Search results for: abattoir waste water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10471

Search results for: abattoir waste water

3661 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 120
3660 Pollutant Dispersion in Coastal Waters

Authors: Sonia Ben Hamza, Sabra Habli, Nejla Mahjoub Saïd, Hervé Bournot, Georges Le Palec

Abstract:

This paper spots light on the effect of a point source pollution on streams, stemming out from intentional release caused by unconscious facts. The consequences of such contamination on ecosystems are very serious. Accordingly, effective tools are highly demanded in this respect, which enable us to come across an accurate progress of pollutant and anticipate different measures to be applied in order to limit the degradation of the environmental surrounding. In this context, we are eager to model a pollutant dispersion of a free surface flow which is ejected by an outfall sewer of an urban sewerage network in coastal water taking into account the influence of climatic parameters on the spread of pollutant. Numerical results showed that pollutant dispersion is merely due to the presence of vortices and turbulence. Hence, it was realized that the pollutant spread in seawater is strongly correlated with climatic conditions in this region.

Keywords: coastal waters, numerical simulation, pollutant dispersion, turbulent flows

Procedia PDF Downloads 514
3659 Gas Holdups in a Gas-Liquid Upflow Bubble Column With Internal

Authors: C. Milind Caspar, Valtonia Octavio Massingue, K. Maneesh Reddy, K. V. Ramesh

Abstract:

Gas holdup data were obtained from measured pressure drop values in a gas-liquid upflow bubble column in the presence of string of hemispheres promoter internal. The parameters that influenced the gas holdup are gas velocity, liquid velocity, promoter rod diameter, pitch and base diameter of hemisphere. Tap water was used as liquid phase and nitrogen as gas phase. About 26 percent in gas holdup was obtained due to the insertion of promoter in in the present study in comparison with empty conduit. Pitch and rod diameter have not shown any influence on gas holdup whereas gas holdup was strongly influenced by gas velocity, liquid velocity and hemisphere base diameter. Correlation equation was obtained for the prediction of gas holdup by least squares regression analysis.

Keywords: bubble column, gas-holdup, two-phase flow, turbulent promoter

Procedia PDF Downloads 106
3658 Landfill Leachate Wastewater Treatment by Fenton Process

Authors: Rewadee Anuwattana, Pattamaphorn Phuangngamphan, Narumon Soparatana, Supinya Sutthima, Worapong Pattayawan, Saroj Klangkongsub, Songkiat Roddang, Pluek Wongpanich

Abstract:

The leachate wastewater is high contaminant water; hence it needs to be treated. The objective of this research was to determine the Chemical Oxygen Demand (COD) concentration, Phosphate (PO₄³⁻), Ammonia (NH₃) and color in leachate wastewater in the landfill area. The experiments were carried out in the optimum condition by pH, the Fenton reagent dosage (concentration of dosing Fe²⁺ and H₂O₂). The optimum pH is 3, the optimum [Fe²⁺]/[COD] and [H₂O₂]/[COD₀] = 0.03 and 0.03, respectively. The Biochemical Oxygen Demand (BOD₅)/Chemical Oxygen Demand (COD) ratio can be adjusted to 1 for landfill leachate wastewater (BOD₅/COD = 0.11). From the results, the Fenton process shall be investigated further to achieve the removal of phosphates in addition to COD and color.

Keywords: landfill leachate treatment, open dumpsite, Fenton process, wastewater treatment

Procedia PDF Downloads 264
3657 Density Functional Theory Study of the Surface Interactions between Sodium Carbonate Aerosols and Fission Products

Authors: Ankita Jadon, Sidi Souvi, Nathalie Girault, Denis Petitprez

Abstract:

