Search results for: solid oxide fuel cells
899 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate
Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon
Abstract:
The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.Keywords: encapsulation, flexible, low melting point alloy, OLED
Procedia PDF Downloads 596898 Study of Biofouling Wastewater Treatment Technology
Authors: Sangho Park, Mansoo Kim, Kyujung Chae, Junhyuk Yang
Abstract:
The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards.Keywords: biofouling, ballast water treatment system, filtration, sterilization, wastewater
Procedia PDF Downloads 108897 Urinary Exosome miR-30c-5p as a Biomarker for Early-Stage Clear Cell Renal Cell Carcinoma
Authors: Shangqing Song, Bin Xu, Yajun Cheng, Zhong Wang
Abstract:
miRNAs derived from exosomes exist in a body fluid such as urine were regarded as potential biomarkers for various human cancers diagnosis and prognosis, as mature miRNAs can be steadily preserved by exosomes. However, its potential value in clear cell renal cell carcinoma (ccRCC) diagnosis and prognosis remains unclear. In the present study, differentially expressed miRNAs from urinal exosomes were identified by next-generation sequencing (NGS) technology. The 16 differentially expressed miRNAs were identified between ccRCC patients and healthy donors. To explore the specific diagnosis biomarker of ccRCC, we validated these urinary exosomes from 70 early-stage renal cancer patients, 30 healthy people and other urinary system cancers, including 30 early-stage prostate cancer patients and 30 early-stage bladder cancer patients by qRT-PCR. The results showed that urinary exosome miR-30c-5p could be stably amplified and meanwhile the expression of miR-30c-5p has no significant difference between other urinary system cancers and healthy control, however, expression level of miR-30c-5p in urinary exosomal of ccRCC patients was lower than healthy people and receiver operation characterization (ROC) curve showed that the area under the curve (AUC) values was 0.8192 (95% confidence interval was 0.7388-0.8996, P= 0.0000). In addition, up-regulating miR-30c-5p expression could inhibit renal cell carcinoma cells growth. Lastly, HSP5A was found as a direct target gene of miR-30c-5p. HSP5A depletion reversed the promoting effect of ccRCC growth casued by miR-30c-5p inhibitor, respectively. In conclusion, this study demonstrated that urinary exosomal miR-30c-5p is readily accessible as diagnosis biomarker of early-stage ccRCC, and miR-30c-5p might modulate the expression of HSPA5, which correlated with the progression of ccRCC.Keywords: clear cell renal cell carcinoma, exosome, HSP5A, miR-30c-5p
Procedia PDF Downloads 266896 Development of a Robust Protein Classifier to Predict EMT Status of Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma (CESC) Tumors
Authors: ZhenlinJu, Christopher P. Vellano, RehanAkbani, Yiling Lu, Gordon B. Mills
Abstract:
The epithelial–mesenchymal transition (EMT) is a process by which epithelial cells acquire mesenchymal characteristics, such as profound disruption of cell-cell junctions, loss of apical-basolateral polarity, and extensive reorganization of the actin cytoskeleton to induce cell motility and invasion. A hallmark of EMT is its capacity to promote metastasis, which is due in part to activation of several transcription factors and subsequent downregulation of E-cadherin. Unfortunately, current approaches have yet to uncover robust protein marker sets that can classify tumors as possessing strong EMT signatures. In this study, we utilize reverse phase protein array (RPPA) data and consensus clustering methods to successfully classify a subset of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) tumors into an EMT protein signaling group (EMT group). The overall survival (OS) of patients in the EMT group is significantly worse than those in the other Hormone and PI3K/AKT signaling groups. In addition to a shrinkage and selection method for linear regression (LASSO), we applied training/test set and Monte Carlo resampling approaches to identify a set of protein markers that predicts the EMT status of CESC tumors. We fit a logistic model to these protein markers and developed a classifier, which was fixed in the training set and validated in the testing set. The classifier robustly predicted the EMT status of the testing set with an area under the curve (AUC) of 0.975 by Receiver Operating Characteristic (ROC) analysis. This method not only identifies a core set of proteins underlying an EMT signature in cervical cancer patients, but also provides a tool to examine protein predictors that drive molecular subtypes in other diseases.Keywords: consensus clustering, TCGA CESC, Silhouette, Monte Carlo LASSO
Procedia PDF Downloads 467895 Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg
Authors: Amirhossein Moghanian, Morteza Elsa, Mehrnaz Aminitabar
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 148894 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 290893 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film
Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena
Abstract:
Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film
Procedia PDF Downloads 274892 The Use of a Miniature Bioreactor as Research Tool for Biotechnology Process Development
