Search results for: energy budget
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8878

Search results for: energy budget

2128 Investigating the Potential for Introduction of Warm Mix Asphalt in Kuwait Using the Volcanic Ash

Authors: H. Al-Baghli, F. Al-Asfour

Abstract:

The current applied asphalt technology for Kuwait roads pavement infrastructure is the hot mix asphalt (HMA) pavement, including both pen grade and polymer modified bitumen (PMBs), that is produced and compacted at high temperature levels ranging from 150 to 180 °C. There are no current specifications for warm and cold mix asphalts in Kuwait’s Ministry of Public Works (MPW) asphalt standard and specifications. The process of the conventional HMA is energy intensive and directly responsible for the emission of greenhouse gases and other environmental hazards into the atmosphere leading to significant environmental impacts and raising health risk to labors at site. Warm mix asphalt (WMA) technology, a sustainable alternative preferred in multiple countries, has many environmental advantages because it requires lower production temperatures than HMA by 20 to 40 °C. The reduction of temperatures achieved by WMA originates from multiple technologies including foaming and chemical or organic additives that aim to reduce bitumen and improve mix workability. This paper presents a literature review of WMA technologies and techniques followed by an experimental study aiming to compare the results of produced WMA samples, using a water containing additive (foaming process), at different compaction temperatures with the HMA control volumetric properties mix designed in accordance to the new MPW’s specifications and guidelines.

Keywords: warm-mix asphalt, water-bearing additives, foaming-based process, chemical additives, organic additives

Procedia PDF Downloads 126
2127 Performance Evaluation of Wideband Code Division Multiplication Network

Authors: Osama Abdallah Mohammed Enan, Amin Babiker A/Nabi Mustafa

Abstract:

The aim of this study is to evaluate and analyze different parameters of WCDMA (wideband code division multiplication). Moreover, this study also incorporates brief yet throughout analysis of WCDMA’s components as well as its internal architecture. This study also examines different power controls. These power controls may include open loop power control, closed or inner group loop power control and outer loop power control. Different handover techniques or methods of WCDMA are also illustrated in this study. These handovers may include hard handover, inter system handover and soft and softer handover. Different duplexing techniques are also described in the paper. This study has also presented an idea about different parameters of WCDMA that leads the system towards QoS issues. This may help the operator in designing and developing adequate network configuration. In addition to this, the study has also investigated various parameters including Bit Energy per Noise Spectral Density (Eb/No), Noise rise, and Bit Error Rate (BER). After simulating these parameters, using MATLAB environment, it was investigated that, for a given Eb/No value the system capacity increase by increasing the reuse factor. Besides that, it was also analyzed that, noise rise is decreasing for lower data rates and for lower interference levels. Finally, it was examined that, BER increase by using one type of modulation technique than using other type of modulation technique.

Keywords: duplexing, handover, loop power control, WCDMA

Procedia PDF Downloads 217
2126 Seismic Behaviour of Bi-Symmetric Buildings

Authors: Yogendra Singh, Mayur Pisode

Abstract:

Many times it is observed that in multi-storeyed buildings the dynamic properties in the two directions are similar due to which there may be a coupling between the two orthogonal modes of the building. This is particularly observed in bi-symmetric buildings (buildings with structural properties and periods approximately equal in the two directions). There is a swapping of vibrational energy between the modes in the two orthogonal directions. To avoid this coupling the draft revision of IS:1893 proposes a minimum separation of more than 15% between the frequencies of the fundamental modes in the two directions. This study explores the seismic behaviour of bi-symmetrical buildings under uniaxial and bi-axial ground motions. For this purpose, three different types of 8 storey buildings symmetric in plan are modelled. The first building has square columns, resulting in identical periods in the two directions. The second building, with rectangular columns, has a difference of 20% in periods in orthogonal directions, and the third building has half of the rectangular columns aligned in one direction and other half aligned in the other direction. The numerical analysis of the seismic response of these three buildings is performed by using a set of 22 ground motions from PEER NGA database and scaled as per FEMA P695 guidelines to represent the same level of intensity corresponding to the Design Basis Earthquake. The results are analyzed in terms of the displacement-time response of the buildings at roof level and corresponding maximum inter-storey drift ratios.