The interaction of fission products (FP) with sodium carbonate (Na₂CO₃) aerosols is of a high safety concern because of their potential role in the radiological source term mitigation by FP trapping. In a sodium-cooled fast nuclear reactor (SFR) experiencing a severe accident, sodium (Na) aerosols can be formed after the ejection of the liquid Na coolant inside the containment. The surface interactions between these aerosols and different FP species have been investigated using ab-initio, density functional theory (DFT) calculations using Vienna ab-initio simulation package (VASP). In addition, an improved thermodynamic model has been proposed to treat DFT-VASP calculated energies to extrapolate them to temperatures and pressures of interest in our study. A combined experimental and theoretical chemistry study has been carried out to have both atomistic and macroscopic understanding of the chemical processes; the theoretical chemistry part of this approach is presented in this paper. The Perdew, Burke, and Ernzerhof functional were applied in combination with Grimme’s van der Waals correction to compute exchange-correlational energy at 0 K. Seven different surface cleavages were studied of Ƴ-Na₂CO₃ phase (stable at 603.15 K), it was found that for defect-free surfaces, the (001) facet is the most stable. Furthermore, calculations were performed to study surface defects and reconstructions on the ideal surface. All the studied surface defects were found to be less stable than the ideal surface. More than one adsorbate-ligand configurations were found to be stable confirming that FP vapors could be trapped on various adsorption sites. The calculated adsorption energies (Eads, eV) for the three most stable adsorption sites for I₂ are -1.33, -1.088, and -1.085. Moreover, the adsorption of the first molecule of I₂ changes the surface in a way which would favor stronger adsorption of a second molecule of I2 (Eads, eV = -1.261). For HI adsorption, the most favored reactions have the following Eads (eV) -1.982, -1.790, -1.683 implying that HI would be more reactive than I₂. In addition to FP species, adsorption of H₂O was also studied as the hydrated surface can have different reactivity than the bare surface. One thermodynamically favored site for H₂O adsorption was found with an Eads, eV of -0.754. Finally, the calculations of hydrated surfaces of Na₂CO₃ show that a layer of water adsorbed on the surface significantly reduces its affinity for iodine (Eads, eV = -1.066). According to the thermodynamic model built, the required partial pressure at 373 K to have adsorption of the first layer of iodine is 4.57×10⁻⁴ bar. The second layer will be adsorbed at partial pressures higher than 8.56×10⁻⁶ bar; a layer of water on the surface will increase these pressure almost ten folds to 3.71×10⁻³ bar. The surface interacts with elemental Cs with an Eads (eV) of -1.60, while interacts even strongly with CsI with an Eads (eV) of -2.39. More results on the interactions between Na₂CO₃ (001) and cesium-based FP will also be presented in this paper.

Keywords: iodine uptake, sodium carbonate surface, sodium-cooled fast nuclear reactor, DFT calculations, fission products

Procedia PDF Downloads 151
3656 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan

Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf

Abstract:

Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.

Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor

Procedia PDF Downloads 584
3655 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 136
3654 Delivery of Positively Charged Proteins Using Hyaluronic Acid Microgels

Authors: Elaheh Jooybar, Mohammad J. Abdekhodaie, Marcel Karperien, Pieter J. Dijkstra

Abstract:

In this study, hyaluronic acid (HA) microgels were developed for the goal of protein delivery. First, a hyaluronic acid-tyramine conjugate (HA-TA) was synthesized with a degree of substitution of 13 TA moieties per 100 disaccharide units. Then, HA-TA microdroplets were produced using a water in oil emulsion method and crosslinked in the presence of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2). Loading capacity and the release kinetics of lysozyme and BSA, as model proteins, were investigated. It was shown that lysozyme, a cationic protein, can be incorporated efficiently in the HA microgels, while the loading efficiency for BSA, as a negatively charged protein, is low. The release profile of lysozyme showed a sustained release over a period of one month. The results demonstrated that the HA-TA microgels are a good carrier for spatial delivery of cationic proteins for biomedical applications.

Keywords: microgel, inverse emulsion, protein delivery, hyaluronic acid, crosslinking

Procedia PDF Downloads 170
3653 Tetracycline as Chemosensor for Simultaneous Recognition of Al³⁺: Application to Bio-Imaging for Living Cells

Authors: Jesus Alfredo Ortega Granados, Pandiyan Thangarasu

Abstract:

Antibiotic tetracycline presents as a micro-contaminant in fresh water, wastewater and soils, causing environmental and health problems. In this work, tetracycline (TC) has been employed as chemo-sensor for the recognition of Al³⁺ without interring other ions, and the results show that it enhances the fluorescence intensity for Al³⁺ and there is no interference from other coexisting cation ions (Cd²⁺, Ni²⁺, Co²⁺, Sr²⁺, Mg²⁺, Fe³⁺, K⁺, Sm³⁺, Ag⁺, Na⁺, Ba²⁺, Zn²⁺, and Mn²⁺). For the addition of Cu²⁺ to [TET-Al³⁺], it appears that the intensity of fluorescence has been quenched. Other combinations of metal ions in addition to TC do not change the fluorescence behavior. The stoichiometry determined by Job´s plot for the interaction of TC with Al³⁺ was found to be 1:1. Importantly, the detection of Al³⁺⁺ successfully employed in the real samples like living cells, and it was found that TC efficiently performs as a fluorescent probe for Al³⁺ ion in living systems, especially in Saccharomyces cerevisiae; this is confirmed by confocal laser scanning microscopy.

Keywords: chemo-sensor, recognition of Al³⁺ ion, Saccharomyces cerevisiae, tetracycline,

Procedia PDF Downloads 189
3652 Geoclimatic Influences on the Constituents and Antioxidant Activity of Extracts from the Fruit of Arbutus unedo L.