Authors: Muhammad Zainuddin Arriafdi, Hamudah Hakimah Abdullah, Mohd Helmi Sani, Wan Azlina Ahmad, Muhd Nazrul Hisham Zainal Alam
Abstract:
The biotechnology process development demands numerous experimental works. In laboratory environment, this is typically carried out using a shake flask platform. This paper presents the design and fabrication of a miniature bioreactor system as an alternative research tool for bioprocessing. The working volume of the reactor is 100 ml, and it is made of plastic. The main features of the reactor included stirring control, temperature control via the electrical heater, aeration strategy through a miniature air compressor, and online optical cell density (OD) sensing. All sensors and actuators integrated into the reactor was controlled using an Arduino microcontroller platform. In order to demonstrate the functionality of such miniature bioreactor concept, series of batch Saccharomyces cerevisiae fermentation experiments were performed under various glucose concentrations. Results attained from the fermentation experiments were utilized to solve the Monod equation constants, namely the saturation constant, Ks, and cells maximum growth rate, μmax as to further highlight the usefulness of the device. The mixing capacity of the reactor was also evaluated. It was found that the results attained from the miniature bioreactor prototype were comparable to results achieved using a shake flask. The unique features of the device as compared to shake flask platform is that the reactor mixing condition is much more comparable to a lab-scale bioreactor setup. The prototype is also integrated with an online OD sensor, and as such, no sampling was needed to monitor the progress of the reaction performed. Operating cost and medium consumption are also low and thus, making it much more economical to be utilized for biotechnology process development compared to lab-scale bioreactors.Keywords: biotechnology, miniature bioreactor, research tools, Saccharomyces cerevisiae
Procedia PDF Downloads 115891 Central Retinal Venous Occlusion Associated O Bilateral Optic Nerve Infiltration Revealing Relapse Of An Acute Lymphoblastic Leukemia
Authors: Fendouli Ines, Zaafrane Nesrine, Mhamdi Hana, Knani Leila, Ghorbel Mohamed
Abstract:
Introduction: Ocular infiltration of leukemia can involve orbit, uveal tract, retina and optic nerve. It may result from direct ocular infiltration by leukemic cells or indirect ocular involvement resulting from secondary hematologic changes, opportunistic infections and complications of various modalities of therapy. We here in report a case of central venous retinal occlusion associated to optic nerve infiltration as presenting signs of a relapse of acute lymphoblastic leukemia. Case Report: A twelve-year-old male -patient of acute B lymphoblastic leukemia presented with headaches and bilateral blurred vision in the left ee. Ophthalmic examination showed a visual acuity reduced to counting fingers in the right eye and no light perception in the left eye. Funduscopy revealed a voluminous disc edema surrounded by retinal haemorrhages in the right eye, and venous tortusities, papillary edema, and hemorrages suggesting central retinal venous occlusion in the LE. Swept source optical coherence tomography revealed a serous retinal detachment in the RE and .hyperreflective inner layers with macular edema in the left eye. Cerebro-orbital MRI showed bilateral thickened left optic nerve. There were no radiological signs of true papillary edema due to intracranial hypertension secondary to central nervous system involvement. Myelogram and lumbar punction demonstrated blast infiltration and confirmed ocular relapse of the leukemia. Conclusion: Ocular involvement lymphoblastic acute leukemias decreased since the introduction of a systematic prophylactic treatment of central nervous system. Periodic ophthalmic examination is necessary to allow early diagnosis and treatment.Keywords: acute leukemia, optic nerve, infiltration, relapse
Procedia PDF Downloads 89890 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China
Authors: Yuanyuan Liu, Yuanqing Wang, Di Li
Abstract:
Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment
Procedia PDF Downloads 267889 Bulk-Density and Lignocellulose Composition: Influence of Changing Lignocellulosic Composition on Bulk-Density during Anaerobic Digestion and Implication of Compacted Lignocellulose Bed on Mass Transfer
Authors: Aastha Paliwal, H. N. Chanakya, S. Dasappa
Abstract:
Lignocellulose, as an alternate feedstock for biogas production, has been an active area of research. However, lignocellulose poses a lot of operational difficulties- widespread variation in the structural organization of lignocellulosic matrix, amenability to degradation, low bulk density, to name a few. Amongst these, the low bulk density of the lignocellulosic feedstock is crucial to the process operation and optimization. Low bulk densities render the feedstock floating in conventional liquid/wet digesters. Low bulk densities also restrict the maximum achievable organic loading rate in the reactor, decreasing the power density of the reactor. However, during digestion, lignocellulose undergoes very high compaction (up to 26 times feeding density). This first reduces the achievable OLR (because of low feeding density) and compaction during digestion, then renders the reactor space underutilized and also imposes significant mass transfer limitations. The objective of this paper was to understand the effects of compacting lignocellulose on mass transfer and the influence of loss of different components on the bulk density and hence structural integrity of the digesting lignocellulosic feedstock. 