISO compliant

Procedia PDF Downloads 49
52 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach

Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew

Abstract:

Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.

Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering

Procedia PDF Downloads 56