Search results for: surface potential
10245 Enhancing the Implementation Strategy of Simultaneous Operations (SIMOPS) for the Major Turnaround at Pertamina Plaju Refinery
Authors: Fahrur Rozi, Daniswara Krisna Prabatha, Latief Zulfikar Chusaini
Abstract:
Amidst the backdrop of Pertamina Plaju Refinery, which stands as the oldest and historically less technologically advanced among Pertamina's refineries, lies a unique challenge. Originally integrating facilities established by Shell in 1904 and Stanvac (originally Standard Oil) in 1926, the primary challenge at Plaju Refinery does not solely revolve around complexity; instead, it lies in ensuring reliability, considering its operational history of over a century. After centuries of existence, Plaju Refinery has never undergone a comprehensive major turnaround encompassing all its units. The usual practice involves partial turnarounds that are sequentially conducted across its primary, secondary, and tertiary units (utilities and offsite). However, a significant shift is on the horizon. In the Q-IV of 2023, the refinery embarks on its first-ever major turnaround since its establishment. This decision was driven by the alignment of maintenance timelines across various units. Plaju Refinery's major turnaround was scheduled for October-November 2023, spanning 45 calendar days, with the objective of enhancing the operational reliability of all refinery units. The extensive job list for this turnaround encompasses 1583 tasks across 18 units/areas, involving approximately 9000 contracted workers. In this context, the Strategy of Simultaneous Operations (SIMOPS) execution emerges as a pivotal tool to optimize time efficiency and ensure safety. A Hazard Effect Management Process (HEMP) has been employed to assess the risk ratings of each task within the turnaround. Out of the tasks assessed, 22 are deemed high-risk and necessitate mitigation. The SIMOPS approach serves as a preventive measure against potential incidents. It is noteworthy that every turnaround period at Pertamina Plaju Refinery involves SIMOPS-related tasks. In this context, enhancing the implementation strategy of "Simultaneous Operations (SIMOPS)" becomes imperative to minimize the occurrence of incidents. At least four improvements have been introduced in the enhancement process for the major turnaround at Refinery Plaju. The first improvement involves conducting systematic risk assessment and potential hazard mitigation studies for SIMOPS tasks before task execution, as opposed to the previous on-site approach. The second improvement includes the completion of SIMOPS Job Mitigation and Work Matrices Sheets, which was often neglected in the past. The third improvement emphasizes comprehensive awareness to workers/contractors regarding potential hazards and mitigation strategies for SIMOPS tasks before and during the major turnaround. The final improvement is the introduction of a daily program for inspecting and observing work in progress for SIMOPS tasks. Prior to these improvements, there was no established program for monitoring ongoing activities related to SIMOPS tasks during the turnaround. This study elucidates the steps taken to enhance SIMOPS within Pertamina, drawing from the experiences of Plaju Refinery as a guide. A real actual case study will be provided from our experience in the operational unit. In conclusion, these efforts are essential for the success of the first-ever major turnaround at Plaju Refinery, with the SIMOPS strategy serving as a central component. Based on these experiences, enhancements have been made to Pertamina's official Internal Guidelines for Executing SIMOPS Risk Mitigation, benefiting all Pertamina units.Keywords: process safety management, turn around, oil refinery, risk assessment
Procedia PDF Downloads 8110244 Resilience and Urban Transformation: A Review of Recent Interventions in Europe and Turkey
Authors: Bilge Ozel
Abstract:
Cities are high-complex living organisms and are subjects to continuous transformations produced by the stress that derives from changing conditions. Today the metropolises are seen like “development engines” of the countries and accordingly they become the centre of better living conditions that encourages demographic growth which constitutes the main reason of the changes. Indeed, the potential for economic advancement of the cities directly represents the economic status of their countries. The term of “resilience”, which sees the changes as natural processes and represents the flexibility and adaptability of the systems in the face of changing conditions, becomes a key concept for the development of urban transformation policies. The term of “resilience” derives from the Latin word ‘resilire’, which means ‘bounce’, ‘jump back’, refers to the ability of a system to withstand