10 different lignocellulosic feedstocks (monocots and dicots) were digested anaerobically in a fed-batch, leach bed reactor -solid-state stratified bed reactor (SSBR). Percolation rates of the recycled bio-digester liquid (BDL) were also measured during the reactor run period to understand the implication of compaction on mass transfer. After 95 ds, in a destructive sampling, lignocellulosic feedstocks digested at different SRT were investigated to quantitate the weekly changes in bulk density and lignocellulosic composition. Further, percolation rate data was also compared to bulk density data. Results from the study indicate loss of hemicellulose (r²=0.76), hot water extractives (r²=0.68), and oxalate extractives (r²=0.64) had dominant influence on changing the structural integrity of the studied lignocellulose during anaerobic digestion. Further, feeding bulk density of the lignocellulose can be maintained between 300-400kg/m³ to achieve higher OLR, and bulk density of 440-500kg/m³ incurs significant mass transfer limitation for high compacting beds of dicots.Keywords: anaerobic digestion, bulk density, feed compaction, lignocellulose, lignocellulosic matrix, cellulose, hemicellulose, lignin, extractives, mass transfer
Procedia PDF Downloads 165888 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth
Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias
Abstract:
Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL
Procedia PDF Downloads 343887 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices.Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia PDF Downloads 325886 The Mitigation of Quercetin on Lead-Induced Neuroinflammation in a Rat Model: Changes in Neuroinflammatory Markers and Memory
Authors: Iliyasu Musa Omoyine, Musa Sunday Abraham, Oladele Sunday Blessing, Iliya Ibrahim Abdullahi, Ibegbu Augustine Oseloka, Nuhu Nana-Hawau, Animoku Abdulrazaq Amoto, Yusuf Abdullateef Onoruoiza, Sambo Sohnap James, Akpulu Steven Peter, Ajayi Abayomi
Abstract:
The neuroprotective role of inflammation from detrimental intrinsic and extrinsic factors has been reported. However, the overactivation of astrocytes and microglia due to lead toxicity produce excessive pro-inflammatory cytokines, mediating neurodegenerative diseases. The present study investigated the mitigatory effects of quercetin on neuroinflammation, correlating with memory function in lead-exposed rats. In this study, Wistar rats were administered orally with Quercetin (Q: 60 mg/kg) and Succimer as a standard drug (S: 10 mg/kg) for 21 days after lead exposure (Pb: 125 mg/kg) of 21 days or in combination with Pb, once daily for 42 days. Working and reference memory was assessed using an Eight-arm radial water maze (8-ARWM). The changes in brain lead level, the neuronal nitric oxide synthase (nNOS) activity, and the level of neuroinflammatory markers such as tumour necrosis factor-alpha (TNF-α) and Interleukin 1 Beta (IL-1β) were determined. Immunohistochemically, astrocyte expression was evaluated. The results showed that the brain level of lead was increased significantly in lead-exposed rats. The expression of astrocytes increased in the CA3 and CA1 regions of the hippocampus, and the levels of brain TNF-α and IL-1β increased in lead-exposed rats. Lead impaired reference and working memory by increasing reference memory errors and working memory incorrect errors in lead-exposed rats. However, quercetin treatment effectively improved memory and inhibited neuroinflammation by reducing astrocytes’ expression and the levels of TNF-α and IL-1β. The expression of astrocytes and the levels of TNF-α and IL-1β correlated with memory function. The possible explanation for quercetin’s anti-neuroinflammatory effect is that it modulates the activity of cellular proteins involved in the inflammatory response; inhibits the transcription factor of nuclear factor-kappa B (NF-κB), which regulates the expression of proinflammatory molecules; inhibits kinases required for the synthesis of Glial fibrillary acidic protein (GFAP) and modifies the phosphorylation of some proteins, which affect the structure and function of intermediate filament proteins; and, lastly, induces Cyclic-AMP Response Element Binding (CREB) activation and neurogenesis as a compensatory mechanism for memory deficits and neuronal cell death. In conclusion, the levels of neuroinflammatory markers negatively correlated with memory function. Thus, quercetin may be a promising therapy in neuroinflammation and memory dysfunction in populations prone to lead exposure.Keywords: lead, quercetin, neuroinflammation, memory
Procedia PDF Downloads 51885 Wireless Gyroscopes for Highly Dynamic Objects
Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev
Abstract:
Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing
Procedia PDF Downloads 365884 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure
Authors: Q. Giraud, J. Gonçalvès, B. Paris
Abstract:
Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media
Procedia PDF Downloads 173883 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin
Authors: Mikhail O. Eremin
Abstract:
Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression
Procedia PDF Downloads 174882 Induction of Different Types of Callus and Somatic Embryogenesis in Various Explants of Taraxacum Kok-Saghyz Rodin
Authors: Kairat Uteulin, Azhar Iskakova, Serik Mukhambetzhanov, Bayan Yesbolayeva, Gabit Bari, Aslan Zheksenbai, Kabyl Zhambakin, Chingis Dzhabykbayev, Vladimir Piven, Izbasar Rakhimbaiev
Abstract:
To explore the potential for in vitro rapid regeneration of Russian dandelion (Taraxacum kok-saghyz Rodin), different concentrations of 6-Benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2.4-D) and BAP combined with Indole-3-acetic acid (IAA) were evaluated for their effects on the induction of somatic embryos from leaf, seed stem and root explants. Different explants were cultured on MS medium supplemented with various concentrations (0, 0.5, 1, 1.5, 2, 2.5 and 3 mg/l) of each kind of hormone. Callus induction percentage, fresh weight, color and texture of the callus were assessed after 14 and 28 days of culture. The optimum medium for the proliferation of embryogenic calli from leaf and root explants was MS supplemented with 2.5 mg/L BAP and 0.5 mg/L 2.4-D. Concentrations of 2.5 mg/L BAP and 1.5 mg/L IAA also had a remarkable effect on root and stem explants. The best concentration to produce callus from stem explants was 0.5 mg/L BAP and 1 mg/L IAA. Results of mean comparison showed that BAP and 2.4-D were more effective on different explants than BAP and IAA. Results of the double staining method proved that somatic embryogenesis occurred in the most concentrations of BAP and 2.4-D. Under microscopic observations, the different developmental stages of the embryos (globular, heart, torpedo and cotyledonary) were revealed together in callus cells, indicating that the most tested hormone combinations were effective for somatic embryogenesis formation in this species. Seed explants formed torpedo and cotyledonary stages faster than leaf and root explants in the most combinations. Most calli from seed explants were cream colored and friable, while calli were compact and light green from leaf and root explants. Some combinations gave direct regeneration and (3 mg/L BAP and 2 mg/L IAA) in seed explants and (0.5 mg/L BAP and 2.5 mg/L IAA) in leaf explants had the highest number of shoots with average of 21 and 27 shoots per callus. The developed protocol established the production of different callus types from seed, leaf, and root explants and plant regeneration through somatic embryogenesis.Keywords: taraxacum kok-saghyz Rodin, callus, somatic embryogenesis
Procedia PDF Downloads 371881 Tuberculosis (TB) and Lung Cancer
Authors: Asghar Arif
Abstract:
Lung cancer has been recognized as one of the greatest common cancers, causing the annual mortality rate of about 1.2 million people in the world. Lung cancer is the most prevalent cancer in men and the third-most common cancer among women (after breast and digestive cancers).Recent evidences have shown the inflammatory process as one of the potential factors of cancer. Tuberculosis (TB), pneumonia, and chronic bronchitis are among the most important inflammation-inducing factors in the lungs, among which TB has a more profound role in the emergence of cancer.TB is one of the important mortality factors throughout the world, and 205,000 death cases are reported annually due to this disease. Chronic inflammation and fibrosis due to TB can induce genetic mutation and alternations. Parenchyma tissue of lung is involved in both diseases of TB and lung cancer, and continuous cough in lung cancer, morphological vascular variations, lymphocytosis processes, and generation of immune system mediators such as interleukins, are all among the factors leading to the hypothesis regarding the role of TB in lung cancer Some reports have shown that the induction of necrosis and apoptosis or TB reactivation, especially in patients with immune-deficiency, may result in increasing IL-17 and TNF_α, which will either decrease P53 activity or increase the expression of Bcl-2, decrease Bax-T, and cause the inhibition of caspase-3 expression due to decreasing the expression of mitochondria cytochrome oxidase. It has been also indicated that following the injection of BCG vaccine, the host immune system will be reinforced, and in particular, the rates of gamma interferon, nitric oxide, and interleukin-2 are increased. Therefore, CD4 + lymphocyte function will be improved, and the person will be immune against cancer.Numerous prospective studies have so far been conducted on the role of TB in lung cancer, and it seems that this disease is effective in that particular cancer.One of the main challenges of lung cancer is its correct and timely diagnosis. Unfortunately, clinical symptoms (such as continuous cough, hemoptysis, weight loss, fever, chest pain, dyspnea, and loss of appetite) and radiological images are similar in TB and lung cancer. Therefore, anti-TB drugs are routinely prescribed for the patients in the countries with high prevalence of TB, like Pakistan. Regarding the similarity in clinical symptoms and radiological findings of lung cancer, proper diagnosis is