Authors: Khadidja Bouzid, Fouzia Benali Toumi, Mohamed Bouzouina

Abstract:

We made a comparison between the total phenolic content, concentrations of flavonoids and antioxidant activity of four different extracts (butanol, ethyl acetate, chloroform, water) of Arbutus unedo L. fruit (Ericacea) of El Marsa and Terni area. The total phenolic content in the extracts was determined using the Folin-Ciocalteu reagent and it ranged between 26.57 and 48.23 gallic acid equivalents mg/g of dry weight of extract. The concentrations of flavonoids in plant extracts varied from 17.98 to 56.84 catechin equivalents mg/g. The antioxidant activity was analyzed in vitro using the DPPH reagent; among all extracts, ethyl acetate fraction from El Marsa area showed the highest antioxidant activity.

Keywords: antioxidant activity, Arbutus unedo L., fruit flavonoids, phenols, Western Algeria

Procedia PDF Downloads 455
3651 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: scalable architectures, sustainability, application design, disruptive technology, machine learning and natural language processing, AI, social media platform, cloud computing, advanced networking and storage devices, advanced monitoring and metering infrastructure, climate change

Procedia PDF Downloads 106
3650 Modelling and Optimization of a Combined Sorption Enhanced Biomass Gasification with Hydrothermal Carbonization, Hot Gas Cleaning and Dielectric Barrier Discharge Plasma Reactor to Produce Pure H₂ and Methanol Synthesis

Authors: Vera Marcantonio, Marcello De Falco, Mauro Capocelli, Álvaro Amado-Fierro, Teresa A. Centeno, Enrico Bocci

Abstract:

Concerns about energy security, energy prices, and climate change led scientific research towards sustainable solutions to fossil fuel as renewable energy sources coupled with hydrogen as an energy vector and carbon capture and conversion technologies. Among the technologies investigated in the last decades, biomass gasification acquired great interest owing to the possibility of obtaining low-cost and CO₂ negative emission hydrogen production from a large variety of everywhere available organic wastes. Upstream and downstream treatment were then studied in order to maximize hydrogen yield, reduce the content of organic and inorganic contaminants under the admissible levels for the technologies which are coupled with, capture, and convert carbon dioxide. However, studies which analyse a whole process made of all those technologies are still missing. In order to fill this lack, the present paper investigated the coexistence of hydrothermal carbonization (HTC), sorption enhance gasification (SEG), hot gas cleaning (HGC), and CO₂ conversion by dielectric barrier discharge (DBD) plasma reactor for H₂ production from biomass waste by means of Aspen Plus software. The proposed model aimed to identify and optimise the performance of the plant by varying operating parameters (such as temperature, CaO/biomass ratio, separation efficiency, etc.). The carbon footprint of the global plant is 2.3 kg CO₂/kg H₂, lower than the latest limit value imposed by the European Commission to consider hydrogen as “clean”, that was set to 3 kg CO₂/kg H₂. The hydrogen yield referred to the whole plant is 250 gH₂/kgBIOMASS.

Keywords: biomass gasification, hydrogen, aspen plus, sorption enhance gasification

Procedia PDF Downloads 79
3649 Prussian Blue/Chitosan Mixed-Matrix Membranes with Improved Separation Performance of Ethanol/Water Mixtures

Authors: Ting-YuLiu, Yi-Feng Lin

Abstract:

Porous Prussian Blue (PB) nanoparticles were successfully incorporated into chitosan (CS) membranes to form PB/CS mixed-matrix membranes (MMMs) and the as-prepared PB/CS MMMs were used to dehydration of ethanol at 25 oC in the pervaporation process. The effect of PB loading in CS matrix on pervaporation performance was investigated. The FESEM, EDS, FTIR and XRD measurements were also used for the characterization of the PB/CS MMMs. The PB/CS membranes with 30 wt% PB loading show the best performance with the permeate flux of 614 g/m2h and the separation factor of 1472. The pervaporation using the PB/CS membranes exhibits outstanding performance as compared with the previously reported CS based membranes and MMMs. The present work demonstrates good pervaporation performance of the PB/CS MMMs for the separation of 90wt% ethanol aqueous solution, moreover, it has an opportunity for dehydration of bioethanol in this system of pervaporation.

Keywords: pervaporation, chitosan, Prussian blue, mixed-matrix membrane

Procedia PDF Downloads 412
3648 Olefin and Paraffin Separation Using Simulations on Extractive Distillation

Authors: Muhammad Naeem, Abdulrahman A. Al-Rabiah

Abstract:

Technical mixture of C4 containing 1-butene and n-butane are very close to each other with respect to their boiling points i.e. -6.3°C for 1-butene and -1°C for n-butane. Extractive distillation process is used for the separation of 1-butene from the existing mixture of C4. The solvent is the essential of extractive distillation, and an appropriate solvent shows an important role in the process economy of extractive distillation. Aspen Plus has been applied for the separation of these hydrocarbons as a simulator; moreover NRTL activity coefficient model was used in the simulation. This model indicated that the material balances in this separation process were accurate for several solvent flow rates. Mixture of acetonitrile and water used as a solvent and 99 % pure 1-butene was separated. This simulation proposed the ratio of the feed to solvent as 1 : 7.9 and 15 plates for the solvent recovery column, previously feed to solvent ratio was more than this and the proposed plates were 30, which can economize the separation process.