Keywords: bi-symmetric buildings, design code, dynamic coupling, multi-storey buildings, seismic response

Procedia PDF Downloads 246
2125 Failure Mechanisms in Zirconium Alloys during Wear and Corrosion

Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry

Abstract:

Zirconium alloys are used as core components of nuclear reactors due to their high wear resistance, good corrosion properties, and good mechanical stability at high temperatures. Water flows inside the pressure tube through fuel claddings, which produces vibration of these core components and results in the wear of some components. Some components are subjected to the environment of coolant water containing LiOH which results in the corrosion of these components. The present work simulates some of these conditions to determine the failure mechanisms under these conditions and the effect of various parameters on them. Friction and wear experiments were performed varying the surrounding environment (room temperature, high temperature, and water submerged), duration, frequency, and displacement amplitude. Electrochemical corrosion experiments were performed by varying the concentration of LiOH in water. The worn and corroded surfaces were analyzed using scanning electron microscopy (SEM) to analyze the wear and corrosion mechanism and energy dispersive x-ray spectroscopy (EDS) and Raman spectroscopy to analyze the tribo-oxide layer formed during the wear and oxide layer formed during the corrosion. Wear increases with frequency and amplitude, and corrosion increases with LiOH concentration in water.

Keywords: zirconium alloys, wear, oxide layer, corrosion, EIS, linear polarization

Procedia PDF Downloads 71
2124 Techno-Economic Comparative Analysis of Grid Connected Solar Photovoltaic (PV) to Solar Concentrated Solar Power (CSP) for Developing Countries: A Case Study of Kenya and Zimbabwe

Authors: Kathy Mwende Kiema, Remember Samu, Murat Fahrioglu

Abstract:

The potential of power generation from solar resources has been established as being robust in sub Saharan Africa. Consequently many governments in the region have encouraged the exploitation of this resource through, inter alia direct funding, subsidies and legislation (such as feed in tariffs). Through a case study of Kenya and Zimbabwe it is illustrated that a good deal of proposed grid connected solar power projects and related feed in tariffs have failed to take into account key economic and technical considerations in the selection of solar technologies to be implemented. This paper therefore presents a comparison between concentrated solar power (CSP) and solar photovoltaic (PV) to assess which technology is better suited to meet the energy demand for a given set of prevailing conditions. The evaluation criteria employed is levelized cost of electricity (LCOE), net present value (NPV) and plant capacity factor. The outcome is therefore a guide to aid policy makers and project developers in choosing between CSP and PV given certain solar irradiance values, planned nominal plant capacity, availability of water resource and a consideration of whether or not the power plant is intended to compete with existing technologies, primarily fossil fuel powered, in meeting the peak load.load.

Keywords: capacity factor, peak load, solar PV, solar CSP

Procedia PDF Downloads 288
2123 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: earth dams, flow, moisture content, slope stability

Procedia PDF Downloads 194
2122 Potential Antibacterial Applications and Synthesis, Structural, Magnetic, Optical, and Dielectric Characterization of Nickel-Substituted Cobalt Ferrite Nanoparticles

Authors: Tesfay Gebremichael Reda

Abstract:

Nanoparticle technology is fast progressing and is being employed in innumerable medical applications. At this time, the public's health is seriously threatened by the rise of bacterial strains resistant to several medications. Metal nanoparticles are a potential alternate approach for tackling this global concern, and this is the main focus of this study. The citrate precursor sol-gel synthesis method was used to synthesize the, Niₓ Co(₁-ₓ) Fe₂ O₄, (where x = 0.0:0.2:1.0) nanoparticle. XRD identified the development of the cubic crystal structure to have a preferential orientation along (311), and the average particle size was found to be 29-38 nm. The average crystallizes assessed with ImageJ software and origin 22 of the SEM are nearly identical to the XRD results. In the created NCF NPs, the FT-IR spectroscopy reveals structural examinations and the redistribution of cations between octahedral (505-428 cm-1) and tetrahedral (653-603 cm-1) locales. Finally, the decrease of coercive fields HC, 2384 Oe to 241.93 Oe replacement of Co²+ cation with Ni²+. Band gap energy rises as Ni concentration increases, which may be attributed to the fact that the ionic radii of Ni²+ ions are smaller than that of Co²+ ions, which results in a strong electrostatic interaction. On the contrary, except at x = 0.4, the dielectric constant decreases as the nickel concentration increases. According to the findings of this research work, nanoparticles composed of Ni₀.₄ Co₀.₄ Fe₂ O₄ have demonstrated a promising value against S. aureus and E. coli, and it suggests a proposed model for their potential use as a new source of antibacterial agents.

