Search results for: temperature and relative humidity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9034

Search results for: temperature and relative humidity

2284 The Foundation Binary-Signals Mechanics and Actual-Information Model of Universe

Authors: Elsadig Naseraddeen Ahmed Mohamed

Abstract:

In contrast to the uncertainty and complementary principle, it will be shown in the present paper that the probability of the simultaneous occupation event of any definite values of coordinates by any definite values of momentum and energy at any definite instance of time can be described by a binary definite function equivalent to the difference between their numbers of occupation and evacuation epochs up to that time and also equivalent to the number of exchanges between those occupation and evacuation epochs up to that times modulus two, these binary definite quantities can be defined at all point in the time’s real-line so it form a binary signal represent a complete mechanical description of physical reality, the time of these exchanges represent the boundary of occupation and evacuation epochs from which we can calculate these binary signals using the fact that the time of universe events actually extends in the positive and negative of time’s real-line in one direction of extension when these number of exchanges increase, so there exists noninvertible transformation matrix can be defined as the matrix multiplication of invertible rotation matrix and noninvertible scaling matrix change the direction and magnitude of exchange event vector respectively, these noninvertible transformation will be called actual transformation in contrast to information transformations by which we can navigate the universe’s events transformed by actual transformations backward and forward in time’s real-line, so these information transformations will be derived as an elements of a group can be associated to their corresponded actual transformations. The actual and information model of the universe will be derived by assuming the existence of time instance zero before and at which there is no coordinate occupied by any definite values of momentum and energy, and then after that time, the universe begin its expanding in spacetime, this assumption makes the need for the existence of Laplace’s demon who at one moment can measure the positions and momentums of all constituent particle of the universe and then use the law of classical mechanics to predict all future and past of universe’s events, superfluous, we only need for the establishment of our analog to digital converters to sense the binary signals that determine the boundaries of occupation and evacuation epochs of the definite values of coordinates relative to its origin by the definite values of momentum and energy as present events of the universe from them we can predict approximately in high precision it's past and future events.

Keywords: binary-signal mechanics, actual-information model of the universe, actual-transformation, information-transformation, uncertainty principle, Laplace's demon

Procedia PDF Downloads 175
2283 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 383
2282 Comparative Study of IC and Perturb and Observe Method of MPPT Algorithm for Grid Connected PV Module

Authors: Arvind Kumar, Manoj Kumar, Dattatraya H. Nagaraj, Amanpreet Singh, Jayanthi Prattapati

Abstract:

The purpose of this paper is to study and compare two maximum power point tracking (MPPT) algorithms in a photovoltaic simulation system and also show a simulation study of maximum power point tracking (MPPT) for photovoltaic systems using perturb and observe algorithm and Incremental conductance algorithm. Maximum power point tracking (MPPT) plays an important role in photovoltaic systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency and minimize the overall system cost. Since the maximum power point (MPP) varies, based on the irradiation and cell temperature, appropriate algorithms must be utilized to track the (MPP) and maintain the operation of the system in it. MATLAB/Simulink is used to establish a model of photovoltaic system with (MPPT) function. This system is developed by combining the models established of solar PV module and DC-DC Boost converter. The system is simulated under different climate conditions. Simulation results show that the photovoltaic simulation system can track the maximum power point accurately.

Keywords: incremental conductance algorithm, perturb and observe algorithm, photovoltaic system, simulation results

Procedia PDF Downloads 556
2281 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics

Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari

Abstract:

Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).

Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption

Procedia PDF Downloads 104
2280 Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method

Authors: Somayeh Khanjani, Samaneh Nabavi, Shirin Jalili, Afshin Khara

Abstract:

Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson.

Keywords: fingerprint, small particle reagent (SPR), arson, novel fluorescent

Procedia PDF Downloads 472
2279 The Structural and Electrical Properties of Cadmium Implanted Silicon Diodes at Room Temperature

Authors: J. O. Bodunrin, S. J. Moloi

Abstract:

This study reports on the x-ray crystallography (XRD) structure of cadmium-implanted p-type silicon, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of unimplanted and cadmium-implanted silicon-based diodes. Cadmium was implanted at the energy of 160 KeV to the fluence of 10¹⁵ ion/cm². The results obtained indicate that the diodes were well fabricated, and the introduction of cadmium results in a change in behavior of the diodes from normal exponential to ohmic I-V behavior. The C-V measurements, on the other hand, show that the measured capacitance increased after cadmium doping due to the injected charge carriers. The doping density of the p-Si material and the device's Schottky barrier height was extracted, and the doping density of the undoped p-Si material increased after cadmium doping while the Schottky barrier height reduced. In general, the results obtained here are similar to those obtained on the diodes fabricated on radiation-hard material, indicating that cadmium is a promising metal dopant to improve the radiation hardness of silicon. Thus, this study would assist in adding possible options to improve the radiation hardness of silicon to be used in high energy physics experiments.