Keywords: extractive distillation, 1-butene, Aspen Plus, ACN solvent

Procedia PDF Downloads 448
3647 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability

Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya

Abstract:

The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.

Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon

Procedia PDF Downloads 361
3646 Adsorption of Toluene from Aqueous Solutions by Porous Clay Hetero-Structures

Authors: F. Asadi, M. M. Zerafat, S. Sabbaghi

Abstract:

Among water pollutants, volatile organic compounds can cause severe long lasting effects not only on biotic organism but also on human health. As a result, this material group has attracted more attention in recent years. Adsorption is one of the common processes for remediation of aromatic compounds. In this study, porous clay hetrostructers (PCHs) are synthesized through gallery template approach and cetyltrimethylammonium bromide and dodecylamine used as template and co-template, respectively. Porous clay is characterized by XRD and FTIR. Batch adsorption experiments were carried out to investigate the effect of various adsorption parameters like adsorbent dosage, pH, initial concentration and contact time. It was found that by increasing adsorbent dosage from 0.5gr/lit to 4gr/lit, toluene removal is increased from 34% to 88.1%. Increasing contact time and decreasing the pH of aqueous solution increases toluene removal efficiency.

Keywords: adsorption, clay, nano-porous, toluene

Procedia PDF Downloads 338
3645 Carbon Footprint of Road Project for Sustainable Development: Lessons Learnt from Traffic Management of a Developing Urban Centre

Authors: Sajjad Shukur Ullah, Syed Shujaa Safdar Gardezi

Abstract:

Road infrastructure plays a vital role in the economic activities of any economy. Besides derived benefits from these facilities, the utilization of extensive energy resources, fuels, and materials results in a negative impact on the environment in terms of carbon footprint; carbon footprint is the overall amount of greenhouse gas (GHG) generated from any action. However, this aspect of environmental impact from road structure is not seriously considered during such developments, thus undermining a critical factor of sustainable development, which usually remains unaddressed, especially in developing countries. The current work investigates the carbon footprint impact of a small road project (0.8 km, dual carriageway) initiated for traffic management in an urban centre. Life cycle assessment (LCA) with boundary conditions of cradle to the site has been adopted. The only construction phase of the life cycle has been assessed at this stage. An impact of 10 ktons-CO2 (6260 ton-CO2/km) has been assessed. The rigid pavement dominated the contributions as compared to a flexible component. Among the structural elements, the underpass works shared the major portion. Among the materials, the concrete and steel utilized for various structural elements resulted in more than 90% of the impact. The earth-moving equipment was dominant in operational carbon. The results have highlighted that road infrastructure projects pose serious threats to the environment during their construction and which need to be considered during the approval stages. This work provides a guideline for supporting sustainable development that could only be ensured when such endeavours are properly assessed by industry professionals and decide various alternative environmental conscious solutions for the future.

Keywords: construction waste management, kiloton, life cycle assessment, rigid pavement

Procedia PDF Downloads 100
3644 The Effects of Green Logistics Management Practices on Sustainability Performance in Nigeria

Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddi, Abdul Kafi

Abstract:

Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.

Keywords: logistics, management, sustainability, environment, operations

Procedia PDF Downloads 81
3643 Durable Phantom Production Identical to Breast Tissue for Use in Breast Cancer Detection Research Studies

Authors: Hayrettin Eroglu, Adem Kara

Abstract:

Recently there has been significant attention given to imaging of the biological tissues via microwave imaging techniques. In this study, a phantom for the test and calibration of Microwave imaging used in detecting unhealthy breast structure or tumors was produced by using sol gel method. The liquid and gel phantoms being used nowadays are not durable due to evaporation and their organic ingredients, hence a new design was proposed. This phantom was fabricated from materials that were widely available (water, salt, gelatin, and glycerol) and was easy to make. This phantom was aimed to be better from the ones already proposed in the literature in terms of its durability and stability. S Parameters of phantom was measured with 1-18 GHz Probe Kit and permittivity was calculated via Debye method in “85070” commercial software. One, three, and five-week measurements were taken for this phantom. Finally, it was verified that measurement results were very close to the real biological tissue measurement results.