Keywords: antimicrobial, band gap, citrate precursor, dielectric, nanoparticle

Procedia PDF Downloads 31
2121 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 163
2120 Supplier Carbon Footprint Methodology Development for Automotive Original Equipment Manufacturers

Authors: Nur A. Özdemir, Sude Erkin, Hatice K. Güney, Cemre S. Atılgan, Enes Huylu, Hüseyin Y. Altıntaş, Aysemin Top, Özak Durmuş

Abstract:

Carbon emissions produced during a product’s life cycle, from extraction of raw materials up to waste disposal and market consumption activities are the major contributors to global warming. In the light of the science-based targets (SBT) leading the way to a zero-carbon economy for sustainable growth of the companies, carbon footprint reporting of the purchased goods has become critical for identifying hotspots and best practices for emission reduction opportunities. In line with Ford Otosan's corporate sustainability strategy, research was conducted to evaluate the carbon footprint of purchased products in accordance with Scope 3 of the Greenhouse Gas Protocol (GHG). The purpose of this paper is to develop a systematic and transparent methodology to calculate carbon footprint of the products produced by automotive OEMs (Original Equipment Manufacturers) within the context of automobile supply chain management. To begin with, primary material data were collected through IMDS (International Material Database System) corresponds to company’s three distinct types of vehicles including Light Commercial Vehicle (Courier), Medium Commercial Vehicle (Transit and Transit Custom), Heavy Commercial Vehicle (F-MAX). Obtained material data was classified as metals, plastics, liquids, electronics, and others to get insights about the overall material distribution of produced vehicles and matched to the SimaPro Ecoinvent 3 database which is one of the most extent versions for modelling material data related to the product life cycle. Product life cycle analysis was calculated within the framework of ISO 14040 – 14044 standards by addressing the requirements and procedures. A comprehensive literature review and cooperation with suppliers were undertaken to identify the production methods of parts used in vehicles and to find out the amount of scrap generated during part production. Cumulative weight and material information with related production process belonging the components were listed by multiplying with current sales figures. The results of the study show a key modelling on carbon footprint of products and processes based on a scientific approach to drive sustainable growth by setting straightforward, science-based emission reduction targets. Hence, this study targets to identify the hotspots and correspondingly provide broad ideas about our understanding of how to integrate carbon footprint estimates into our company's supply chain management by defining convenient actions in line with climate science. According to emission values arising from the production phase including raw material extraction and material processing for Ford OTOSAN vehicles subjected in this study, GHG emissions from the production of metals used for HCV, MCV and LCV account for more than half of the carbon footprint of the vehicle's production. Correspondingly, aluminum and steel have the largest share among all material types and achieving carbon neutrality in the steel and aluminum industry is of great significance to the world, which will also present an immense impact on the automobile industry. Strategic product sustainability plan which includes the use of secondary materials, conversion to green energy and low-energy process design is required to reduce emissions of steel, aluminum, and plastics due to the projected increase in total volume by 2030.

Keywords: automotive, carbon footprint, IMDS, scope 3, SimaPro, sustainability

Procedia PDF Downloads 112
2119 The Cultural Significance of Recycling - A Native American Perspective

Authors: Martin A. Curry

Abstract:

Madeline Island is a small island community in Wisconsin, USA. Located in Lake Superior, it has been home to the Anishinaabe/Ojibway people for 1000s of years and is known as Moningwankuaning Minis-"The Island of the Golden Breasted Woodpecker". The community relies on summer tourism as its source of income, with a small population of 400 year-round residents. Supervisor Martin A. Curry (Ojibway/German descent) has been working on a fiscally responsible, environmentally principled and culturally centered approach to waste diversion and recycling. The tenets of this program encompass plastics, paper, food waste, local farming, energy production and art education. Through creative writing for the local newspaper and creative interactions, Martin has worked to engage the community in a more robust interest in waste diversion, including setting up a free-will donation store that incorporates elder volunteering opportunities, a compost program that works with the local community garden, biodiesel production and an art program that works with children from the local island school to make paper, grow local food and paint murals. The entirety of this program is based on the Ojibway concept of Mino-Bimadiiziwiin- "The Good Life" and benefits the community and its guests and represents a microcosm of the global dilemmas of waste and recycling.