Keywords: cadmium, capacitance-voltage, current-voltage, high energy physics experiment, x-ray crystallography, XRD

Procedia PDF Downloads 132
2278 Predictive Modelling Approaches in Food Processing and Safety

Authors: Amandeep Sharma, Digvaijay Verma, Ruplal Choudhary

Abstract:

Food processing is an activity across the globe that help in better handling of agricultural produce, including dairy, meat, and fish. The operations carried out in the food industry includes raw material quality authenticity; sorting and grading; processing into various products using thermal treatments – heating, freezing, and chilling; packaging; and storage at the appropriate temperature to maximize the shelf life of the products. All this is done to safeguard the food products and to ensure the distribution up to the consumer. The approaches to develop predictive models based on mathematical or statistical tools or empirical models’ development has been reported for various milk processing activities, including plant maintenance and wastage. Recently AI is the key factor for the fourth industrial revolution. AI plays a vital role in the food industry, not only in quality and food security but also in different areas such as manufacturing, packaging, and cleaning. A new conceptual model was developed, which shows that smaller sample size as only spectra would be required to predict the other values hence leads to saving on raw materials and chemicals otherwise used for experimentation during the research and new product development activity. It would be a futuristic approach if these tools can be further clubbed with the mobile phones through some software development for their real time application in the field for quality check and traceability of the product.

Keywords: predictive modlleing, ann, ai, food

Procedia PDF Downloads 82
2277 Health and Climate Changes: "Ippocrate" a New Alert System to Monitor and Identify High Risk

Authors: A. Calabrese, V. F. Uricchio, D. di Noia, S. Favale, C. Caiati, G. P. Maggi, G. Donvito, D. Diacono, S. Tangaro, A. Italiano, E. Riezzo, M. Zippitelli, M. Toriello, E. Celiberti, D. Festa, A. Colaianni

Abstract:

Climate change has a severe impact on human health. There is a vast literature demonstrating temperature increase is causally related to cardiovascular problem and represents a high risk for human health, but there are not study that improve a solution. In this work, it is studied how the clime influenced the human parameter through the analysis of climatic conditions in an area of the Apulia Region: Capurso Municipality. At the same time, medical personnel involved identified a set of variables useful to define an index describing health condition. These scientific studies are the base of an innovative alert system, IPPOCRATE, whose aim is to asses climate risk and share information to population at risk to support prevention and mitigation actions. IPPOCRATE is an e-health system, it is designed to provide technological support to analysis of health risk related to climate and provide tools for prevention and management of critical events. It is the first integrated system of prevention of human risk caused by climate change. IPPOCRATE calculates risk weighting meteorological data with the vulnerability of monitored subjects and uses mobile and cloud technologies to acquire and share information on different data channels. It is composed of four components: Multichannel Hub. Multichannel Hub is the ICT infrastructure used to feed IPPOCRATE cloud with a different type of data coming from remote monitoring devices, or imported from meteorological databases. Such data are ingested, transformed and elaborated in order to be dispatched towards mobile app and VoIP phone systems. IPPOCRATE Multichannel Hub uses open communication protocols to create a set of APIs useful to interface IPPOCRATE with 3rd party applications. Internally, it uses non-relational paradigm to create flexible and highly scalable database. WeHeart and Smart Application The wearable device WeHeart is equipped with sensors designed to measure following biometric variables: heart rate, systolic blood pressure and diastolic blood pressure, blood oxygen saturation, body temperature and blood glucose for diabetic subjects. WeHeart is designed to be easy of use and non-invasive. For data acquisition, users need only to wear it and connect it to Smart Application by Bluetooth protocol. Easy Box was designed to take advantage from new technologies related to e-health care. EasyBox allows user to fully exploit all IPPOCRATE features. Its name, Easy Box, reveals its purpose of container for various devices that may be included depending on user needs. Territorial Registry is the IPPOCRATE web module reserved to medical personnel for monitoring, research and analysis activities. Territorial Registry allows to access to all information gathered by IPPOCRATE using GIS system in order to execute spatial analysis combining geographical data (climatological information and monitored data) with information regarding the clinical history of users and their personal details. Territorial Registry was designed for different type of users: control rooms managed by wide area health facilities, single health care center or single doctor. Territorial registry manages such hierarchy diversifying the access to system functionalities. IPPOCRATE is the first e-Health system focused on climate risk prevention.