shocks and still maintain the basic characteristics. A resilient system does not only survive the potential risks and threats but also takes advantage of the positive outcomes of the perturbations and ensures adaptation to the new external conditions. When this understanding is taken into the urban context - or rather “urban resilience” - it delineates the capacity of cities to anticipate upcoming shocks and changes without undergoing major alterations in its functional, physical, socio-economic systems. Undoubtedly, the issue of coordinating the urban systems in a “resilient” form is a multidisciplinary and complex process as the cities are multi-layered and dynamic structures. The concept of “urban transformation” is first launched in Europe just after World War II. It has been applied through different methods such as renovation, revitalization, improvement and gentrification. These methods have been in continuous advancement by acquiring new meanings and trends over years. With the effects of neoliberal policies in the 1980s, the concept of urban transformation has been associated with economic objectives. Subsequently this understanding has been improved over time and had new orientations such as providing more social justice and environmental sustainability. The aim of this research is to identify the most applied urban transformation methods in Turkey and its main reasons of being selected. Moreover, investigating the lacking and limiting points of the urban transformation policies in the context of “urban resilience” in a comparative way with European interventions. The emblematic examples, which symbolize the breaking points of the recent evolution of urban transformation concepts in Europe and Turkey, are chosen and reviewed in a critical way.Keywords: resilience, urban dynamics, urban resilience, urban transformation
Procedia PDF Downloads 26710243 Tip-Enhanced Raman Spectroscopy with Plasmonic Lens Focused Longitudinal Electric Field Excitation
Authors: Mingqian Zhang
Abstract:
Tip-enhanced Raman spectroscopy (TERS) is a scanning probe technique for individual objects and structured surfaces investigation that provides a wealth of enhanced spectral information with nanoscale spatial resolution and high detection sensitivity. It has become a powerful and promising chemical and physical information detection method in the nanometer scale. The TERS technique uses a sharp metallic tip regulated in the near-field of a sample surface, which is illuminated with a certain incident beam meeting the excitation conditions of the wave-vector matching. The local electric field, and, consequently, the Raman scattering, from the sample in the vicinity of the tip apex are both greatly tip-enhanced owning to the excitation of localized surface plasmons and the lightning-rod effect. Typically, a TERS setup is composed of a scanning probe microscope, excitation and collection optical configurations, and a Raman spectroscope. In the illumination configuration, an objective lens or a parabolic mirror is always used as the most important component, in order to focus the incident beam on the tip apex for excitation. In this research, a novel TERS setup was built up by introducing a plasmonic lens to the excitation optics as a focusing device. A plasmonic lens with symmetry breaking semi-annular slits corrugated on gold film was designed for the purpose of generating concentrated sub-wavelength light spots with strong longitudinal electric field. Compared to conventional far-field optical components, the designed plasmonic lens not only focuses an incident beam to a sub-wavelength light spot, but also realizes a strong z-component that dominants the electric field illumination, which is ideal for the excitation of tip-enhancement. Therefore, using a PL in the illumination configuration of TERS contributes to improve the detection sensitivity by both reducing the far-field background and effectively exciting the localized electric field enhancement. The FDTD method was employed to investigate the optical near-field distribution resulting from the light-nanostructure interaction. And the optical field distribution was characterized using an scattering-type scanning near-field optical microscope to demonstrate the focusing performance of the lens. The experimental result is in agreement with the theoretically calculated one. It verifies the focusing performance of the plasmonic lens. The optical field distribution shows a bright elliptic spot in the lens center and several arc-like side-lobes on both sides. After the focusing performance was experimentally verified, the designed plasmonic lens was used as a focusing component in the excitation configuration of TERS setup to concentrate incident energy and generate a longitudinal optical field. A collimated linearly polarized laser beam, with along x-axis polarization, was incident from the bottom glass side on the plasmonic lens. The incident light focused by the plasmonic lens interacted with the silver-coated tip apex and enhanced the Raman signal of the sample locally. The scattered Raman signal was gathered by a parabolic mirror and detected with a Raman spectroscopy. Then, the plasmonic lens based setup was employed to investigate carbon nanotubes and TERS experiment was performed. Experimental results indicate that the Raman signal is considerably enhanced which proves that the novel TERS configuration is feasible and promising.Keywords: longitudinal electric field, plasmonics, raman spectroscopy, tip-enhancement