Keywords: recycling, waste diversion, island, Native American, art

Procedia PDF Downloads 121
2118 Investigation of Flow Characteristics of Trapezoidal Side Weir in Rectangular Channel for Subcritical Flow

Authors: Malkhan Thakur, P. Deepak Kumar, P. K. S. Dikshit

Abstract:

In recent years, the hydraulic behavior of side weirs has been the subject of many investigations. Most of the studies have been in connection with specific problems and have involved models. This is perhaps understandable, since a generalized treatment is made difficult by the large number of possible variables to be used to define the problem. A variety of empirical head discharge relationships have been suggested for side weirs. These empirical approaches failed to adequately consider the actual situation, and produced equations applicable only in circumstances virtually identical to those of the experiment. The present investigation is targeted to study to a greater depth the effect of different trapezium angles of a trapezoidal side weir and study of water surface profile in spatially varied flow with decreasing discharge maintaining the main channel flow subcritical. On the basis of experiment, the relationship between upstream Froude number and coefficient of discharge has been established. All the characteristics of spatially varied flow with decreasing discharge have been studied and subsequently formulated. The scope of the present investigation has been basically limited to a one-dimensional model of flow for the purpose of analysis. A formulation has been derived using the theoretical concept of constant specific energy. Coefficient of discharge has been calculated and experimental results were presented.

Keywords: weirs, subcritical flow, rectangular channel, trapezoidal side weir

Procedia PDF Downloads 272
2117 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 387
2116 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 206
2115 Numerical Simulation on Deformation Behaviour of Additively Manufactured AlSi10Mg Alloy

Authors: Racholsan Raj Nirmal, B. S. V. Patnaik, R. Jayaganthan

Abstract:

The deformation behaviour of additively manufactured AlSi10Mg alloy under low strains, high strain rates and elevated temperature conditions is essential to analyse and predict its response against dynamic loading such as impact and thermomechanical fatigue. The constitutive relation of Johnson-Cook is used to capture the strain rate sensitivity and thermal softening effect in AlSi10Mg alloy. Johnson-Cook failure model is widely used for exploring damage mechanics and predicting the fracture in many materials. In this present work, Johnson-Cook material and damage model parameters for additively manufactured AlSi10Mg alloy have been determined numerically from four types of uniaxial tensile test. Three different uniaxial tensile tests with dynamic strain rates (0.1, 1, 10, 50, and 100 s-1) and elevated temperature tensile test with three different temperature conditions (450 K, 500 K and 550 K) were performed on 3D printed AlSi10Mg alloy in ABAQUS/Explicit. Hexahedral elements are used to discretize tensile specimens and fracture energy value of 43.6 kN/m was used for damage initiation. Levenberg Marquardt optimization method was used for the evaluation of Johnson-Cook model parameters. It was observed that additively manufactured AlSi10Mg alloy has shown relatively higher strain rate sensitivity and lower thermal stability as compared to the other Al alloys.

Keywords: ABAQUS, additive manufacturing, AlSi10Mg, Johnson-Cook model

Procedia PDF Downloads 172
2114 Seismic Response of Large-Scale Rectangular Steel-Plate Concrete Composite Shear Walls

Authors: Siamak Epackachi, Andrew S. Whittaker, Amit H. Varma

Abstract:

An experimental program on steel-plate concrete (SC) composite shear walls was executed in the NEES laboratory at the University at Buffalo. Four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and faceplate slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure-critical. This paper presents the damage to SC walls at different drift ratios, the cyclic force-displacement relationships, energy dissipation and equivalent viscous damping ratios, the strain and stress fields in the steel faceplates and the contribution of the steel faceplates to the total shear load, the variation of vertical strain in the steel faceplates along the length of the wall, near the base, at different drift ratios, the contributions of shear, flexure, and base rotation to the total lateral displacement, the displacement ductility of the SC walls, and the cyclic secant stiffness of the four SC walls.