Keywords: climate change, health risk, new technological system

Procedia PDF Downloads 867
2276 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 352
2275 Impact Analysis of Cultivation of Jatropha Tree on Fuel Prices and Environment

Authors: Saba Arif, Anam Nadeem, Roman Kalvin, Muzaffar Ali, Burhan Ali, Juntakan Taweekun

Abstract:

Globally transportation sector accounts for around 25% of energy demand and nearly 62% of oil consumed. Therefore, new energy sources are required to introduce for this huge demand replenishment of depleting conventional energy sources. Currently, biofuels such as Jatropha trees as an energy carrier for transportation sector are being utilized effectively round the globe. However, climate conditions at low altitudes with an average annual temperature above 20 degrees Celsius and rainfall of 300-1000mm are considered the most suitable environment for the efficient growth of Jatropha trees. The current study is providing a theoretical survey-based analysis to investigate the effect of rate of cultivation of jatropha trees on the reduction of fuel prices and its environmental benefits. The resulted study shows that jatropha tree’s 100 kg seeds give 80kg oil and the conversion process cost is very small as 890 PKR. Moreover, the extraction of oil from Jatropha tree is tax-free compared to other fuels. The analysis proved very essential for potential assessment of Jatropha regarding future energy fuel for transportation sector at global level. Additionally, it can be very beneficial for increment in the total amount of transportation fuel in Pakistan.

Keywords: jatropha tree, environmental impact, energy contents, theoretical survey

Procedia PDF Downloads 219
2274 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar

Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola

Abstract:

This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.

Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index

Procedia PDF Downloads 154
2273 Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent

Authors: Pyar Singh Jassal, Priti Rani, Rajni Johar

Abstract:

The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0Keywords: magnetic chitosan beads, ethylene glycol diglycidyl ether, equilibrium parameters, desorption

Procedia PDF Downloads 88
2272 Coastal Water Characteristics along the Saudi Arabian Coastline

Authors: Yasser O. Abualnaja1, Alexandra Pavlidou2, Taha Boksmati3, Ahmad Alharbi3, Hammad Alsulmi3, Saleh Omar Maghrabi3, Hassan Mowalad3, Rayan Mutwalli3, James H. Churchill4, Afroditi Androni2, Dionysios Ballas2, Ioannis Hatzianestis2, Harilaos Kontoyiannis2, Angeliki Konstantinopoulou2, Georgios Krokkos1, 5, Georgios Pappas2, Vassilis P. Papadopoulos2, Konstantinos Parinos2, Elvira Plakidi2, Eleni Rousselaki2, Dimitris Velaoras2, Panagiota Zachioti2, Theodore Zoulias2, Ibrahim Hoteit5.

Abstract:

The coastal areas along the Kingdom of Saudi Arabia on both the Red Sea and Arabian Gulf have been witnessing in the past decades an unprecedented economic growth and a rapid increase in anthropogenic activities. Therefore, the Saudi Arabian government has decided to frame a strategy for sustainable development of the coastal and marine environments, which comes in the context of the Vision 2030, aimed at providing the first comprehensive ‘Status Quo Assessment’ of the Kingdom’s coastal and marine environments. This strategy will serve as a baseline assessment for future monitoring activities; this baseline is relied on scientific evidence of the drivers, pressures, and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressures of the hotspots analysis, which was developed following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. Ten hotspot sites were identified, eight in the Red Sea and two in the Arabian Gulf. Thus, multidisciplinary research cruises were conducted throughout the Red Sea and the Arabian Gulf coastal and marine environments in June/July 2021 and September 2021, respectively, in order to understand the relative impact of hydrography and the various pressures on the quality of seawater and sediments. The main objective was to record the physical and biogeochemical parameters along the coastal waters of the Kingdom, tracing the dispersion of contaminants related to specific pressures. The assessment revealed the effect of hydrography on the trophic status of the southern marine coastal areas of the Red Sea. Jeddah Lagoon system seems to face significant eutrophication and pollution challenges, whereas sediments are enriched in some heavy metals in many areas of the Red Sea and the Arabian Gulf. This multidisciplinary research in the Red Sea and the Arabian Gulf coastal waters will pave the way for future detailed environmental monitoring strategies for the Saudi Arabian marine environment.