Keywords: phantom, breast tissue, cancer, microwave imaging

Procedia PDF Downloads 356
3642 Improvement in Ni (II) Adsorption Capacity by Using Fe-Nano Zeolite

Authors: Pham-Thi Huong, Byeong-Kyu Lee, Jitae Kim, Chi-Hyeon Lee

Abstract:

Fe-nano zeolite adsorbent was used for removal of Ni (II) ions from aqueous solution. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and the surface area Brunauer–Emmett–Teller (BET) using for analysis of functional groups, morphology and surface area. Bath adsorption experiments were analyzed on the effect of pH, time, adsorbent doses and initial Ni (II) concentration. The optimum pH for Ni (II) removal using Fe-nano zeolite was found at 5.0 and 90 min of reaction time. The maximum adsorption capacity of Ni (II) was 231.68 mg/g based on the Langmuir isotherm. The kinetics data for the adsorption process was fitted with the pseudo-second-order model. The desorption of Ni (II) from Ni-loaded Fe-nano zeolite was analyzed and even after 10 cycles 72 % desorption was achieved. These finding supported that Fe-nano zeolite with high adsorption capacity, high reuse ability would be utilized for Ni (II) removal from water.

Keywords: Fe-nano zeolite, adsorption, Ni (II) removal, regeneration

Procedia PDF Downloads 232
3641 Alumina Supported Copper-Manganese-Cobalt Catalysts for CO and VOCs Oxidation

Authors: Elitsa Kolentsova, Dimitar Dimitrov, Vasko Idakiev, Tatyana Tabakova, Krasimir Ivanov

Abstract:

Formaldehyde production by selective oxidation of methanol is an important industrial process. The main by-products in the waste gas are CO and dimethyl ether (DME). The idea of this study is to combine the advantages of both Cu-Mn and Cu-Co catalytic systems by obtaining a new mixed Cu-Mn-Co catalyst with high activity and selectivity at the simultaneous oxidation of CO, methanol, and DME. Two basic Cu-Mn samples with high activity were selected for further investigation: (i) manganese-rich Cu-Mn/γ–Al2O3 catalyst with Cu/Mn molar ratio 1:5 and (ii) copper-rich Cu-Mn/γ-Al2O3 catalyst with Cu/Mn molar ratio 2:1. Manganese in these samples was replaced by cobalt in the whole concentration region, and catalytic properties were determined. The results show a general trend of decreasing the activity toward DME oxidation and increasing the activity toward CO and methanol oxidation with the increase of cobalt up to 60% for both groups of catalyst. This general trend, however, contains specific features, depending on the composition of the catalyst and the nature of the oxidized gas. The catalytic activity of the sample with Cu/(Mn+Co) molar ratio of 2:1 is gradually changed with increasing the cobalt content. The activity of the sample with Cu/(Mn+Co) molar ratio of 1: 5 passes through a maximum at 60% manganese replacement by cobalt, probably due to the formation of highly dispersed Co-based spinel structures (Co3O4 and/or MnCo2O4). In conclusion, the present study demonstrates that the Cu-Mn-Co/γ–alumina supported catalysts have enhanced activity toward CO, methanol and DME oxidation. Cu/(Mn+Co) molar ratio 1:5 and Co/Mn molar ratio 1.5 in the active component can ensure successful oxidation of CO, CH3OH and DME. The active component of the mixed Cu-Mn-Co/γ–alumina catalysts consists of at least six compounds - CuO, Co3O4, MnO2, Cu1.5Mn1.5O4, MnCo2O4 and CuCo2O4, depending on the Cu/Mn/Co molar ratio. Chemical composition strongly influences catalytic properties, this effect being quite variable with regards to the different processes.

Keywords: Cu-Mn-Co catalysts, oxidation, carbon oxide, VOCs

Procedia PDF Downloads 222
3640 The Phenomenon of Biofilm Formation and the Subsequent Management of Foodborne Pathogenic Bacteria

Authors: Raana Babadi Fathipour

Abstract:

Biofilms, those intricate structures of microbial aggregation that emerge as microorganisms adhere to animate or inanimate surfaces, possess an innate capacity to shield their inhabitants from adversities within the environment whilst fortifying their endurance against antimicrobial agents. This remarkable aspect facilitates the persistence and virulence of said microorganisms, establishing biofilm formation as an integral component of bacterial survival mechanisms. However, should foodborne pathogens adopt this mode of existence, the potentiality for foodborne disease infections becomes alarmingly intensified—an alarming prospect that harbors significant public health hazards and engenders deleterious economic ramifications. Thus, due to these consequences lurking on the horizon, extensive research concentrating upon comprehending biofilms and devising efficacious removal strategies assumes a position imbued with paramount importance within the realm of the food industry. The problem of food waste resulting from spoilage in the food industry continues to present a widespread challenge to both environmental sustainability and the security of our food supplies. In this comprehensive analysis, we delve into the formation of bacterial biofilms, highlighting the specific issues they pose within the realm of food production. Additionally, we provide an overview of various types of common foodborne pathogens that tend to thrive in these biofilms. Furthermore, we summarize existing strategies aimed at tackling or managing detrimental bacterial biofilm growth. We also introduce contemporary approaches that show promise in terms of controlling this issue and highlight their potential for further advancement. Ultimately, our focus lies on outlining prospects for future development as they pertain specifically to combatting bacterial biofilms within the field.

