Search results for: link data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26108

Search results for: link data

19388 Flood Simulation and Forecasting for Sustainable Planning of Response in Municipalities

Authors: Mariana Damova, Stanko Stankov, Emil Stoyanov, Hristo Hristov, Hermand Pessek, Plamen Chernev

Abstract:

We will present one of the first use cases on the DestinE platform, a joint initiative of the European Commission, European Space Agency and EUMETSAT, providing access to global earth observation, meteorological and statistical data, and emphasize the good practice of intergovernmental agencies acting in concert. Further, we will discuss the importance of space-bound disruptive solutions for improving the balance between the ever-increasing water-related disasters coming from climate change and minimizing their economic and societal impact. The use case focuses on forecasting floods and estimating the impact of flood events on the urban environment and the ecosystems in the affected areas with the purpose of helping municipal decision-makers to analyze and plan resource needs and to forge human-environment relationships by providing farmers with insightful information for improving their agricultural productivity. For the forecast, we will adopt an EO4AI method of our platform ISME-HYDRO, in which we employ a pipeline of neural networks applied to in-situ measurements and satellite data of meteorological factors influencing the hydrological and hydrodynamic status of rivers and dams, such as precipitations, soil moisture, vegetation index, snow cover to model flood events and their span. ISME-HYDRO platform is an e-infrastructure for water resources management based on linked data, extended with further intelligence that generates forecasts with the method described above, throws alerts, formulates queries, provides superior interactivity and drives communication with the users. It provides synchronized visualization of table views, graphviews and interactive maps. It will be federated with the DestinE platform.

Keywords: flood simulation, AI, Earth observation, e-Infrastructure, flood forecasting, flood areas localization, response planning, resource estimation

Procedia PDF Downloads 29
19387 Online Battery Equivalent Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method

Authors: Cheng Zhang, James Marco, Walid Allafi, Truong Q. Dinh, W. D. Widanage

Abstract:

Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a way of online ECM parameter identification using a continuous time (CT) estimation method. The CT estimation method has several advantages over discrete time (DT) estimation methods for ECM parameter identification due to the widely separated battery dynamic modes and fast sampling. The presented method can be used for online SOC estimation. Test data are collected using a lithium ion cell, and the experimental results show that the presented CT method achieves better modelling accuracy compared with the conventional DT recursive least square method. The effectiveness of the presented method for online SOC estimation is also verified on test data.

Keywords: electric circuit model, continuous time domain estimation, linear integral filter method, parameter and SOC estimation, recursive least square

Procedia PDF Downloads 386
19386 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 125
19385 Measuring the Impact of Implementing an Effective Practice Skills Training Model in Youth Detention

Authors: Phillipa Evans, Christopher Trotter

Abstract:

Aims: This study aims to examine the effectiveness of a practice skills framework implemented in three youth detention centres in Juvenile Justice in New South Wales (NSW), Australia. The study is supported by a grant from and Australian Research Council and NSW Juvenile Justice. Recent years have seen a number of incidents in youth detention centres in Australia and other places. These have led to inquiries and reviews with some suggesting that detention centres often do not even meet basic human rights and do little in terms of providing opportunities for rehabilitation of residents. While there is an increasing body of research suggesting that community based supervision can be effective in reducing recidivism if appropriate skills are used by supervisors, there has been less work considering worker skills in youth detention settings. The research that has been done, however, suggest that teaching interpersonal skills to youth officers may be effective in enhancing the rehabilitation culture of centres. Positive outcomes have been seen in a UK detention centre for example, from teaching staff to do five-minute problem-solving interventions. The aim of this project is to examine the effectiveness of training and coaching youth detention staff in three NSW detention centres in interpersonal practice skills. Effectiveness is defined in terms of reductions in the frequency of critical incidents and improvements in the well-being of staff and young people. The research is important as the results may lead to the development of more humane and rehabilitative experiences for young people. Method: The study involves training staff in core effective practice skills and supporting staff in the use of those skills through supervision and de-briefing. The core effective practice skills include role clarification, pro-social modelling, brief problem solving, and relationship skills. The training also addresses some of the background to criminal behaviour including trauma. Data regarding critical incidents and well-being before and after the program implementation are being collected. This involves interviews with staff and young people, the completion of well-being scales, and examination of departmental records regarding critical incidents. In addition to the before and after comparison a matched control group which is not offered the intervention is also being used. The study includes more than 400 young people and 100 youth officers across 6 centres including the control sites. Data collection includes interviews with workers and young people, critical incident data such as assaults, use of lock ups and confinement and school attendance. Data collection also includes analysing video-tapes of centre activities for changes in the use of staff skills. Results: The project is currently underway with ongoing training and supervision. Early results will be available for the conference.