Keywords: arabian gulf, contaminants, hotspot, red sea

Procedia PDF Downloads 112
2271 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 319
2270 The Perspective of Smart Thermoregulation in Personal Protective Equipment

Authors: Alireza Saidi

Abstract:

Aside from injuries due to direct contact with hot or cold substances or objects, exposure to extreme temperatures in the workplace involves physical hazards to workers. On the other hand, a poorly acclimatized worker may have reduced performance and alertness and may, therefore, be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of the standards put in place with certain workplaces and the lack of thermoregulation in many protective equipments, thermal strains remain among the physical risks most present in many work sectors. However, many of these problems can be overcome thanks to the potential of intelligent textile technologies allowing intelligent thermoregulation in protective equipment. Nowadays, technologies such as heating elements, cooling elements are applied in products intended for sport and leisure, and research work has been carried out in the integration of temperature sensors and thermal stress detectors in personal protective equipment. However, the usage of all of these technologies in personal protective equipment remains very marginal. This article presents a portrait of the current state of intelligent thermoregulation systems by carrying out a synthesis of technical developments, which is accompanied by a gap analysis of current developments. Thus, the research work necessary for the adaptation and integration of intelligent thermoregulation systems with personal protective equipment is discussed in order to offer a perspective of future developments.

Keywords: personal protective equipment, smart textiles, thermoregulation, thermal strain

Procedia PDF Downloads 110
2269 The Effect of Yb3+ Concentration on Spectroscopic properties of Strontium Cerate Doped with Tm3+ and Yb3+

Authors: Yeon Woo Seo, Haeyoung Choi, Jung Hyun Jeong

Abstract:

Recently, the UC phosphors have attracted much attention owing to their wide applicability in areas such as biological fluorescence labeling, three-dimensional color displays, temperature sensor, solar cells, white light emitting diodes (WLEDs), fiber optic communication, anti-counterfeiting and other areas. The UC efficiency is mainly dependent on the host lattice and the interaction between the host lattice and doped ions. Up to date, various host matrices, such as oxides, fluorides, vanadates and phosphates, have been investigated as efficient UC luminescent hosts. Recently, oxide materials with low phonon energy have been investigated as the host matrices of UC materials due to their high chemical durability and physical stability. A series of Sr2CeO4: Tm3+/Yb3+ phosphors with different concentrations of Yb3+ ions have been successfully prepared using the high-energy ball milling method. In this study, we reported the UC luminescent properties of Tm3+/Yb3+ ions co-doped Sr2CeO4 phosphors under an excitation wavelength of 975 nm. Furthermore, the structural and morphological characteristics, as well as the UC luminescence mechanism were investigated in detail. The X-ray diffraction patterns confirmed their orthorhombic structure. Under 975 nm excitation, the emission peaks were observed at 478 nm (blue) and 652 nm (red), corresponding to the 1G4 → 3H6 and 1G4 → 3F4 transitions of Tm3+, respectively. The optimized doping concentration of Yb3+ ion was 10 mol%.

Keywords: Strontium Cerate, up-conversion, luminescence, Tm3+, Yb3+

Procedia PDF Downloads 262
2268 Biobased Polyurethane Derived from Transesterified Castor Oil: Synthesis and Charecterization

Authors: Sonalee Das, Smita Mohanty, S. K. Nayak

Abstract:

Recent years has witnessed the increasing demand for natural resources and products in polyurethane synthesis because of global warming, sustainable development and oil crisis. For this purpose, different plant oils such as soybean oil, castor oil and linseed oil are extensively used. Moreover, the isocyanate used for the synthesis of polyurethane is derived from petroleum resources. In this present work attempts have been made for the successful synthesis of biobased isocyanate from castor oil with partially biobased isocyanate in presence of catalyst dibutyltin dilaurate (DBTDL). The goal of the present study was to investigate the thermal, mechanical, morphological and chemical properties of the synthesized polyurethane in terms of castor oil modification. The transesterified polyol shows broad and higher hydroxyl value as compared to castor oil which was confirmed by FTIR studies. The FTIR studies also revealed the successful synthesis of bio based polyurethane by showing characteristic peaks at 3300cm-1, 1715cm-1 and 1532cm-1 respectively. The TGA results showed three step degradation mechanism for the synthesized polyurethane from modified and unmodified castor oil. However, the modified polyurethane exhibited higher degradation temperature as compared to unmodified one. The mechanical properties also demonstrated higher tensile strength for modified polyurethane as compared to unmodified one.

Keywords: castor oil, partially biobased Isocyanate, polyurethane synthesis, FTIR

Procedia PDF Downloads 352
2267 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger

Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani

Abstract:

Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.