Keywords: steel-plate composite shear wall, safety-related nuclear structure, flexure-critical wall, cyclic loading

Procedia PDF Downloads 352
2113 Effects of Initial Moisture Content on the Physical and Mechanical Properties of Norway Spruce Briquettes

Authors: Miloš Matúš, Peter Križan, Ľubomír Šooš, Juraj Beniak

Abstract:

The moisture content of densified biomass is a limiting parameter influencing the quality of this solid biofuel. It influences its calorific value, density, mechanical strength and dimensional stability as well as affecting its production process. This paper deals with experimental research into the effect of moisture content of the densified material on the final quality of biofuel in the form of logs (briquettes or pellets). Experiments based on the single-axis densification of the spruce sawdust were carried out with a hydraulic piston press (piston and die), where the densified logs were produced at room temperature. The effect of moisture content on the qualitative properties of the logs, including density, change of moisture, expansion and physical changes, and compressive and impact resistance were studied. The results show the moisture ranges required for producing good-quality logs. The experiments were evaluated and the moisture content of the tested material was optimized to achieve the optimum value for the best quality of the solid biofuel. The dense logs also have high-energy content per unit volume. The research results could be used to develop and optimize industrial technologies and machinery for biomass densification to achieve high quality solid biofuel.

Keywords: biomass, briquettes, densification, fuel quality, moisture content, density

Procedia PDF Downloads 430
2112 Sustainable Supply Chain Management Practices, Challenges, and Opportunities: A Case Study of Small and Medium-Sized Enterprises Within the Oil and Gas Sector

Authors: Igho Ekiugbo, Christos Papanagnou

Abstract:

The energy sector continues to face increased scrutiny due to climate change challenges emanating from the burning of fossil fuels, such as coal, oil, and gas. These climate change challenges have motivated industry practitioners and researchers alike to gain an interest in the way businesses operate. This paper aimed to investigate and assess how small and medium-sized enterprises (SMEs) are reducing the impact of their operations, especially those within their supply chains, by assessing the sustainability practices they have adopted and implemented as well as the benefits and challenges of adopting such practices. Data will be collected from SMEs operating across the downstream oil and gas sector in Nigeria using questionnaire surveys. To analyse the data, confirmatory factor analysis and regression analysis will be performed. This method is deemed more suitable and appropriate for testing predefined measurements of sustainable supply chain practices as contained in the extant literature. Preliminary observations indicate a consensus on the awareness of the sustainability concept amongst the target participants. To the best of our knowledge, this paper is among the first to investigate the sustainability practices of SMEs operating in the Nigerian oil and gas sector and will therefore contribute to the sustainability and circular economic literature.

Keywords: small and medium-sized enterprises, sustainability practices, supply chains, sustainable supply chain management, corporate sustainability, oil and gas, business performance

Procedia PDF Downloads 130
2111 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 179
2110 Reliability Assessment for Tie Line Capacity Assistance of Power Systems Based on Multi-Agent System

Authors: Nadheer A. Shalash, Abu Zaharin Bin Ahmad

Abstract:

Technological developments in industrial innovations have currently been related to interconnected system assistance and distribution networks. This important in order to enable an electrical load to continue receive power in the event of disconnection of load from the main power grid. This paper represents a method for reliability assessment of interconnected power systems based. The multi-agent system consists of four agents. The first agent was the generator agent to using as connected the generator to the grid depending on the state of the reserve margin and the load demand. The second was a load agent is that located at the load. Meanwhile, the third is so-called "the reverse margin agent" that to limit the reserve margin between 0-25% depend on the load and the unit size generator. In the end, calculation reliability Agent can be calculate expected energy not supplied (EENS), loss of load expectation (LOLE) and the effecting of tie line capacity to determine the risk levels Roy Billinton Test System (RBTS) can use to evaluated the reliability indices by using the developed JADE package. The results estimated of the reliability interconnection power systems presented in this paper. The overall reliability of power system can be improved. Thus, the market becomes more concentrated against demand increasing and the generation units were operating in relation to reliability indices.