necessary for TB and respiratory infections due to nontuberculousmycobacteria (NTM). Some of the drug resistive TB cases are, in fact, lung cancer or NTM lung infections. Acid-fast staining and histological study of phlegm and bronchial washing, culturing and polymerase chain reaction TB are among the most important solutions for differential diagnosis of these diseases. Briefly, it is assumed that TB is one of the risk factors for cancer. Numerous studies have been conducted in this regard throughout the world, and it has been observed that there is a significant relationship between previous TB infection and lung cancer. However, to prove this hypothesis, further and more extensive studies are required. In addition, as the clinical symptoms and radiological findings of TB, lung cancer, and non-TB mycobacteria lung infections are similar, they can be misdiagnosed as TB.Keywords: TB and lung cancer, TB people, TB servivers, TB and HIV aids
Procedia PDF Downloads 71880 Raw Japanese Quail Egg Produces Analgesic, Anti-Inflammatory and Gastro-Protective Effects in Rats
Authors: Sani Ismaila, Shafiu Yau, Abubakar Salisu, Buhari Salisu, Sharifat Balogun, Mustapha Abubakar, Biobaku Khalid, Agaie Bello
Abstract:
Over the years, Japanese quail egg has been in use in the management of diseases. The objective of this study was to evaluate the analgesic, anti-inflammatory and gastroprotective effects of raw Quail egg (yolk + albumin) in rats. Pain was assessed in rats by recording the latent period and writing reflex, anti-inflammatory effect was determined using both motility and compression test, while the gastro-protective effects were assessed by observing the histology of the stomach after diclofenac-induced gastric ulcers and subsequent treatment with the quail egg, Rats were randomly assigned into 4 groups; Groups I: were the control non-treated (NT), Group II were treated with Tramadol 50 mg/kg/Os (TMD) or Indomethacin (IND) 5mg/kg/Os (positive control for the writhing reflex determination), while group III and IV were treated with 3 and 6g/kg of raw quail egg respectively). Groups treated with quail egg in both doses showed a significant increase in the latent period (p <0 .05) when compared to the control NT, but lower than the group treated with tramadol at 20mins interval (p<0.05). Writing reflexes decrease in groups II, III, and IV compared to the NT group (p < 0.05). While motility increases significantly (p < 0.05) in groups II, compared to I (p<0.05). Control non-treated rats showed a quicker and extensive response to compression using the Vanier calliper on the inflamed paw compared to groups II-IV (p < 0.05). Histological studies of the stomach revealed sloughing of the epithelia, cellular infiltration with micro abscesses in the non-treated, while groups treated concurrently with quail egg showed proliferation of the glandular epithelia and goblet cells, and those treated 30 minutes before diclofenac administration showed proliferation of glands and thickening of the squamous epithelia. This study showed that quail egg has analgesic, anti-inflammatory and gastro-protective potentials and can be used as adjuvant treatment whenever COX-2 enzymes inhibitors are indicated.Keywords: analgesia, anti-inflammatory, gastroprotective effect, japanese quail egg
Procedia PDF Downloads 383879 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization
Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries
Abstract:
Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning
Procedia PDF Downloads 266878 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning
Authors: Yong Chen
Abstract:
To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference
Procedia PDF Downloads 119877 Case Study of Mechanised Shea Butter Production in South-Western Nigeria Using the LCA Approach from Gate-to-Gate
Authors: Temitayo Abayomi Ewemoje, Oluwamayowa Oluwafemi Oluwaniyi
Abstract:
Agriculture and food processing, industry are among the largest industrial sectors that uses large amount of energy. Thus, a larger amount of gases from their fuel combustion technologies is being released into the environment. The choice of input energy supply not only directly having affects the environment, but also poses a threat to human health. The study was therefore designed to assess each unit production processes in order to identify hotspots using life cycle assessments (LCA) approach in South-western Nigeria. Data such as machine power rating, operation duration, inputs and outputs of shea butter materials for unit processes obtained at site were used to modelled Life Cycle Impact Analysis on GaBi6 (Holistic Balancing) software. Four scenarios were drawn for the impact assessments. Material sourcing from Kaiama, Scenarios 1, 3 and Minna Scenarios 2, 4 but different heat supply sources (Liquefied Petroleum Gas ‘LPG’ Scenarios 1, 2 and 10.8 kW Diesel Heater, scenarios 3, 4). Modelling of shea butter production on GaBi6 was for 1kg functional unit of shea butter produced and the Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) midpoint assessment was tool used to was analyse the life cycle inventories of the four scenarios. Eight categories in all four Scenarios were observed out of which three impact categories; Global Warming Potential (GWP) (0.613, 0.751, 0.661, 0.799) kg