Keywords: heat transfer coefficient, aluminium, entry length, design

Procedia PDF Downloads 333
2266 Electrical Transport in Bi₁Sb₁Te₁.₅Se₁.₅ /α-RuCl₃ Heterostructure Nanodevices

Authors: Shoubhik Mandal, Debarghya Mallick, Abhishek Banerjee, R. Ganesan, P. S. Anil Kumar

Abstract:

We report magnetotransport measurements in Bi₁Sb₁Te₁.₅Se₁.₅/RuCl₃ heterostructure nanodevices. Bi₁Sb₁Te₁.₅Se₁.₅ (BSTS) is a strong three-dimensional topological insulator (3D-TI) that hosts conducting topological surface states (TSS) enclosing an insulating bulk. α-RuCl₃ (namely, RuCl₃) is an anti-ferromagnet that is predicted to behave as a Kitaev-like quantum spin liquid carrying Majorana excitations. Temperature (T)-dependent resistivity measurements show the interplay between parallel bulk and surface transport channels. At T < 150 K, surface state transport dominates over bulk transport. Multi-channel weak anti-localization (WAL) is observed, as a sharp cusp in the magnetoconductivity, indicating strong spin-orbit coupling. The presence of top and bottom topological surface states (TSS), including a pair of electrically coupled Rashba surface states (RSS), are indicated. Non-linear Hall effect, explained by a two-band model, further supports this interpretation. Finally, a low-T logarithmic resistance upturn is analyzed using the Lu-Shen model, supporting the presence of gapless surface states with a π Berry phase.

Keywords: topological materials, electrical transport, Lu-Shen model, quantum spin liquid

Procedia PDF Downloads 121
2265 Physicochemical and Bacteriological Assessment of Water Resources in Ughelli and Its Environs, Delta State Nigeria

Authors: M. O. Eyankware, D. O. Ufomata

Abstract:

Groundwater samples were collected from Otovwodo-Ughelli and Environ with the aim of assessing groundwater quality of the area. Twenty (20) water samples from Boreholes (BH) (six) and Hand Dug Wells (HDW) (fourteen) were randomly sampled and were analysed for different physiochemical and bacteriological parameters. The following 16 parameters have been considered viz: pH, electrical conductivity, temperature, total hardness, total dissolved solids, dissolved oxygen, biological oxygen demand, phosphate, sulphate, chloride, nitrate, calcium, sodium, chloride, magnesium, and total suspended solids. On comparing the results against drinking quality standards laid by World Health Organization and Nigeria industrial standard, it was found that the water quality parameters were not above the (WHO, 2011 and NIS, 2007) permissible limit. Microbial analysis reveals the presence of coliform and E.coli in two hand-dug well (HDW7 and 13) and one borehole well (BH20). These contaminations are perhaps traceable to have originated from human activities (septic tanks, latrines, dumpsites) and have affected the quality of groundwater in Otovwodo-Ughelli. From the piper trilinear diagram, the dominant ionic species is alkali bicarbonate water type, with bicarbonate as the predominant ion (Na+ + K+)-HCO3.

Keywords: groundwater, surface water, Ughelli, Nigeria industrial standard, who standard

Procedia PDF Downloads 444
2264 Evaluation of Greenhouse Covering Materials

Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer

Abstract:

Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.

Keywords: greenhouse, covering materials, aridlands, environmental control

Procedia PDF Downloads 477
2263 The Phenomenology in the Music of Debussy through Inspiration of Western and Oriental Culture

Authors: Yu-Shun Elisa Pong

Abstract:

Music aesthetics related to phenomenology is rarely discussed and still in the ascendant while multi-dimensional discourses of philosophy were emerged to be an important trend in the 20th century. In the present study, a basic theory of phenomenology from Edmund Husserl (1859-1938) is revealed and discussed followed by the introduction of intentionality concepts, eidetic reduction, horizon, world, and inter-subjectivity issues. Further, phenomenology of music and general art was brought to attention by the introduction of Roman Ingarden’s The Work of Music and the Problems of its Identity (1933) and Mikel Dufrenne’s The Phenomenology of Aesthetic Experience (1953). Finally, Debussy’s music will be analyzed and discussed from the perspective of phenomenology. Phenomenology is not so much a methodology or analytics rather than a common belief. That is, as much as possible to describe in detail the different human experience, relative to the object of purpose. Such idea has been practiced in various guises for centuries, only till the early 20th century Phenomenology was better refined through the works of Husserl, Heidegger, Sartre, Merleau-Ponty and others. Debussy was born in an age when the Western society began to accept the multi-cultural baptism. With his unusual sensitivity to the oriental culture, Debussy has presented considerable inspiration, absorption, and echo in his music works. In fact, his relationship with nature is far from echoing the idea of Chinese ancient literati and nature. Although he is not the first composer to associate music with human and nature, the unique quality and impact of his works enable him to become a significant figure in music aesthetics. Debussy’s music tried to develop a quality analogous of nature, and more importantly, based on vivid life experience and artistic transformation to achieve the realm of pure art. Such idea that life experience comes before artwork, either clear or vague, simple or complex, was later presented abstractly in his late works is still an interesting subject worth further discussion. Debussy’s music has existed for more than or close to a century. It has received musicology researcher’s attention as much as other important works in the history of Western music. Among the pluralistic discussion about Debussy’s art and ideas, phenomenological aesthetics has enlightened new ideas and view angles to relook his great works and even gave some previous arguments legitimacy. Overall, this article provides a new insight of Debussy’s music from phenomenological exploration and it is believed phenomenology would be an important pathway in the research of the music aesthetics.