Procedia PDF Downloads 37810242 Control of Microbial Pollution Using Biodegradable Polymer
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate
Procedia PDF Downloads 29210241 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2
Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen
Abstract:
Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel
Procedia PDF Downloads 15310240 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycles present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: current density, duty cycle, microstructure, nickel, pulse frequency
Procedia PDF Downloads 37410239 Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic
Authors: Sedat Yayla, Azhin Abdullah
Abstract:
In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree.Keywords: bucket design, computational fluid dynamics (CFD), free surface flow, two-phase flow, volume of fluid (VOF)
Procedia PDF Downloads 27210238 Enhanced Iceberg Information Dissemination for Public and Autonomous Maritime Use
Authors: Ronald Mraz, Gary C. Kessler, Ethan Gold, John G. Cline
Abstract:
The International Ice Patrol (IIP) continually monitors iceberg activity in the North Atlantic by direct observation using ships, aircraft, and satellite imagery. Daily reports detailing navigational boundaries of icebergs have significantly reduced the risk of iceberg contact. What is currently lacking is formatting this data for automatic transmission and display of iceberg navigational boundaries in commercial navigation equipment. This paper describes the methodology and implementation of a system to format iceberg limit information for dissemination through existing radio network communications. This information will then automatically display on commercial navigation equipment. Additionally, this information is reformatted for Google Earth rendering of iceberg track line limits. Having iceberg limit information automatically available in standard navigation equipment will help support full autonomous operation of sailing vessels.Keywords: iceberg, iceberg risk, iceberg track lines, AIS messaging, international ice patrol, North American ice service, google earth, autonomous surface vessels
Procedia PDF Downloads 14210237 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley
Authors: Bijit Kalita, K. V. N. Surendra
Abstract:
The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture.Keywords: crack-tip deformations, contact stress, stress concentration, stress intensity factor
Procedia PDF Downloads 12810236 Development of Column-Filters of Sulfur Limonene Polysulfide to Mercury Removal from Contaminated Effluents
Authors: Galo D. Soria, Jenny S. Casame, Eddy F. Pazmino
Abstract:
In Ecuador, mining operations have significantly impacted water sources. Artisanal mining extensively relies in mercury amalgamation. Mercury is a neurotoxic substance even at low concentrations. The objective of this investigation is to exploit Hg-removal capacity of sulfur-limonene polysulfide (SLP), which is a low-cost polymer, in order to prepare granular media (sand) coated with SLP to be used in laboratory scale column-filtration systems. Preliminary results achieved 85% removal of Hg⁺⁺ from synthetic effluents using 20-cm length and 5-cm diameter columns at 119m/day average pore water velocity. During elution of the column, the SLP-coated sand indicated that Hg⁺⁺ is permanently fixed to the collector surface, in contrast, uncoated sand showed reversible retention in Hg⁺⁺ in the solid phase. Injection of 50 pore volumes decreased Hg⁺⁺ removal to 46%. Ongoing work has been focused in optimizing the synthesis of SLP and the polymer content in the porous media coating process to improve Hg⁺⁺ removal and extend the lifetime of the column-filter.Keywords: column-filter, mercury, mining, polysulfide, water treatment
Procedia PDF Downloads 15210235 Damage Cost for Private Property by Extreme Wind over the past 10 Years in Korea
Authors: Gou-Moon Choi, Woo-Young Jung, Chan-Young Yune
Abstract:
Recently, the natural disaster has increased worldwide. In Korea, the damage to life and property caused by a typhoon, heavy rain, heavy snow, and an extreme wind also increases every year. Among natural disasters, the frequency and the strength of wind have increased because sea surface temperature has risen due to the increase of the average temperature of the Earth. In the case of extreme wind disaster, it is impossible to control or reduce the occurrence, and the recovery cost always exceeds the damage cost. Therefore, quantitative estimation of the damage cost for extreme wind needs to be established beforehand to install proactive countermeasures. In this study, the damage cost for private properties was analyzed based on the data for the past 10 years in Korea. The damage cost curve was also suggested for the metropolitan cities and provinces. The result shows the possibility for the regional application of the damage cost curve because the damage cost of the regional area is estimated based on the cost of cities and provinces.Keywords: damage cost, extreme wind, natural disaster, private property
Procedia PDF Downloads 31010234 Evaluation of the Effectiveness of a Sewage Treatment Plant in Oman: Samail Case Study
Authors: Azza Mohsin Al-Hashami, Reginald Victor
Abstract:
Treatment of wastewater involves physical, chemical, and biological processes to remove the pollutants from wastewater. This study evaluates of the effectiveness of sewage treatment plants (STP) in Samail, Oman. Samail STP has tertiary treatment using conventional activated sludge with surface aeration. The collection of wastewater is through a network with a total length of about 60 km and also by tankers for the areas outside the network. Treated wastewater from this STP is used for the irrigation of vegetation in the STP premises and as a backwash for sand filters. Some treated water is supplied to the Samail municipality, which uses it for the landscaping, road construction, and 'the Million Date Palms' project. In this study, homogenous samples were taken from eight different treatment stages along the treatment continuum for one year, at a frequency of once a month, to evaluate the physical, chemical, and biological parameters. All samples were analyzed using the standard methods for the examination of water and wastewater. The spatial variations in water quality along the continuum are discussed. Despite these variations, the treated wastewater from Samail STP was of good quality, and most of the parameters are within class A category in Oman Standards for wastewater reuse and discharge.Keywords: wastewater, STP, treatment, processes
Procedia PDF Downloads 18610233 Development of Thermo-Regulating Fabric Using Microcapsules of Phase Change Material
Authors: D. Benmoussa, H. Hannache, O. Cherkaoui
Abstract:
In textiles, the major interest in microencapsulation is currently in the application of durable fragrances, skin softeners, phase-change materials, antimicrobial agents and drug delivery systems onto textile materials. In our research “Polyethylene Glycol” was applied as phase change material and it was encapsulated in polymethacrylic acid (PMA) by radical polymerization in suspension of methacrylic acid in presence of N,N'-methylenebisacrylamide (MBAM) as crosslinking agent. Thereafter the obtained microcapsule was modified by amidation with ethylenediamine as a spacer molecule. At the end of this spacer trichlorotriazine reactive group was fixed. Microcapsules were grafted onto cotton textile substrate. The surface morphologies of the microencapsulated phase change materials (micro PCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared micro PCMs were investigated by differential scanning calorimetry (DSC) and thermogravmetric analysis (TGA). The results obtained show the obtaining microcapsules with a mean diameter of 10 µm and the resistance of the microcapsules is demonstrated by thermal analysis.Keywords: energy storage, microencapsulation, phase-change materials, thermogravmetric analysis (TGA)
Procedia PDF Downloads 67910232 Succinonitrile Modified Polyacrylamide as a Quasi-Solid Electrolyte for an Organic Based Electrochromic Device
Authors: Benjamin Orimolade, Emily Draper
Abstract:
The interest in all solid electrochromic devices (ECD) is ongoing. This is because these devices offer realistic applications of electrochromic materials in products such as sensors, windows and energy storage devices. The use of quasi-solid (gel) electrolytes for the construction of these ECDs is attractive because of their ease of preparation, availability, low cost, improved electrochromic performance, good ionic conductivity and prevention of leakages in ECDs. Herein, we developed a gel electrolyte consisting of polyacrylamide modified with succinonitrile for an ECD containing leucine-modified naphthalene diimide (NDI-L) as electrochromic material. The amount of succinonitrile in the gel was optimized, and the structure, surface morphology, and ionic conductivity of the electrolytes were assessed using microscopic techniques and electrochemical methods. The ECD fabricated with the gel electrolyte displayed good electrochromic performance with a fast switching response of up to 10 s and outstanding stability. These results add significant insight into understanding the inter- and intra-molecular interaction in succinonitrile gel electrolytes and provide a typical practicable high-performance gel electrolyte material for solid electrochromic devices.Keywords: electrochromic device, gel electrolytes, naphthalene diimide, succinonitrile