Keywords: foodborne pathogens, food safety, biofilm, resistance, quorum-sensing

Procedia PDF Downloads 58
3639 Interaction between the Rio Conventions on Climate and Biodiversity: Analysis of the Integration of Ecosystem-Based Approaches and Nature-Based Solutions into the UNFCCC

Authors: Dieudonne Mevono Mvogo

Abstract:

The Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES)-Intergovernmental Panel on Climate Change (IPCC) co-sponsored workshop report suggests that climate change and biodiversity loss are two of the most pressing issues of the Anthropocene. Research establishes the interconnection between climate change and biodiversity. On the one hand, the impact of climate change on biodiversity loss – 14 % over the past century – is projected to surpass other threats – land and sea use 34 % and direct exploitation of species 23 % – during the 21st century. Response measures to climate change also affect biodiversity negatively or positively. On the other hand, actions to halt or reverse biodiversity loss can enhance land and ocean capacity for carbon sequestration. These actions can also promote adaptation by ensuring adaptive capacity. This systemic interaction between climate change and biodiversity affects the human quality of life. The United Nations Secretariat's report entitled 'Gaps in international environmental law and environment-related instruments: towards a global pact for the environment,' released in 2018, states that cooperation and mutual support among agreements dealing with climate change, the protection of the marine environment, freshwater resources and hazardous waste are indispensable for the effective implementation of the Convention on the Biological Diversity (CBD). Since biodiversity is being lost at an alarming rate, this study aims to evaluate the cooperative framework for the coherence and coordination between climate change and biodiversity regimes to provide co-benefits for climate and biodiversity crises. It questions the potential improvement regarding integrating ecosystem-based approaches and nature-based solutions – promoted by the CBD – into the United Nations Framework Convention on Climate Change (UNFCCC).

Keywords: rio conventions, climate change, biodiversity, cooperative framework, ecosystem-based approaches, nature-based solutions

Procedia PDF Downloads 127
3638 Effect of Storage Time on the Properties of Seeds, Oil and Biodiesel from Reutealis trisperma

Authors: Muhammad Yusuf Abduh, Syaripudin, Laksmitha Dyanie, Robert Manurung

Abstract:

The time profile of moisture content for different fractions (PT-3, PT-7, PT-14, NPT-21) of trisperma seeds (Reutealis trisperma) was determined at a relative humidity of 67% and 27°C for a four months period. The diffusion coefficient of water in the trisperma seeds was determined using an analytical solution of instationary diffusion equation and used to model the moisture content in the seeds. The total oil content of the seeds and the acid value of the extracted oil from the stored seeds were periodically measured for four months. The acid value of the extracted oil from the stored seeds increased for all conditions (1.1 to 2.8 mg KOH/g for PT-3, 1.9 to 9.9 mg KOH/g for PT-7, 3.4 to 11.6 mg KOH/g for PT-14 and 4.7 to 25.4 mg KOH/g for NPT-21). The acid value of trisperma oil and biodiesel that has been stored for four months (27°C, closed container) was also determined. Upon storage, the acid value of trisperma oil and biodiesel only slightly increased from 1.1 to 1.3 mg KOH/g and 0.4 to 0.43 mg KOH/g, respectively.

Keywords: acid value, biodiesel, moisture content, Reutealis trisperma, storage

Procedia PDF Downloads 290
3637 The Impact of Glass Additives on the Functional and Microstructural Properties of Sand-Lime Bricks

Authors: Anna Stepien

Abstract:

The paper presents the results of research on modifications of sand-lime bricks, especially using glass additives (glass fiber and glass sand) and other additives (e.g.:basalt&barite aggregate, lithium silicate and microsilica) as well. The main goal of this paper is to answer the question ‘How to use glass additives in the sand-lime mass and get a better bricks?’ The article contains information on modification of sand-lime bricks using glass fiber, glass sand, microsilica (different structure of silica). It also presents the results of the conducted compression tests, which were focused on compressive strength, water absorption, bulk density, and their microstructure. The Scanning Electron Microscope, spectrum EDS, X-ray diffractometry and DTA analysis helped to define the microstructural changes of modified products. The interpretation of the products structure revealed the existence of diversified phases i.e.the C-S-H and tobermorite. CaO-SiO2-H2O system is the object of intensive research due to its meaning in chemistry and technologies of mineral binding materials. Because the blocks are the autoclaving materials, the temperature of hydrothermal treatment of the products is around 200°C, the pressure - 1,6-1,8 MPa and the time - up to 8hours (it means: 1h heating + 6h autoclaving + 1h cooling). The microstructure of the products consists mostly of hydrated calcium silicates with a different level of structural arrangement. The X-ray diffraction indicated that the type of used sand is an important factor in the manufacturing of sand-lime elements. Quartz sand of a high hardness is also a substrate hardly reacting with other possible modifiers, which may cause deterioration of certain physical and mechanical properties. TG and DTA curves show the changes in the weight loss of the sand-lime bricks specimen against time as well as the endo- and exothermic reactions that took place. The endothermic effect with the maximum at T=573°C is related to isomorphic transformation of quartz. This effect is not accompanied by a change of the specimen weight. The next endothermic effect with the maximum at T=730-760°C is related to the decomposition of the calcium carbonates. The bulk density of the brick it is 1,73kg/dm3, the presence of xonotlite in the microstructure and significant weight loss during DTA and TG tests (around 0,6% after 70 minutes) have been noticed. Silicate elements were assessed on the basis of their compressive property. Orthogonal compositional plan type 3k (with k=2), i.e.full two-factor experiment was applied in order to carry out the experiments both, in the compression strength test and bulk density test. Some modification (e.g.products with barite and basalt aggregate) have improved the compressive strength around 41.3 MPa and water absorption due to capillary raising have been limited to 12%. The next modification was adding glass fiber to sand-lime mass, then glass sand. The results show that the compressive strength was higher than in the case of traditional bricks, while modified bricks were lighter.

Keywords: bricks, fiber, glass, microstructure

Procedia PDF Downloads 347
3636 The Gaps of Environmental Criminal Liability in Armed Conflicts and Its Consequences: An Analysis under Stockholm, Geneva and Rome

Authors: Vivian Caroline Koerbel Dombrowski

Abstract:

Armed conflicts have always meant the ultimate expression of power and at the same time, lack of understanding among nations. Cities were destroyed, people were killed, assets were devastated. But these are not only the loss of a war: the environmental damage comes to be considered immeasurable losses in the short, medium and long term. And this is because no nation wants to bear that cost. They invest in military equipment, training, technical equipment but the environmental account yet finds gaps in international law. Considering such a generalization in rights protection, many nations are at imminent danger in a conflict if the water will be used as a mass weapon, especially if we consider important rivers such as Jordan, Euphrates and Nile. The top three international documents were analyzed on the subject: the Stockholm Convention (1972), Additional Protocol I to the Geneva Convention (1977) and the Rome Statute (1998). Indeed, some references are researched in doctrine, especially scientific articles, to substantiate with consistent data about the extent of the damage, historical factors and decisions which have been successful. However, due to the lack of literature about this subject, the research tends to be exhaustive. From the study of the indicated material, it was noted that international law - humanitarian and environmental - calls in some of its instruments the environmental protection in war conflicts, but they are generic and vague rules that do not define exactly what is the environmental damage , nor sets standards for measure them. Taking into account the mains conflicts of the century XX: World War II, the Vietnam War and the Gulf War, one must realize that the environmental consequences were of great rides - never deactivated landmines, buried nuclear weapons, armaments and munitions destroyed in the soil, chemical weapons, not to mention the effects of some weapons when used (uranium, agent Orange, etc). Extending the search for more recent conflicts such as Afghanistan, it is proven that the effects on health of the civilian population were catastrophic: cancer, birth defects, and deformities in newborns. There are few reports of nations that, somehow, repaired the damage caused to the environment as a result of the conflict. In the pitch of contemporary conflicts, many nations fear that water resources are used as weapons of mass destruction, because once contaminated - directly or indirectly - can become a means of disguised genocide side effect of military objective. In conclusion, it appears that the main international treaties governing the subject mention the concern for environmental protection, however leave the normative specifications vacancies necessary to effectively there is a prevention of environmental damage in armed conflict and, should they occur, the repair of the same. Still, it appears that there is no protection mechanism to safeguard natural resources and avoid them to become a mass destruction weapon.

Keywords: armed conflicts, criminal liability, environmental damages, humanitarian law, mass weapon

Procedia PDF Downloads 420
3635 Assessment of High Frequency Solidly Mounted Resonator as Viscosity Sensor

Authors: Vinita Choudhary

Abstract:

Solidly Acoustic Resonators (SMR) based on ZnO piezoelectric material operating at a frequency of 3.96 GHz and 6.49% coupling factor are used to characterize liquids with different viscosities. This behavior of the sensor is analyzed using Finite Element Modeling. Device architectures encapsulate bulk acoustic wave resonators with MO/SiO₂ Bragg mirror reflector and the silicon substrate. The proposed SMR is based on the mass loading effect response of the sensor to the change in the resonant frequency of the resonator that is caused by the increased density due to the absorption of liquids (water, acetone, olive oil) used in theoretical calculation. The sensitivity of sensors ranges from 0.238 MHz/mPa.s to 83.33 MHz/mPa.s, supported by the Kanazawa model. Obtained results are also compared with previous works on BAW viscosity sensors.