Keywords: reliability indices, load expectation, reserve margin, daily load, probability, multi-agent system

Procedia PDF Downloads 327
2109 Design Criteria for Achieving Acceptable Indoor Radon Concentration

Authors: T. Valdbjørn Rasmussen

Abstract:

Design criteria for achieving an acceptable indoor radon concentration are presented in this paper. The paper suggests three design criteria. These criteria have to be considered at the early stage of the building design phase to meet the latest recommendations from the World Health Organization in most countries. The three design criteria are; first, establishing a radon barrier facing the ground; second, lowering the air pressure in the lower zone of the slab on ground facing downwards; third, diluting the indoor air with outdoor air. The first two criteria can prevent radon from infiltrating from the ground, and the third criteria can dilute the indoor air. By combining these three criteria, the indoor radon concentration can be lowered achieving an acceptable level. In addition, a cheap and reliable method for measuring the radon concentration in the indoor air is described. The provision on radon in the Danish Building Regulations complies with the latest recommendations from the World Health Organization. Radon can cause lung cancer and it is not known whether there is a lower limit for when it is not harmful to human beings. Therefore, it is important to reduce the radon concentration as much as possible in buildings. Airtightness is an important factor when dealing with buildings. It is important to avoid air leakages in the building envelope both facing the atmosphere, e.g. in compliance with energy requirements, but also facing the ground, to meet the requirements to ensure and control the indoor environment. Infiltration of air from the ground underneath a building is the main providing source of radon to the indoor air.

Keywords: radon, natural radiation, barrier, pressure lowering, ventilation

Procedia PDF Downloads 356
2108 Corrosivity of Smoke Generated by Polyvinyl Chloride and Polypropylene with Different Mixing Ratios towards Carbon Steel

Authors: Xufei Liu, Shouxiang Lu, Kim Meow Liew

Abstract:

Because a relatively small fire could potentially cause damage by smoke corrosion far exceed thermal fire damage, it has been realized that the corrosion of metal exposed to smoke atmospheres is a significant fire hazard, except for toxicity or evacuation considerations. For the burning materials in an actual fire may often be the mixture of combustible matters, a quantitative study on the corrosivity of smoke produced by the combustion of mixture is more conducive to the application of the basic theory to the actual engineering. In this paper, carbon steel samples were exposed to smoke generated by polyvinyl chloride and polypropylene, two common combustibles in industrial plants, with different mixing ratios in high humidity for 120 hours. The separate and combined corrosive effects of smoke were examined subsequently by weight loss measurement, scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was found that, although the corrosivity of smoke from polypropylene was much smaller than that of smoke from polyvinyl chloride, smoke from polypropylene enhanced the major corrosive effect of smoke from polyvinyl chloride to carbon steel. Furthermore, the corrosion kinetics of carbon steel under smoke were found to obey the power function. Possible corrosion mechanisms were also proposed. All the analysis helps to provide basic information for the determination of smoke damage and timely rescue after fire.

Keywords: corrosion kinetics, corrosion mechanism, mixed combustible, SEM/EDS, smoke corrosivity, XRD

Procedia PDF Downloads 221
2107 Risk Propagation in Electricity Markets: Measuring the Asymmetric Transmission of Downside and Upside Risks in Energy Prices

Authors: Montserrat Guillen, Stephania Mosquera-Lopez, Jorge Uribe

Abstract:

An empirical study of market risk transmission between electricity prices in the Nord Pool interconnected market is done. Crucially, it is differentiated between risk propagation in the two tails of the price variation distribution. Thus, the downside risk from upside risk spillovers is distinguished. The results found document an asymmetric nature of risk and risk propagation in the two tails of the electricity price log variations. Risk spillovers following price increments in the market are transmitted to a larger extent than those after price reductions. Also, asymmetries related to both, the size of the transaction area and related to whether a given area behaves as a net-exporter or net-importer of electricity, are documented. For instance, on the one hand, the bigger the area of the transaction, the smaller the size of the volatility shocks that it receives. On the other hand, exporters of electricity, alongside countries with a significant dependence on renewable sources, tend to be net-transmitters of volatility to the rest of the system. Additionally, insights on the predictive power of positive and negative semivariances for future market volatility are provided. It is shown that depending on the forecasting horizon, downside and upside shocks to the market are featured by a distinctive persistence, and that upside volatility impacts more on net-importers of electricity, while the opposite holds for net-exporters.