Keywords: Debussy's music, music esthetics, oriental culture, phenomenology

Procedia PDF Downloads 275
2262 Hardness and Microstructure of Rapidly Quenched Aluminum Alloys

Authors: Mehdi Ghatus

Abstract:

Two simple apparatus based on the hammer and anvil principle have been constructed and used to study the microstructure and micro-hardness characteristics of some AL-base alloys. Foils with thicknesses arranging from 20 µm up to 600 µm have been obtained. The cooling rate was estimated to be in the range 10^4 - 10^5 K/sec. Microstructure study of rapidly quenched Al-30% Si foils indicated that with decreasing the foil thickness the size of primary Si crystallites decreases in the whole investigated range (0.64-0.15 mm). However, the volume fraction of the primary Si crystals in the structure remained constant down to thickness the primary Si volume fraction started to decrease. Rapid quenching of Al- 14-16% Cu showed single phase cell structure. In foils up to 0.55 mm with decreasing the foil thickness the cell size decreases and micro-hardness increases particularly in foils below 0.3 mm in thickness. Isochronal annealing of theses foils show that the highly supersaturated Al-14-16% Cu solid solution decomposes readily at relatively low temperature and short time intervals. The maximum hardness is obtained after annealing at 100 °C for 30 minutes. However with decreasing the Cu content of the foils the precipitation process is largely delayed. Eight hours of annealing at 100 °C was not enough to achieve the maximum hardness in Al-4% Cu thin foils. The achieved hardness value was more than twice of the maximum hardness obtained in articles of similar composition but conventionally aged.

Keywords: aluminum, hardness, alloys, quenched aluminum

Procedia PDF Downloads 440
2261 Protein and MDA (Malondialdehyde) Profil of Bull Sperm and Seminal Plasma After Freezing

Authors: Sri Rahayu, M. Dwi Susan, Aris Soewondo, W. M. Agung Pramana

Abstract:

Semen is an organic fluid (seminal plasma) that contain spermatozoa. Proteins are one of the major seminal plasma components that modulate sperm functionality, influence sperm capacitation and maintaining the stability of the membrane. Semen freezing is a procedure to preserve sperm cells. The process causes decrease in sperm viability due to temperature shock and oxidation stress. Oxidation stress is a disturbance on phosphorylation that increases ROS concentration, and it produces lipid peroxide in spermatozoa membrane resulted in high MDA (malondialdehyde) concentration. The objective of this study was to examine the effect of freezing on protein and MDA profile of bovine sperm cell and seminal plasma after freezing. Protein and MDA of sperm cell and seminal plasma were isolated from 10 sample. Protein profiles was analyzed by SDS PAGE with separating gel 12,5 %. The concentration of MDA was measured by spectrophotometer. The results of the research indicated that freezing of semen cause lost of the seminal plasma proteins with molecular with 20, 10, and 9 kDa. In addition, the result research showed that protein of the sperm (26, 10, 9, 7, and 6 kDa) had been lost. There were difference MDA concentration of seminal plasma and sperm cell were increase after freezing. MDA concentration of seminal plasma before and after freezing were 2.2 and 2.4 nmol, respectively. MDA concentration of sperm cell before and after freezing were 1,5 and 1.8 nmol, respectively. In conclusion, there were differences protein profiles of spermatozoa before and after semen freezing and freezing cause increasing of the MDA concentration.