Keywords: custody, practice skills, training, youth workers

Procedia PDF Downloads 107
19384 Using the Geographical Information Systems Story Maps in the Planning and Implementation of the Integrated Development Plan at the City of Umhlathuze, South Africa

Authors: Sibonakaliso Shadrack Nhlabathi

Abstract:

In South Africa local governments which are charged with the provision of services and amenities, frequently, face challenges of public protests against what the public perceives to be poor services. Public protests are common, even though the Integrated Development Plan, a central public participation document, which informs local government planning and resources management, ought to be a reflection of the voices of the beneficiary communities. The Integrated Development Plan concept –which evolved from the international discourse on governance, planning, and urban management of the 1990s, and, which bears similarities to the UK’s approaches to urban management and planning– is a significant concept in the planning practice in South Africa. Against this backdrop of the spread of public protests and the supposedly public participation in IDP formulation, this study investigated the extent to which residents of the city of uMhlathuze municipality, South Africa, could use Geographical Information Systems (GIS) Story Maps to enhance public participation in the provision of services and amenities. To this effect, this study collected and analysed data obtained through interactive web maps or hard copy maps; this map data was accompanied by research participants’ attributes data. Research participants identified positive or negative service delivery areas. Positive places were the places which the residents represented as good infrastructural, and amenities areas and weak places were marked as poor amenities. Participants then located each of their identified strong or weak places as points on the GIS Story Maps or on hard copy maps of the city. The information which participants provided was subsequently analysed to produce maps of patterns of service provision. In this way, the study succeeded to identify places that needed attention regarding delivery of services and amenities. Thus, this study advanced service provision through GIS Story Maps.

Keywords: GIS, IPD, South Africa, story maps

Procedia PDF Downloads 130
19383 The Effect of Voice Recognition Dictation Software on Writing Quality in Third Grade Students: An Action Research Study

Authors: Timothy J. Grebec

Abstract:

This study investigated whether using a voice dictation software program (i.e., Google Voice Typing) has an impact on student writing quality. The research took place in a third-grade general education classroom in a suburban school setting. Because the study involved minors, all data was encrypted and deidentified before analysis. The students completed a series of writings prior to the beginning of the intervention to determine their thoughts and skill level with writing. During the intervention phase, the students were introduced to the voice dictation software, given an opportunity to practice using it, and then assigned writing prompts to be completed using the software. The prompts written by nineteen student participants and surveys of student opinions on writing established a baseline for the study. The data showed that using the dictation software resulted in a 34% increase in the response quality (compared to the Pennsylvania State Standardized Assessment [PSSA] writing guidelines). Of particular interest was the increase in students' proficiency in demonstrating mastery of the English language and conventions and elaborating on the content. Although this type of research is relatively no, it has the potential to reshape the strategies educators have at their disposal when instructing students on written language.

Keywords: educational technology, accommodations, students with disabilities, writing instruction, 21st century education

Procedia PDF Downloads 79
19382 Intelligent Control of Agricultural Farms, Gardens, Greenhouses, Livestock

Authors: Vahid Bairami Rad

Abstract:

The intelligentization of agricultural fields can control the temperature, humidity, and variables affecting the growth of agricultural products online and on a mobile phone or computer. Smarting agricultural fields and gardens is one of the best and best ways to optimize agricultural equipment and has a 100 percent direct effect on the growth of plants and agricultural products and farms. Smart farms are the topic that we are going to discuss today, the Internet of Things and artificial intelligence. Agriculture is becoming smarter every day. From large industrial operations to individuals growing organic produce locally, technology is at the forefront of reducing costs, improving results and ensuring optimal delivery to market. A key element to having a smart agriculture is the use of useful data. Modern farmers have more tools to collect intelligent data than in previous years. Data related to soil chemistry also allows people to make informed decisions about fertilizing farmland. Moisture meter sensors and accurate irrigation controllers have made the irrigation processes to be optimized and at the same time reduce the cost of water consumption. Drones can apply pesticides precisely on the desired point. Automated harvesting machines navigate crop fields based on position and capacity sensors. The list goes on. Almost any process related to agriculture can use sensors that collect data to optimize existing processes and make informed decisions. The Internet of Things (IoT) is at the center of this great transformation. Internet of Things hardware has grown and developed rapidly to provide low-cost sensors for people's needs. These sensors are embedded in IoT devices with a battery and can be evaluated over the years and have access to a low-power and cost-effective mobile network. IoT device management platforms have also evolved rapidly and can now be used securely and manage existing devices at scale. IoT cloud services also provide a set of application enablement services that can be easily used by developers and allow them to build application business logic. Focus on yourself. These development processes have created powerful and new applications in the field of Internet of Things, and these programs can be used in various industries such as agriculture and building smart farms. But the question is, what makes today's farms truly smart farms? Let us put this question in another way. When will the technologies associated with smart farms reach the point where the range of intelligence they provide can exceed the intelligence of experienced and professional farmers?

Keywords: food security, IoT automation, wireless communication, hybrid lifestyle, arduino Uno

Procedia PDF Downloads 60
19381 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology

Procedia PDF Downloads 120
19380 Factors Affecting Cost Efficiency of Municipal Waste Services in Tuscan Municipalities: An Empirical Investigation by Accounting for Different Management

Authors: María Molinos-Senante, Giulia Romano

Abstract:

This paper aims at investigating the effect of ownership in the efficiency assessment of municipal solid waste management. In doing so, the Data Envelopment Analysis meta-frontier approach integrating unsorted waste as undesirable output was applied. Three different clusters of municipalities have been created on the basis of the ownership type of municipal waste operators. In the second stage of analysis, the paper investigates factors affecting efficiency, in order to provide an outlook of levers to be used by policy and decision makers to improve efficiency, taking into account different management models in force. Results show that public waste management firms have better performance than mixed and private ones since their efficiency scores are significantly larger. Moreover, it has been demonstrated that the efficiency of waste management firms is statistically influenced by the age of population, population served, municipal size, population density and tourism rate. It evidences the importance of economies of scale on the cost efficiency of waste management. This issue is relevant for policymakers to define and implement policies aimed to improve the long-term sustainability of waste management in municipalities.

Keywords: data envelopment analysis, efficiency, municipal solid waste, ownership, undesirable output

Procedia PDF Downloads 166
19379 Synthesis of LiMₓMn₂₋ₓO₄ Doped Co, Ni, Cr and Its Characterization as Lithium Battery Cathode

Authors: Dyah Purwaningsih, Roto Roto, Hari Sutrisno

Abstract:

Manganese dioxide (MnO₂) and its derivatives are among the most widely used materials for the positive electrode in both primary and rechargeable lithium batteries. The MnO₂ derivative compound of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is one of the leading candidates for positive electrode materials in lithium batteries as it is abundant, low cost and environmentally friendly. Over the years, synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) has been carried out using various methods including sol-gel, gas condensation, spray pyrolysis, and ceramics. Problems with these various methods persist including high cost (so commercially inapplicable) and must be done at high temperature (environmentally unfriendly). This research aims to: (1) synthesize LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) by reflux technique; (2) develop microstructure analysis method from XRD Powder LiMₓMn₂₋ₓO₄ data with the two-stage method; (3) study the electrical conductivity of LiMₓMn₂₋ₓO₄. This research developed the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) with reflux. The materials consisting of Mn(CH₃COOH)₂. 4H₂O and Na₂S₂O₈ were refluxed for 10 hours at 120°C to form β-MnO₂. The doping of Co, Ni and Cr were carried out using solid-state method with LiOH to form LiMₓMn₂₋ₓO₄. The instruments used included XRD, SEM-EDX, XPS, TEM, SAA, TG/DTA, FTIR, LCR meter and eight-channel battery analyzer. Microstructure analysis of LiMₓMn₂₋ₓO₄ was carried out on XRD powder data by two-stage method using FullProf program integrated into WinPlotR and Oscail Program as well as on binding energy data from XPS. The morphology of LiMₓMn₂₋ₓO₄ was studied with SEM-EDX, TEM, and SAA. The thermal stability test was performed with TG/DTA, the electrical conductivity was studied from the LCR meter data. The specific capacity of LiMₓMn₂₋ₓO₄ as lithium battery cathode was tested using an eight-channel battery analyzer. The results showed that the synthesis of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) was successfully carried out by reflux. The optimal temperature of calcination is 750°C. XRD characterization shows that LiMn₂O₄ has a cubic crystal structure with Fd3m space group. By using the CheckCell in the WinPlotr, the increase of Li/Mn mole ratio does not result in changes in the LiMn₂O₄ crystal structure. The doping of Co, Ni and Cr on LiMₓMn₂₋ₓO₄ (x = 0.02; 0.04; 0; 0.6; 0.08; 0.10) does not change the cubic crystal structure of Fd3m. All the formed crystals are polycrystals with the size of 100-450 nm. Characterization of LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) microstructure by two-stage method shows the shrinkage of lattice parameter and cell volume. Based on its range of capacitance, the conductivity obtained at LiMₓMn₂₋ₓO₄ (M: Co, Ni, Cr) is an ionic conductivity with varying capacitance. The specific battery capacity at a voltage of 4799.7 mV for LiMn₂O₄; Li₁.₀₈Mn₁.₉₂O₄; LiCo₀.₁Mn₁.₉O₄; LiNi₀.₁Mn₁.₉O₄ and LiCr₀.₁Mn₁.₉O₄ are 88.62 mAh/g; 2.73 mAh/g; 89.39 mAh/g; 85.15 mAh/g; and 1.48 mAh/g respectively.

Keywords: LiMₓMn₂₋ₓO₄, solid-state, reflux, two-stage method, ionic conductivity, specific capacity

Procedia PDF Downloads 198
19378 Project-Bbased Learning (PBL) Taken to Extremes: Full-Year/Full-Time PBL Replacement of Core Curriculum

Authors: Stephen Grant Atkins

Abstract:

Radical use of project-based learning (PBL) in a small New Zealand business school provides an opportunity to longitudinally examine its effects over a decade of pre-Covid data. Prior to this business school’s implementation of PBL, starting in 2012, the business pedagogy literature presented just one example of PBL replacing an entire core-set of courses. In that instance, a British business school merged four of its ‘degree Year 3’ accounting courses into one PBL semester. As radical as that would have seemed, to students aged 20-to-22, the PBL experiment conducted in a New Zealand business school was notably more extreme: 41 nationally-approved Learning Outcomes (L.O.s), these deriving from 8 separate core courses, were aggregated into one grand set of L.O.s, and then treated as a ‘full-year’/‘full-time’ single course. The 8 courses in question were all components of this business school’s compulsory ‘degree Year 1’ curriculum. Thus, the students involved were notably younger (…ages 17-to-19…), and no ‘part-time’ enrolments were allowed. Of interest are this PBL experiment’s effects on subsequent performance outcomes in ‘degree Years 2 & 3’ (….which continued to operate in their traditional ways). Of special interest is the quality of ‘group project’ outcomes. This is because traditionally, ‘degree Year 1’ course assessments are only minimally based on group work. This PBL experiment altered that practice radically, such that PBL ‘degree Year 1’ alumni entered their remaining two years of business coursework with far more ‘project group’ experience. Timeline-wise, thus of interest here, firstly, is ‘degree Year 2’ performance outcomes data from years 2010-2012 + 2016-2018, and likewise ‘degree Year 3’ data for years 2011-2013 + 2017-2019. Those years provide a pre-&-post comparative baseline for performance outcomes in students never exposed to this school’s radical PBL experiment. That baseline is then compared to PBL alumni outcomes (2013-2016….including’Student Evaluation of Course Quality’ outcomes…) to clarify ‘radical PBL’ effects.