Keywords: electricity prices, realized volatility, semivariances, volatility spillovers

Procedia PDF Downloads 178
2106 Formulation, Acceptability, and Characteristics of Instant Surabi Based on Composite Rice-Soybean Flour and Supplemented with Torbangun Powder for Attention Deficit Hyperactivity Disorder Children

Authors: Dewi Hapsari Ratna Muninggar, M. Rizal Martua Damanik

Abstract:

The purpose of this study was to develop a formulation of instant Indonesian traditional pancake (Surabi) based on composite rice and soybean flour and supplemented with Torbangun (Coleus amboinicus Lour) powder as an alternative snack for ADHD (Attention Deficit Hyperactivity Disorder) children. Completely randomised factorial design by two factors which were the ratio of composite rice and soybean flour (75:25; 70:30; 65:35) as well as the addition of Torbangun powder (3%; 5%; 7%) was used in this study. This study revealed that the best formula was instant surabi with 65:35 composite rice and soybean flour and 5% addition of Torbangun powder by considering hedonic test result, functional aspect and nutrients contribution. Then, both chemical and physical characteristics from the best formula of instant surabi were measured. Nutrients content of the chosen instant surabi per 100 g wet basis were 62.68 g moisture, 1.30 g ash, 6.81 g protein, 0.75 g fat, 28.47 g carbohydrate, 88.62 mg calcium, 4.14 mg iron, and 144 kcal energy while physical characteristics, such as water activity, cohesiveness, and hardness were 0.97, 0.569, 5582.2 g force consecutively. The results of this research suggested that instant surabi which can be possibly beneficial for ADHD children had 65:35 for rice and soybean flour ratio as well as 5% for the addition of Torbangun powder.

Keywords: ADHD children, instant surabi, soybean, torbangun

Procedia PDF Downloads 153
2105 A Critical Evaluation of Lebanon's Wastewater Management Sector: Careless Generation, Disjointed Collection, and Limited Treatment

Authors: Nora Fayssal, Lara Al Tawil, Hrair Danageuzian, Jimmy Romanos

Abstract:

Wastewater management is a global concern and priority, both to protect the natural environment from the consequences of poor disposal, specifically water resources and to harness its potential as an additional water supply through water reuse. Lebanon still lags behind, being at the bottom of the list among the Arab countries in both safely managed sanitation services and wastewater treatment and in achieving the targets of SDG 6.3. This study which relied on a data collection survey targeting the municipalities, provides a critical assessment of the wastewater sector in Lebanon. The results revealed the fragmented sewerage collection systems, where only 13% of the targeted municipalities have complete coverage, leaving most of the urbanized area at risk of pollution. The results also highlight the limited quantity of wastewater treated and the fragility of the operation of the wastewater treatment plants in light of the recent energy crisis. Ultimately, only 14% of the generated wastewater is currently treated in Lebanon with primary treatment only. The assessment showed that wastewater management wasn’t a priority on the national level for decades, where the lack of institutional coordination and long-term vision, the absence of deterrent regulations and advanced technology, the influx of Syrian refugees, and the recent economic crisis stand behind the current situation.

Keywords: governance gaps, Lebanon, SDG 6.3., wastewater collection, wastewater management

Procedia PDF Downloads 19
2104 Vehicular Emission Estimation of Islamabad by Using Copert-5 Model

Authors: Muhammad Jahanzaib, Muhammad Z. A. Khan, Junaid Khayyam

Abstract:

Islamabad is the capital of Pakistan with the population of 1.365 million people and with a vehicular fleet size of 0.75 million. The vehicular fleet size is growing annually by the rate of 11%. Vehicular emissions are major source of Black carbon (BC). In developing countries like Pakistan, most of the vehicles consume conventional fuels like Petrol, Diesel, and CNG. These fuels are the major emitters of pollutants like CO, CO2, NOx, CH4, VOCs, and particulate matter (PM10). Carbon dioxide and methane are the leading contributor to the global warming with a global share of 9-26% and 4-9% respectively. NOx is the precursor of nitrates which ultimately form aerosols that are noxious to human health. In this study, COPERT (Computer program to Calculate Emissions from Road Transport) was used for vehicular emission estimation in Islamabad. COPERT is a windows based program which is developed for the calculation of emissions from the road transport sector. The emissions were calculated for the year of 2016 include pollutants like CO, NOx, VOC, and PM and energy consumption. The different variable was input to the model for emission estimation including meteorological parameters, average vehicular trip length and respective time duration, fleet configuration, activity data, degradation factor, and fuel effect. The estimated emissions for CO, CH4, CO2, NOx, and PM10 were found to be 9814.2, 44.9, 279196.7, 3744.2 and 304.5 tons respectively.