Procedia PDF Downloads 6510231 The Modeling and Effectiveness Evaluation for Vessel Evasion to Acoustic Homing Torpedo
Authors: Li Minghui, Min Shaorong, Zhang Jun
Abstract:
This paper aims for studying the operational efficiency of surface warship’s motorized evasion to acoustic homing torpedo. It orderly developed trajectory model, self-guide detection model, vessel evasion model, as well as anti-torpedo error model in three-dimensional space to make up for the deficiency of precious researches analyzing two-dimensionally confrontational models. Then, making use of the Monte Carlo method, it carried out the simulation for the confrontation process of evasion in the environment of MATLAB. At last, it quantitatively analyzed the main factors which determine vessel’s survival probability. The results show that evasion relative bearing and speed will affect vessel’s survival probability significantly. Thus, choosing appropriate evasion relative bearing and speed according to alarming range and alarming relative bearing for torpedo, improving alarming range and positioning accuracy and reducing the response time against torpedo will improve the vessel’s survival probability significantly.Keywords: acoustic homing torpedo, vessel evasion, monte carlo method, torpedo defense, vessel's survival probability
Procedia PDF Downloads 46010230 A Fuzzy Decision Making Approach for Supplier Selection in Healthcare Industry
Authors: Zeynep Sener, Mehtap Dursun
Abstract:
Supplier evaluation and selection is one of the most important components of an effective supply chain management system. Due to the expanding competition in healthcare, selecting the right medical device suppliers offers great potential for increasing quality while decreasing costs. This paper proposes a fuzzy decision making approach for medical supplier selection. A real-world medical device supplier selection problem is presented to illustrate the application of the proposed decision methodology.Keywords: fuzzy decision making, fuzzy multiple objective programming, medical supply chain, supplier selection
Procedia PDF Downloads 45610229 Evaluation of Bearing Capacity of Vertically Loaded Strip Piled-Raft Embedded in Soft Clay
Authors: Seyed Abolhasan Naeini, Mohammad Hosseinzade
Abstract:
Settlement and bearing capacity of a piled raft are the two important issues for the foundations of the structures built on coastal areas from the geotechnical engineering point of view. Strip piled raft as a load carrying system could be used to reduce the possible extensive consolidation settlements and improve bearing capacity of structures in soft ground. The aim of this research was to evaluate the efficiency of strip piled raft embedded in soft clay. The efficiency of bearing capacity of strip piled raft foundation is evaluated numerically in two cases: in first case, the cap is placed directly on the ground surface and in the second, the cap is placed above the ground. Regarding to the fact that the geotechnical parameters of the soft clay are considered at low level, low bearing capacity is expected. The length, diameter and axe-to-axe distance of piles are the parameters which varied in this research to find out how they affect the bearing capacity. Results indicate that increasing the length and the diameter of the piles increase the bearing capacity. The complementary results will be presented in the final version of the paper.Keywords: soft clay, strip piled raft, bearing capacity, settlement
Procedia PDF Downloads 31210228 Flow Control around Bluff Bodies by Attached Permeable Plates
Authors: Gokturk Memduh Ozkan, Huseyin Akilli
Abstract:
The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.Keywords: bluff body, flow control, permeable plate, PIV, VIV, vortex shedding
Procedia PDF Downloads 36410227 A Novel Alginate/Tea Waste Complex for Restoration and Conservation of Historical Textiles Using Immobilized Enzymes
Authors: Mohamed E. Hassan
Abstract:
Through numerous chemical linkages, historical textiles in burial contexts or in museums are exposed to many different forms of stains and filth. The cleaning procedure must be carried out carefully without causing any irreparable harm, and sediments must be removed without damaging the surface's original material. Science and technology continue to develop novel methods for cleaning historical textiles and artistic surfaces biologically (using enzymes). Lipase and α-amylase were immobilized on nanoparticles of alginate/tea waste nanoparticle complex and used in historical textile cleaning. The preparation of nanoparticles, activation, and enzyme immobilization were characterized. Optimization of loading times and units of the two enzymes was done. It was found that the optimum time and units of amylase were 3 hours and 30 U, respectively. While the optimum time and units of lipase were 2.5 hours and 20 U, respectively, FT-IR and TGA instruments were used in proving the preparation of nanoparticles and the immobilization process. SEM was used to examine the fibres before and after treatment. In conclusion, a new carrier was prepared from alginate/Tea waste and optimized to be used in the restoration and conservation of historical textiles using immobilized lipase and α-amylase.Keywords: alginate/tea waste, nanoparticles, immobilized enzymes, historical textiles
Procedia PDF Downloads 9510226 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure
Authors: Tokuei Sako
Abstract:
Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity
Procedia PDF Downloads 51310225 Failure Analysis of a Hydrocarbon Carrying/Piping System
Authors: Esteban Morales Murillo, Ephraim Mokgothu
Abstract:
This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system
Procedia PDF Downloads 39010224 Sensitivity Analysis of Interference of Localised Corrosion on Bending Capacity of a Corroded RC Beam
Authors: Mohammad Mahdi Kioumarsi
Abstract:
In this paper, using the response surface method (RSM), tornado diagram method and non-linear finite element analysis, the effect of four parameters on residual bending capacity of a corroded RC beam was investigated. The parameters considered are amount of localised cross section reduction, ratio of pit distance on adjacent bars to rebar distance, concrete compressive strength, and rebar tensile strength. The focus is on the influence on the bending ultimate limit state. Based on the obtained results, the effects of the ratio of pit distance to rebar distance (Lp⁄Lr) and the ratio of the localised cross section reduction to the original area of the rebar (Apit⁄A0) were found significant. The interference of localised corrosion on adjacent reinforcement bars reduces the bending capacity of under-reinforced concrete beam. Using the sensitivity analysis could lead to recognize uncertainty parameters, which have the most influences on the performance of the structure.Keywords: localised corrosion, concrete beam, sensitivity analyses, ultimate capacity
Procedia PDF Downloads 25310223 Non-Linear Behavior of Granular Materials in Pavement Design
Authors: Mounir Tichamakdj, Khaled Sandjak, Boualem Tiliouine
Abstract:
The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated.Keywords: granular materials, linear equivalent model, non-linear behavior, pavement design, shear volumetric strain model
Procedia PDF Downloads 18110222 Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite
Authors: Seyfullah Madakbas, Hatice Birtane, Memet Vezir Kahraman
Abstract:
In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc.Keywords: polyimide, nanocomposite, polyhedral oligomeric silsesquioxanes
Procedia PDF Downloads 18310221 Computational Design, Simulation, and Wind Tunnel Testing of a Stabilator for a Fixed Wing Aircraft
Authors: Kartik Gupta, Umar Khan, Mayur Parab, Dhiraj Chaudhari, Afzal Ansari
Abstract:
The report focuses on the study related to the Design and Simulation of a stabilator (an all-movable horizontal stabilizer) for a fixed-wing aircraft. The project involves the development of a computerized direct optimization procedure for designing an aircraft all-movable stabilator. This procedure evaluates various design variables to synthesize an optimal stabilator that meets specific requirements, including performance, control, stability, strength, and flutter velocity constraints. The work signifies the CFD (Computational Fluid Dynamics) analysis of the airfoils used in the stabilator along with the CFD analysis of the Stabilizer and Stabilator of an aircraft named Thorp- T18 in software like XFLR5 and ANSYS-Fluent. A comparative analysis between a Stabilizer and Stabilator of equal surface area and under the same environmental conditions was done, and the percentage of drag reduced by the Stabilator for the same amount of lift generated as the Stabilizer was also calculated lastly, Wind tunnel testing was performed on a scale down model of the Stabilizer and Stabilator and the results of the Wind tunnel testing were compared with the results of CFD.Keywords: wind tunnel testing, CFD, stabilizer, stabilator