Keywords: project-based learning, longitudinal mixed-methods, students criticism, effects-on-learning

Procedia PDF Downloads 101
19377 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: behavior, big data, hierarchical hidden Markov model, intelligent object

Procedia PDF Downloads 239
19376 Distributive School Leadership in Croatian Primary Schools

Authors: Iva Buchberger, Vesna Kovač

Abstract:

Global education policy trends and recommendations underline the importance of (distributive) school leadership as a school effectiveness key factor. In this context, the broader aim of this research (supported by the Croatian Science Foundation) is to identify school leadership characteristics in Croatian schools and to examine the correlation between school leadership and school effectiveness. The aim of the proposed conference paper is to focus on the school leadership characteristics which are additionally explained with school leadership facilitators that contribute to (distributive) school leadership development. The aforementioned school leadership characteristics include the following dimensions: (a) participation in the process of making different types of decisions, (b) influence in the decision making process, (c) social interactions between different stakeholders in the decision making process in schools. Further, the school leadership facilitators are categorized as follows: (a) principal’s activities (such as providing support to different stakeholders and developing mutual trust among them), (b) stakeholders’ characteristics (such as developed stakeholders’ interest and competence to participate in decision-making process), (c) organizational and material resources (such as school material conditions, the necessary information and time as resources for making decisions). The data were collected by a constructed and validated questionnaire for examining the school leadership characteristics and facilitators from teachers’ perspective. The main population in this study consists of all primary schools in Croatia while the sample is comprised of 100 primary schools, selected by random sampling. Furthermore, the sample of teachers was selected by an additional procedure taking into consideration the independent variables of sex, work experience, etc. Data processing was performed by standard statistical methods of descriptive and inferential statistics. Statistical program IBM SPSS 20.0 was used for data processing. The results of this study show that there is a (positive) correlation between school leadership characteristics and school leadership facilitators. Specifically, it is noteworthy to mention that all the dimensions of school leadership characteristics are in positive correlation with the categories of school leadership facilitators. These results are indicative for the education policy creators who should ensure positive and supportive environment for the school leadership development including the development of school leadership characteristics and school leadership facilitators.

Keywords: distributive school leadership, school effectiveness , school leadership characteristics, school leadership facilitators

Procedia PDF Downloads 252
19375 Organizational Agility in 22 Districts of Tehran Municipality

Authors: Mehrnoosh Jafari, Zeinolabedin Amini Sabegh, Habibollah Azimian

Abstract:

Background: Today variable and dynamic environment doubles importance of using suitable solutions for confronting these changes in th4e organizations. One of the best ways for coping with environmental changes is directing the organization towards agility. Current research aims at investigating status of organizational agility in Tehran municipality (22 districts). Research Methodology: This research is applied research in terms of purpose of study and it is survey in terms of collection of descriptive data. A sample (n = 377) was selected from Tehran Municipality (22 districts) employees using multistage sampling method (cluster and regular). Data were collected using organizational agility standard questionnaire, and they were analyzed using statistical tests in SPSS software as well as inferential statistics such as one-sample t-test and Friedman test and descriptive statistics such as mean and median. Findings: Research findings showed organizational agility status in the organizations under study is in relatively optimal status and competence has highest priority in terms of ranking and priority of organizational agility indexes. Conclusion: It is necessary that managers provide suitable conditions for promoting organizational agility status in the organizations under study by identifying factors affecting change in the organizational environments and using available potentials for better coping with changes and higher flexibility and speed.