Keywords: MDA, semen freezing, SDS PAGE, protein profile

Procedia PDF Downloads 275
2260 Dielectric Properties of PANI/h-BN Composites

Authors: Seyfullah Madakbas, Emrah Cakmakci

Abstract:

Polyaniline (PANI), the most studied member of the conductive polymers, has a wide range of uses from several electronic devices to various conductive high-technology applications. Boron nitride (BN) is a boron and nitrogen containing compound with superior chemical and thermal resistance and thermal conductivity. Even though several composites of PANI was prepared in literature, the preparation of h-BN/PANI composites is rare. In this work PANI was polymerized in the presence of different amounts of h-BN (1, 3 and 5% with respect to PANI) by using 0.1 M solution of NH4S2O8 in HCl as the oxidizing agent and conductive composites were prepared. Composites were structurally characterized with FTIR spectroscopy and X-Ray Diffraction (XRD). Thermal properties of conductive composites were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Dielectric measurements were performed in the frequency range of 106–108 Hz at room temperature. The corresponding bands for the benzenoid and quinoid rings at around 1593 and 1496 cm-1 in the FTIR spectra of the composites proved the formation of polyaniline. Together with the FTIR spectra, XRD analysis also revealed the existence of the interactions between PANI and h-BN. Glass transition temperatures (Tg) of the composites increased with the increasing amount of PANI (from 87 to 101). TGA revealed that the char yield of the composites increased as the amount of h-BN was increased in the composites. Finally the dielectric permittivity of 3 wt.%h-BN-containing composite was measured and found as approximately 17. This work was supported by Marmara University, Commission of Scientific Research Project.

Keywords: dielectric permittivity, h-BN, PANI, thermal analysis

Procedia PDF Downloads 278
2259 Glycerol-Free Biodiesel Synthesis from Crude Mahua (Madhuca indica) Oil under Supercritical Methyl Acetate Using CO2 as a Co-Solvent

Authors: Antaram Sarve, Mahesh Varma, Shriram Sonawane

Abstract:

Conventional route of producing biodiesel with alcohol produces glycerol as side product which leads to oversupply and devaluation in the world market. Supercritical methyl acetate (SCMA) has been proven to convert triglycerides into fatty acid methyl esters (FAMEs) and triacetin, which is a valuable biodiesel additive as side product rather than glycerol. However, due to the low reactivity of supercritical methyl acetate on triglycerides, high reaction conditions are required to obtained maximum yields. The present study describes the renewable approach for the production of biodiesel from low-cost, high acid value mahua oil under supercritical methyl acetate condition using carbon dioxide (CO2) as a co-solvent. CO2 was employed to decrease high reaction conditions required for supercritical methyl acetate transesterification. The influence of process parameters such as temperature, oil to methyl acetate molar ratio, reaction time, and the CO2 pressure was evaluated. The properties of biodiesel produced were found to be superior compared to conventional biodiesel method. Furthermore, SCMA has a high tolerance towards free fatty acids (FFAs) which is crucial to allow the utilization of inexpensive waste oils as a biodiesel feedstock.

Keywords: supercritical methyl acetate, CO2, biodiesel, fuel properties

Procedia PDF Downloads 563
2258 Colonization of Non-Planted Mangrove Species in the “Rehabilitation of Aquaculture Ponds to Mangroves” Projects in China

Authors: Yanmei Xiong, Baowen Liao, Kun Xin, Zhongmao Jiang, Hao Guo, Yujun Chen, Mei Li

Abstract:

Conversion of mangroves to aquaculture ponds represented as one major reason for mangrove loss in Asian countries in the 20th century. Recently the Chinese government has set a goal to increase 48,650 ha (more than the current mangrove area) of mangroves before the year of 2025 and “rehabilitation of aquaculture ponds to mangroves” projects are considered to be the major pathway to increase the mangrove area of China. It remains unclear whether natural colonization is feasible and what are the main influencing factors for mangrove restoration in these projects. In this study, a total of 17 rehabilitation sites in Dongzhai Bay, Hainan, China were surveyed for vegetation, soil and surface elevation five years after the rehabilitation project was initiated. Colonization of non-planted mangrove species was found at all sites and non-planted species dominated over planted species at 14 sites. Mangrove plants could only be found within the elevation range of -20 cm to 65 cm relative to the mean sea level. Soil carbon and nitrogen contents of the top 20 cm were generally low, ranging between 0.2%–1.4% and 0.03%–0.09%, respectively, and at each site, soil carbon and nitrogen were significantly lower at elevations with mangrove plants than lower elevations without mangrove plants. Seven sites located at the upper stream of river estuaries, where soil salinity was relatively lower, and nutrient was relatively higher, was dominated by non-planted Sonneratia caseolaris. Seven sites located at the down-stream of river estuaries or in the inner part of the bay, where soil salinity and nutrient were intermediate, were dominated by non-planted alien Sonneratia apetala. Another three sites located at the outer part of the bay, where soil salinity was higher and nutrient was lower, were dominated by planted species (Rhizophora stylosa, Kandelia obovata, Aegiceras corniculatum and Bruguiera sexangula) with non-planted S. apetala and Avicennia marina also found. The results suggest that natural colonization of mangroves is feasible in pond rehabilitation projects given the rehabilitation of tidal activities and appropriate elevations. Surface elevation is the major determinate for the success of mangrove rehabilitation, and soil salinity and nutrients are important in shaping vegetation structure. The colonization and dominance of alien species (Sonneratia apetala in this case) in some rehabilitation sites poses invasion risks and thus cautions should be taken when introducing alien mangrove species.