Procedia PDF Downloads 6510220 Exploring Barriers to Social Innovation: Swedish Experiences from Nine Research Circles
Authors: Claes Gunnarsson, Karin Fröding, Nina Hasche
Abstract:
Innovation is a necessity for the evolution of societies and it is also a driving force in human life that leverages value creation among cross-sector participants in various network arrangements. Social innovations can be characterized as the creation and implementation of a new solution to a social problem, which is more effective and sustainable than existing solutions in terms of improvement of society’s conditions and in particular social inclusion processes. However, barriers exist which may restrict the potential of social innovations to live up to its promise as a societal welfare promoting driving force. The literature points at difficulties in tackling social problems primarily related to problem complexity, access to networks, and lack of financial muscles. Further research is warranted at detailed at detail clarification of these barriers, also connected to recognition of the interplay between institutional logics on the development of cross-sector collaborations in networks and the organizing processes to achieve innovation barrier break-through. There is also a need to further elaborate how obstacles that spur a difference between the actual and desired state of innovative value creating service systems can be overcome. The purpose of this paper is to illustrate barriers to social innovations, based on qualitative content analysis of 36 dialogue-based seminars (i.e. research circles) with nine Swedish focus groups including more than 90 individuals representing civil society organizations, private business, municipal offices, and politicians; and analyze patterns that reveal constituents of barriers to social innovations. The paper draws on central aspects of innovation barriers as discussed in the literature and analyze barriers basically related to internal/external and tangible/intangible characteristics. The findings of this study are that existing institutional structures highly influence the transformative potential of social innovations, as well as networking conditions in terms of building a competence-propelled strategy, which serves as an offspring for overcoming barriers of competence extension. Both theoretical and practical knowledge will contribute to how policy-makers and SI-practitioners can facilitate and support social innovation processes to be contextually adapted and implemented across areas and sectors.Keywords: barriers, research circles, social innovation, service systems
Procedia PDF Downloads 26110219 Prospects of Acellular Organ Scaffolds for Drug Discovery
Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen
Abstract:
Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering
Procedia PDF Downloads 30410218 Integrating Wearable-Textiles Sensors and IoT for Continuous Electromyography Monitoring
Authors: Bulcha Belay Etana, Benny Malengier, Debelo Oljira, Janarthanan Krishnamoorthy, Lieva Vanlangenhove
Abstract:
Electromyography (EMG) is a technique used to measure the electrical activity of muscles. EMG can be used to assess muscle function in a variety of settings, including clinical, research, and sports medicine. The aim of this study was to develop a wearable textile sensor for EMG monitoring. The sensor was designed to be soft, stretchable, and washable, making it suitable for long-term use. The sensor was fabricated using a conductive thread material that was embroidered onto a fabric substrate. The sensor was then connected to a microcontroller unit (MCU) and a Wi-Fi-enabled module. The MCU was programmed to acquire the EMG signal and transmit it wirelessly to the Wi-Fi-enabled module. The Wi-Fi-enabled module then sent the signal to a server, where it could be accessed by a computer or smartphone. The sensor was able to successfully acquire and transmit EMG signals from a variety of muscles. The signal quality was comparable to that of commercial EMG sensors. The development of this sensor has the potential to improve the way EMG is used in a variety of settings. The sensor is soft, stretchable, and washable, making it suitable for long-term use. This makes it ideal for use in clinical settings, where patients may need to wear the sensor for extended periods of time. The sensor is also small and lightweight, making it ideal for use in sports medicine and research settings. The data for this study was collected from a group of healthy volunteers. The volunteers were asked to perform a series of muscle contractions while the EMG signal was recorded. The data was then analyzed to assess the performance of the sensor. The EMG signals were analyzed using a variety of