CO2¬-Equiv., Acidification Potential (AP) (0.112, 0.132, 0.129, 0.149) kg H+ moles-Equiv., and Smog (0.044, 0.059, 0.049, 0.063) kg O3-Equiv., categories had the greater impacts on the environment in Scenarios 1-4 respectively. Impacts from transportation activities was also seen to contribute more to these environmental impact categories due to large volume of petrol combusted leading to releases of gases such as CO2, CH4, N2O, SO2, and NOx into the environment during the transportation of raw shea kernel purchased. The ratio of transportation distance from Minna and Kaiama to production site was approximately 3.5. Shea butter unit processes with greater impacts in all categories was the packaging, milling and with the churning processes in ascending order of magnitude was identified as hotspots that may require attention. From the 1kg shea butter functional unit, it was inferred that locating production site at the shortest travelling distance to raw material sourcing and combustion of LPG for heating would reduce all the impact categories assessed on the environment.Keywords: GaBi6, Life cycle assessment, shea butter production, TRACI
Procedia PDF Downloads 321876 Comprehensive Profiling and Characterization of Untargeted Extracellular Metabolites in Fermentation Processes: Insights and Advances in Analysis and Identification
Authors: Marianna Ciaccia, Gennaro Agrimi, Isabella Pisano, Maurizio Bettiga, Silvia Rapacioli, Giulia Mensa, Monica Marzagalli
Abstract:
Objective: Untargeted metabolomic analysis of extracellular metabolites is a powerful approach that focuses on comprehensively profiling in the extracellular space. In this study, we applied extracellular metabolomic analysis to investigate the metabolism of two probiotic microorganisms with health benefits that extend far beyond the digestive tract and the immune system. Methods: Analytical techniques employed in extracellular metabolomic analysis encompass various technologies, including mass spectrometry (MS), which enables the identification of metabolites present in the fermentation media, as well as the comparison of metabolic profiles under different experimental conditions. Multivariate statistical analysis techniques like principal component analysis (PCA) or partial least squares-discriminant analysis (PLS-DA) play a crucial role in uncovering metabolic signatures and understanding the dynamics of metabolic networks. Results: Different types of supernatants from fermentation processes, such as dairy-free, not dairy-free media and media with no cells or pasteurized, were subjected to metabolite profiling, which contained a complex mixture of metabolites, including substrates, intermediates, and end-products. This profiling provided insights into the metabolic activity of the microorganisms. The integration of advanced software tools has facilitated the identification and characterization of metabolites in different fermentation conditions and microorganism strains. Conclusions: In conclusion, untargeted extracellular metabolomic analysis, combined with software tools, allowed the study of the metabolites consumed and produced during the fermentation processes of probiotic microorganisms. Ongoing advancements in data analysis methods will further enhance the application of extracellular metabolomic analysis in fermentation research, leading to improved bioproduction and the advancement of sustainable manufacturing processes.Keywords: biotechnology, metabolomics, lactic bacteria, probiotics, postbiotics
Procedia PDF Downloads 69875 Phytoremediation of Hydrocarbon-Polluted Soils: Assess the Potentialities of Six Tropical Plant Species
Authors: Pulcherie Matsodoum Nguemte, Adrien Wanko Ngnien, Guy Valerie Djumyom Wafo, Ives Magloire Kengne Noumsi, Pierre Francois Djocgoue
Abstract:
The identification of plant species with the capacity to grow on hydrocarbon-polluted soils is an essential step for phytoremediation. In view of developing phytoremediation in Cameroon, floristic surveys have been conducted in 4 cities (Douala, Yaounde, Limbe, and Kribi). In each city, 13 hydrocarbon-polluted, as well as unpolluted sites (control), have been investigated using quadrat method. 106 species belonging to 76 genera and 30 families have been identified on hydrocarbon-polluted sites, unlike the control sites where floristic diversity was much higher (166 species contained in 125 genera and 50 families). Poaceae, Cyperaceae, Asteraceae and Amaranthaceae have higher taxonomic richness on polluted sites (16, 15,10 and 8 taxa, respectively). Shannon diversity index of the hydrocarbon-polluted sites (1.6 to 2.7 bits/ind.) were significantly lower than the control sites (2.7 to 3.2 bits/ind.). Based on a relative frequency > 10% and abundance > 7%, this study highlights more than ten plants predisposed to be effective in the cleaning-up attempts of soils contaminated by hydrocarbons. Based on the floristic indicators, 6 species (Eleusine indica (L.) Gaertn., Cynodon dactylon (L.) Pers., Alternanthera sessilis (L.) R. Br. ex DC †, Commelinpa benghalensis L., Cleome ciliata Schum. & Thonn. and Asystasia gangetica (L.) T. Anderson) were selected for a study to determine their capacity to remediate a soil contaminated with fuel oil (82.5 ml/ kg of soil). The experiments lasting 150 days takes into account three modalities - Tn: uncontaminated soils planted (6) To contaminated soils unplanted (3) and Tp: contaminated soil planted (18) – randomized arranged. 