Keywords: solidly mounted resonator, bragg mirror, kanazawa model, finite element model

Procedia PDF Downloads 82
3634 Time-Domain Nuclear Magnetic Resonance as a Potential Analytical Tool to Assess Thermisation in Ewe's Milk

Authors: Alessandra Pardu, Elena Curti, Marco Caredda, Alessio Dedola, Margherita Addis, Massimo Pes, Antonio Pirisi, Tonina Roggio, Sergio Uzzau, Roberto Anedda

Abstract:

Some of the artisanal cheeses products of European Countries certificated as PDO (Protected Designation of Origin) are made from raw milk. To recognise potential frauds (e.g. pasteurisation or thermisation of milk aimed at raw milk cheese production), the alkaline phosphatase (ALP) assay is currently applied only for pasteurisation, although it is known to have notable limitations for the validation of ALP enzymatic state in nonbovine milk. It is known that frauds considerably impact on customers and certificating institutions, sometimes resulting in a damage of the product image and potential economic losses for cheesemaking producers. Robust, validated, and univocal analytical methods are therefore needed to allow Food Control and Security Organisms, to recognise a potential fraud. In an attempt to develop a new reliable method to overcome this issue, Time-Domain Nuclear Magnetic Resonance (TD-NMR) spectroscopy has been applied in the described work. Daily fresh milk was analysed raw (680.00 µL in each 10-mm NMR glass tube) at least in triplicate. Thermally treated samples were also produced, by putting each NMR tube of fresh raw milk in water pre-heated at temperatures from 68°C up to 72°C and for up to 3 min, with continuous agitation, and quench-cooled to 25°C in a water and ice solution. Raw and thermally treated samples were analysed in terms of 1H T2 transverse relaxation times with a CPMG sequence (Recycle Delay: 6 s, interpulse spacing: 0.05 ms, 8000 data points) and quasi-continuous distributions of T2 relaxation times were obtained by CONTIN analysis. In line with previous data collected by high field NMR techniques, a decrease in the spin-spin relaxation constant T2 of the predominant 1H population was detected in heat-treated milk as compared to raw milk. The decrease of T2 parameter is consistent with changes in chemical exchange and diffusive phenomena, likely associated to changes in milk protein (i.e. whey proteins and casein) arrangement promoted by heat treatment. Furthermore, experimental data suggest that molecular alterations are strictly dependent on the specific heat treatment conditions (temperature/time). Such molecular variations in milk, which are likely transferred to cheese during cheesemaking, highlight the possibility to extend the TD-NMR technique directly on cheese to develop a method for assessing a fraud related to the use of a milk thermal treatment in PDO raw milk cheese. Results suggest that TDNMR assays might pave a new way to the detailed characterisation of heat treatments of milk.

Keywords: cheese fraud, milk, pasteurisation, TD-NMR

Procedia PDF Downloads 243
3633 Evaluation of Superabsorbent Application on Corn Yield under Deficit Irrigation

Authors: Davoud Khodadadi Dehkordi

Abstract:

This research was planned in order to study the effect of drought stress and different levels of Superabsorbent and their effect on grain yield, biologic yield and harvest index. In this study, 3 different depths of irrigation were considered as the main treatment I1, I2, I3 as 100, 75 and 50 percent of water requirement of plants respectively and different levels of Superabsorbent were used as secondary treatment (S0, S1, S2 and S3, equal to 0 (control), 15, 30 and 45 gr/m2 respectively). According to the results, independent effects of irrigation and Superabsorbent treatments at 1% level on biologic and grain yield of corn were significant. In addition, independent effect of irrigation treatments at 5% level on harvest index was significant. But independent effect of Superabsorbent treatments on harvest index was not significant.

Keywords: corn, deficit irrigation, superabsorbent, yield

Procedia PDF Downloads 360
3632 Monitoring Land Productivity Dynamics of Gombe State, Nigeria

Authors: Ishiyaku Abdulkadir, Satish Kumar J

Abstract:

Land Productivity is a measure of the greenness of above-ground biomass in health and potential gain and is not related to agricultural productivity. Monitoring land productivity dynamics is essential to identify, especially when and where the trend is characterized degraded for mitigation measures. This research aims to monitor the land productivity trend of Gombe State between 2001 and 2015. QGIS was used to compute NDVI from AVHRR/MODIS datasets in a cloud-based method. The result appears that land area with improving productivity account for 773sq.km with 4.31%, stable productivity traced to 4,195.6 sq.km with 23.40%, stable but stressed productivity represent 18.7sq.km account for 0.10%, early sign of decline productivity occupied 5203.1sq.km with 29%, declining productivity account for 7019.7sq.km, represent 39.2%, water bodies occupied 718.7sq.km traced to 4% of the state’s area.

Keywords: above-ground biomass, dynamics, land productivity, man-environment relationship

Procedia PDF Downloads 145