methods, including time-domain analysis and frequency-domain analysis. The time-domain analysis was used to extract features such as the root mean square (RMS) and average rectified value (ARV). The frequency-domain analysis was used to extract features such as the power spectrum. The question addressed by this study was whether a wearable textile sensor could be developed that is soft, stretchable, and washable and that can successfully acquire and transmit EMG signals. The results of this study demonstrate that a wearable textile sensor can be developed that meets the requirements of being soft, stretchable, washable, and capable of acquiring and transmitting EMG signals. This sensor has the potential to improve the way EMG is used in a variety of settings.Keywords: EMG, electrode position, smart wearable, textile sensor, IoT, IoT-integrated textile sensor
Procedia PDF Downloads 7910217 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems
Authors: Shathya Duobiene, Gediminas Račiukaitis
Abstract:
Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem
Procedia PDF Downloads 8210216 Feasibility of Implementing Digital Healthcare Technologies to Prevent Disease: A Mixed-Methods Evaluation of a Digital Intervention Piloted in the National Health Service
Authors: Rosie Cooper, Tracey Chantler, Ellen Pringle, Sadie Bell, Emily Edmundson, Heidi Nielsen, Sheila Roberts, Michael Edelstein, Sandra Mounier Jack
Abstract:
Introduction: In line with the National Health Service’s (NHS) long-term plan, the NHS is looking to implement more digital health interventions. This study explores a case study in this area: a digital intervention used by NHS Trusts in London to consent adolescents for Human Papilloma Virus (HPV) immunisation. Methods: The electronic consent intervention was implemented in 14 secondary schools in inner city, London. These schools were statistically matched with 14 schools from the same area that were consenting using paper forms. Schools were matched on deprivation and English as an additional language. Consent form return rates and HPV vaccine uptake were compared quantitatively between intervention and matched schools. Data from observations of immunisation sessions and school feedback forms were analysed thematically. Individual and group interviews were undertaken with implementers parents and adolescents and a focus group with adolescents were undertaken and analysed thematically. Results: Twenty-eight schools (14 e-consent schools and 14 paper consent schools) comprising 3219 girls (1733 in paper consent schools and 1486 in e-consent schools) were included in the study. The proportion of pupils eligible for free school meals, with English as an additional language and students' ethnicity profile, was similar between the e-consent and paper consent schools. Return of consent forms was not increased by the implementation of the e-consent intervention. There was no difference in the proportion of pupils that were vaccinated at the scheduled vaccination session between the paper (n=14) and e-consent (n=14) schools (80.6% vs. 81.3%, p=0.93). The transition to using the system was not straightforward, whilst schools and staff understood the potential benefits, they found it difficult to adapt to new ways of working which removed some level or control from schools. Part of the reason for lower consent form return in e-consent schools was that some parents found the intervention difficult to use due to limited access to the internet, finding it hard to open the weblink, language barriers, and in some cases, the system closed a few days prior to sessions. Adolescents also highlighted the potential for e-consent interventions to by-pass their information needs. Discussion: We would advise caution against dismissing the e-consent intervention because it did not achieve its goal of increasing the return of consent forms. Given the problems embedding a news service, it was encouraging that HPV vaccine uptake remained stable. Introducing change requires stakeholders to understand, buy in, and work together with others. Schools and staff understood the potential benefits of using e-consent but found the new ways of working removed some level of control from schools, which they found hard to adapt to, possibly suggesting implementing digital technology will require an embedding process. Conclusion: The future direction of the NHS will require implementation of digital technology. Obtaining electronic consent from parents could help streamline school-based adolescent immunisation programmes. Findings from this study suggest that when implementing new digital technologies, it is important to allow for a period of embedding to enable them to become incorporated in everyday practice.Keywords: consent, digital, immunisation, prevention
Procedia PDF Downloads 149