3 on 6 species (Eleusine indica, Cynodon dactylon, and Alternanthera sessilis) survived the climatic and soil conditions. E. indica presents a significantly higher growth rate for density and leaf area while C. dactylon had a significantly higher growth rate for stem size and leaf numbers. A. sessilis showed stunted growth and development throughout the experimental period. The species Eleusine indica (L.) Gaertn. and Cynodon dactylon (L.) Pers. can be qualified as polluo-tolerant plant species; polluo-tolerance being the ability of a species to survive and develop in the midst subject to extreme physical and chemical disturbances.Keywords: Cameroon, cleaning-up, floristic surveys, phytoremediation
Procedia PDF Downloads 242874 Lanthanum Fluoride with Embedded Silicon Nanocrystals: A Novel Material for Future Electronic Devices
Authors: Golam Saklayen, Sheikh Rashel al Ahmed, Ferdous Rahman, Ismail Abu Bakar
Abstract:
Investigation on Lanthanum Fluoride LaF3 layer embedding Silicon Nanocrystals (Si-NCs) fabricated using a novel one-step chemical method has been reported in this presentation. Application of this material has been tested for low-voltage operating non-volatile memory and Schottkey-junction solar cell. Colloidal solution of Si-NCs in hydrofluoric acid (HF) was prepared from meso-porous silicon by ultrasonic vibration (sonication). This solution prevents the Si-NCs to be oxidized. On a silicon (Si) substrate, LaCl3 solution in HCl is allowed to react with the colloidal solution of prepared Si-NCs. Since this solution contains HF, LaCl3 reacts with HF and produces LaF3 crystals that deposits on the silicon substrate as a layer embedding Si-NCs. This a novel single step chemical way of depositing LaF3 insulating layer embedding Si-NCs. The X-Ray diffraction of the deposited layer shows a polycrystalline LaF3 deposition on silicon. A non-stoichiometric LaF3 layer embedding Si-NCs was found by EDX analysis. The presence of Si-NCs was confirmed by SEM. FTIR spectroscopy of the deposited LaF3 powder also confirmed the presence of Si-NCs. The size of Si-NCs was found to be inversely proportional to the ultrasonic power. After depositing proper contacts on the back of Si and LaF3, the devices have been tested as a non-volatile memory and solar cell. A memory window of 525 mV was obtained at a programming and erasing bias of 2V. The LaF3 films with Si NCs showed strong absorption and was also found to decrease optical transmittance than pure LaF3 film of same thickness. The I-V characteristics of the films showed a dependency on the incident light intensity where current changed under various light illumination. Experimental results show a lot of promise for Si-NCs-embedded LaF3 layer to be used as an insulating layer in MIS devices as well as an photoactive material in Schottkey junction solar cells.Keywords: silicon nanocrystals (Si NCs), LaF3, colloidal solution, Schottky junction solar cell
Procedia PDF Downloads 389873 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency
Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari
Abstract:
Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes
Procedia PDF Downloads 188872 Production of High Purity Cellulose Products from Sawdust Waste Material
Authors: Simiksha Balkissoon, Jerome Andrew, Bruce Sithole
Abstract:
Approximately half of the wood processed in the Forestry, Timber, Pulp and Paper (FTPP) sector is accumulated as waste. The concept of a “green economy” encourages industries to employ revolutionary, transformative technologies to eliminate waste generation by exploring the development of new value chains. The transition towards an almost paperless world driven by the rise of digital media has resulted in a decline in traditional paper markets, prompting the FTTP sector to reposition itself and expand its product offerings by unlocking the potential of value-adding opportunities from renewable resources such as wood to generate revenue and mitigate its environmental impact. The production of valuable products from wood waste such as sawdust has been extensively explored in recent years. Wood components such as lignin, cellulose and hemicelluloses, which can be extracted selectively by chemical processing, are suitable candidates for producing numerous high-value products. In this study, a novel approach to produce high-value cellulose products, such as dissolving wood pulp (DWP), from sawdust was developed. DWP is a high purity cellulose product used in several applications such as pharmaceutical, textile, food, paint and coatings industries. The proposed approach demonstrates the potential to eliminate several complex processing stages, such as pulping and bleaching, which are associated with traditional commercial processes to produce high purity cellulose products such as DWP, making it less chemically energy and water-intensive. The developed process followed the path of experimentally designed lab tests evaluating typical processing conditions such as residence time, chemical concentrations, liquid-to-solid ratios and temperature, followed by the application of suitable purification steps. Characterization of the product from the initial stage was conducted using commercially available DWP grades as reference materials. The chemical characteristics of the products thus far have shown similar properties to commercial products, making the proposed process a promising and viable option for the production of DWP from sawdust.Keywords: biomass, cellulose, chemical treatment, dissolving wood pulp