Keywords: COPERT Model, emission estimation, PM10, vehicular emission

Procedia PDF Downloads 265
2103 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas

Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia

Abstract:

Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.

Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids

Procedia PDF Downloads 260
2102 Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination

Authors: Ibrahim Abdelfattah, Adel Ismail, Ahmed Helal, Mohamed Faisal

Abstract:

Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details.

Keywords: In₂O₃-TiO₂ nanocomposites, sol-gel method, visible light illumination, UV illumination, herbicide and phenol wastewater, removal

Procedia PDF Downloads 300
2101 Evaluating Viability of Solar Tubewell Irrigation Technology

Authors: Junaid N. Chauhdary, Bernard A. Engel, Allah Bakhsh

Abstract:

Solar powered tubewells can be a reliable and affordable source of supplying irrigation water compared with electric or diesel operated tubewells due to frequent load shedding and soaring energy prices. A study was conducted on a solar tubewell installed at the Water Management Research Center (WMRC), University of Agriculture, Faisalabad to investigate the viability of a solar powered tubewell in terms of discharge and benefit cost ratio. The tubewell discharge was 50 m3hr-1 with a total dynamic head of 30 m. The depth of bore was 31 m (14 m blind + 17 m screen) with a casing diameter of 15.2 cm (6 inches). A 3-stage submersible pump of 10.2 cm (4 inch) diameter was lowered in the casing to a depth of 22 m. The pump was powered from 21 solar panels of 200 W capacity each. The tubewell peak discharge was observed as 6 and 7 hr day-1 in winter and summer, respectively. The breakeven analysis of the solar tubewell showed that the payback period of the solar tubewell was 1.5 years of its 10 year usable life with an IRR (internal rate of return) of 69 %. The BCR (benefit cost ratio) of the solar tubewell at 2, 4, 6, and 8 percent discount rate were 3.75, 3.45, 3.19 and 2.96, respectively. The NPV (net present value) of the solar tubewell at 2, 4, 6, and 8 % discount rates were 1.89, 1.65, 1.45 and 1.27 million rupees, respectively. These results indicated that the solar powered tubewells are a viable option as well as environmentally friendly and can be adopted by the farmers due to their affordable payback period.

Keywords: benefit cost ratio, internal rate of return (IRR), net present value (NPV), solar tubewell

Procedia PDF Downloads 212
2100 The Effects of Oxygen Partial Pressure to the Anti-Corrosion Layer in the Liquid Metal Coolant: A Density Functional Theory Simulation

Authors: Rui Tu, Yakui Bai, Huailin Li

Abstract:

The lead-bismuth eutectic (LBE) alloy is a promising candidate of coolant in the fast neutron reactors and accelerator-driven systems (ADS) because of its good properties, such as low melting point, high neutron yields and high thermal conductivity. Although the corrosion of the structure materials caused by the liquid metal (LM) coolant is a challenge to the safe operating of a lead-bismuth eutectic nuclear reactor. Thermodynamic theories, experiential formulas and experimental data can be used for explaining the maintenance of the protective oxide layers on stainless steels under satisfaction oxygen concentration, but the atomic scale insights of such anti-corrosion mechanisms are little known. In the present work, the first-principles calculations are carried out to study the effects of oxygen partial pressure on the formation energies of the liquid metal coolant relevant impurity defects in the anti-corrosion oxide films on the surfaces of the structure materials. These approaches reveal the microscope mechanisms of the corrosion of the structure materials, especially for the influences from the oxygen partial pressure. The results are helpful for identifying a crucial oxygen concentration for corrosion control, which can ensure the systems to be operated safely under certain temperatures.

Keywords: oxygen partial pressure, liquid metal coolant, TDDFT, anti-corrosion layer, formation energy

Procedia PDF Downloads 132
2099 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution

Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen

Abstract:

Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.

Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating

Procedia PDF Downloads 190