Keywords: coastal wetlands, ecological restoration, mangroves, natural colonization, shrimp pond rehabilitation, wetland restoration

Procedia PDF Downloads 134
2257 Vacancy-Driven Magnetism of GdMnO₃

Authors: Matúš Mihalik, Martin Vavra, Kornel Csach, Marián Mihalik

Abstract:

GdMnO₃ belongs to orthorhombically distorted, GdFeO₃-type family of perovskite compounds. These compounds are naturally vacant and the amount of vacancies depend on the sample preparation conditions. Our GdMnO₃ samples were prepared by float zone method and the vacancies were controlled using an air, Ar and O₂ preparation atmosphere. The highest amount of vacancies was found for sample prepared in Ar atmosphere, while the sample prepared in O₂ was observed to be almost vacancy-free. The magnetic measurements indicate that the preparation atmosphere has no impact on Néel temperature (TN ~ 42 K), however, it has strong impact on the incommensurate antiferromagnetic (IC) to canted A-type weak ferromagnetic (AWF) phase transition at T1: T1 = 23.4 K; 18 K and 6.7 K for samples prepared in Ar; air and O₂ atmosphere; respectively. The hysteresis loop measured at 2 K has a butterfly-type shape with the remnant magnetization (Mr) of 0.6 µB/f.u. for Ar and air sample, while Mr = 0.3 µB/f.u. for O₂ sample. The shape of the hysteresis loop depends on the preparation atmosphere in magnetic fields up to 1.5 T, but is independent for higher magnetic fields. The coercive field of less than 0.06 T and the maximum magnetic moment of 6 µB/f.u. at magnetic field µ0H = 7 T do not depend on the preparation atmosphere. All these findings indicate that only AWF phase of GdMnO₃ compound is directly affected by the vacancies in the system, while IC phase and the field induced ferroelectric phase are not affected.

Keywords: magnetism, perovskites, sample preparation, magnetic phase transition

Procedia PDF Downloads 110
2256 Influence of Optical Fluence Distribution on Photoacoustic Imaging

Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim

Abstract:

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.

Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging

Procedia PDF Downloads 378
2255 New Challenge: Reduction of Aflatoxin M1 Residues in Cow’s Milk by MilBond Dietary Hydrated Sodium Calcium Aluminosilicate (HSCAS) and Its Effect on Milk Composition

Authors: A. Aly Salwa, H. Diekmann, S. Hafiz Ragaa, DG Abo Elhassan

Abstract:

This study was aimed to evaluate the effect of Milbond (HSCAS) on aflatoxin M1 in artificially contaminated cows milk. Chemisorption compounds used in this experiment were MIlBond, hydrated sodium calcium aluminosilicate (HSCAS). Raw cow milk were artificially exposed to aflatoxin M1 in a concentration of 100 ppb) with addition of Nilbond at 0.5, 1, 2 and 3 % at room temperature for 30 minutes. Aflatoxin M1 was decreased more than 95% by HSCAS at 2%. Milk composition consist of protein, fat, lactose, solid non fat and total solid were affected by addition of some adsorbents were not significantly affected (p 0.05). Tthis method did not involve degrading the toxin, milk may be free from toxin degradation products and is safe for consumption. In addition, the added material may be easily separated from milk after the substance adsorbs the toxin. Thus, this method should be developed by further researches for determining effects of these compounds on functional properties of milk. The ability of hydrated sodium calcium aluminosilicate to prevent or reduce the level of aflatoxin MI residues in milk is critically needed. This finding has important implications, because milk is ultimately consumed by humans and animals, and the reduction of aflatoxin contamination in the milk could have an important impact on their health.

Keywords: aflatoxin M1, Hydrated sodium calcium aluminium silicate, detoxification, raw cow milk

Procedia PDF Downloads 436