Procedia PDF Downloads 184871 Assessing the Applicability of Kevin Lynch’s Framework of ‘the Image of the City’ in the Case of a Walled City of Jaipur
Authors: Jay Patel
Abstract:
This Research is about investigating the ‘image’ of the city, and asks whether this ‘image’ holds any significance that can be changed. Kevin Lynch in the book ‘The image of the city’ develops a framework that breaks down the city’s image into five physical elements. These elements (Paths, Edge, Nodes, Districts, and Landmarks), according to Lynch assess the legibility of the urbanscapes, that emerged from his perception-based study in 3 different cities (New Jersey, Los Angeles, and Boston) in the USA. The aim of this research is to investigate whether Lynch’s framework can be applied within an Indian context or not. If so, what are the possibilities and whether the imageability of Indian cities can be depicted through the Lynch’s physical elements or it demands an extension to the framework by either adding or subtracting a physical attribute. For this research project, the walled city of Jaipur was selected, as it is considered one of the futuristic designed cities of all time in India. The other significant reason for choosing Jaipur was that it is a historically planned city with solid historical, touristic and local importance; allowing an opportunity to understand the application of Lynch's elements to the city's image. In other words, it provides an opportunity to examine how the disadvantages of a city's implicit programme (its relics of bygone eras) can be converted into assets by improving the imageability of the city. To obtain data, a structured semi-open ended interview method was chosen. The reason for selecting this method explicitly was to gain qualitative data from the users rather than collecting quantitative data from closed-ended questions. This allowed in-depth understanding and applicability of Kevin Lynch’s framework while assessing what needs to be added. The interviews were conducted in Jaipur that yielded varied inferences that were different from the expected learning outcomes, highlighting the need for extension on Lynch’s physical elements to achieve city’s image. Whilst analyzing the data, there were few attributes found that defined the image of Jaipur. These were categorized into two: a Physical aspect (streets and arcade entities, natural features, temples and temporary/ informal activities) and Associational aspects (History, Culture and Tradition, Medium of help in wayfinding, and intangible aspects).Keywords: imageability, Kevin Lynch, people’s perception, assessment, associational aspects, physical aspects
Procedia PDF Downloads 196870 Poly-ε-Caprolactone Nanofibers with Synthetic Growth Factor Enriched Liposomes as Controlled Drug Delivery System
Authors: Vera Sovkova, Andrea Mickova, Matej Buzgo, Karolina Vocetkova, Eva Filova, Evzen Amler
Abstract:
PCL (poly-ε-caprolactone) nanofibrous scaffolds with adhered liposomes were prepared and tested as a possible drug delivery system for various synthetic growth factors. TGFβ, bFGF, and IGF-I have been shown to increase hMSC (human mesenchymal stem cells) proliferation and to induce hMSC differentiation. Functionalized PCL nanofibers were prepared with synthetic growth factors encapsulated in liposomes adhered to them in three different concentrations. Other samples contained PCL nanofibers with adhered, free synthetic growth factors. The synthetic growth factors free medium served as a control. The interaction of liposomes with the PCL nanofibers was visualized by SEM, and the release kinetics were determined by ELISA testing. The potential of liposomes, immobilized on the biodegradable scaffolds, as a delivery system for synthetic growth factors, and as a suitable system for MSCs adhesion, proliferation and differentiation in vitro was evaluated by MTS assay, dsDNA amount determination, confocal microscopy, flow cytometry and real-time PCR. The results showed that the growth factors adhered to the PCL nanofibers stimulated cell proliferation mainly up to day 11 and that subsequently their effect was lower. By contrast, the release of the lowest concentration of growth factors from liposomes resulted in gradual proliferation of MSCs throughout the experiment. Moreover, liposomes, as well as free growth factors, stimulated type II collagen production, which was confirmed by immunohistochemical staining using monoclonal antibody against type II collagen. The results of this study indicate that growth factors enriched liposomes adhered to surface of PCL nanofibers could be useful as a drug delivery instrument for application in short timescales, be combined with nanofiber scaffolds to promote local and persistent delivery while mimicking the local microenvironment. This work was supported by project LO1508 from the Ministry of Education, Youth and Sports of the Czech RepublicKeywords: drug delivery, growth factors, hMSC, liposomes, nanofibres
Procedia PDF Downloads 287