Keywords: organizational, municipality, employer, agility

Procedia PDF Downloads 357
19374 Economics of Household Expenditure Pattern on Animal Products in Bauchi Metropolis, Bauchi State, Nigeria

Authors: B. Hamidu, A. Abdulhamid, S. Mohammed, S. Idi

Abstract:

This study examined the household expenditure pattern on animal products in Bauchi metropolis. A cross-sectional data were collected from 157 households using systematic sampling technique. The data were analyzed using descriptive statistics, correlation and regression models. The results reveal that the mean age, mean household size, mean monthly income and mean total expenditure on animal products were found to be 39 years, 7 persons, N28,749 and N1,740 respectively. It was also found that household monthly income, number of children and educational level of the household heads (P<0.01) significantly influence the level of household expenditure on animal products. Similarly, income was found to be the most important factor determining the proportion of total expenditure on animal products (20.91%). Income elasticity was found to be 0.66 indicating that for every 1% increase in income, expenditure on animal products would increase by 0.66%. Furthermore, beef was found to be the most preferred (54.83%) and most regularly consumed (61.84%) animal products. However, it was discovered that the major constraints affecting the consumption of animal products were low-income level of the households (29.85%), high cost of animal products (15.82%) and increase in prices of necessities (15.82%). Therefore to improve household expenditure on animal products per capita real income of the households should be improved through creation of employment opportunities. Also stabilization of market prices of animal products and other foods items of necessities through increased production are recommended.

Keywords: animal products, economics, expenditure, households

Procedia PDF Downloads 250
19373 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion

Authors: Andrey Khalov

Abstract:

The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.

Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER

Procedia PDF Downloads 26
19372 Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent

Authors: Pyar Singh Jassal, Priti Rani, Rajni Johar

Abstract:

The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0Keywords: magnetic chitosan beads, ethylene glycol diglycidyl ether, equilibrium parameters, desorption

Procedia PDF Downloads 91
19371 The Effect of Reminiscence Therapy with Ethernet-Based Videos on Cognition and Apathy in Elderly with Mild Dementia

Authors: Ayse Inel Manav, Nuray Simsek

Abstract:

The number of people with dementia and the problems that are experienced by these people are increasing along with aging world population. This study was carried out to assess the effects of reminiscence therapy using internet videos on the cognitive condition and apathy levels of elderly people who had mild dementia and lived in nursing homes. This randomly controlled experimental study was conducted between 25 May-25 August 2016 in the nursing home, elderly care and rehabilitation centers in Adana and Seyhan, Turkey. A total of 32 individuals participated in this study, 16 in the experimental group and 16 in the control group. Data were collected using a personal information form developed on the basis of the published literature, the Standardized Mini Mental Test (SMMT) and the Apathy Rating Scale (ARS). The Clinical Research Ethics Committee's approval, written institutional permission, and the written consent of the participants were obtained before data collection. The individuals in the experimental group received reminiscence therapy using internet videos for 60 minutes one day a week for three months. During the same period, 25-30 minutes of unstructured interviews on subjects unrelated to reminiscence were carried out with individuals in the control group. The SMMT and ARS were administered before the applications in the experimental group and at the end of the third month. The collected data were analyzed using descriptive statistics (means, standard deviations, and frequencies) as well as Student's t-test, the Mann-Whitney U-test, and Wilcoxon's signed ranks test. In this study, the total SMMT post-test scores of the experimental group were higher than those of the control group (p = 0.001; p < 0.01). There was a difference between experimental and control groups' total SMMT post-test scores (p = 0.001; p < 0.01). The experimental group's ARS total post-test scores were higher than those of the control group (p = 0.001; p < 0.01). This study found that group reminiscence therapy using internet videos improved the cognitive functions and apathy levels of elderly individuals with mild dementia.

Keywords: apaty, cognitive testing, dementia, elderly, reminisence threapy

Procedia PDF Downloads 201
19370 Management of Acute Appendicitis with Preference on Delayed Primary Suturing of Surgical Incision

Authors: N. A. D. P. Niwunhella, W. G. R. C. K. Sirisena

Abstract:

Appendicitis is one of the most encountered abdominal emergencies worldwide. Proper clinical diagnosis and appendicectomy with minimal post operative complications are therefore priorities. Aim of this study was to ascertain the overall management of acute appendicitis in Sri Lanka in special preference to delayed primary suturing of the surgical site, comparing other local and international treatment outcomes. Data were collected prospectively from 155 patients who underwent appendicectomy following clinical and radiological diagnosis with ultrasonography. Histological assessment was done for all the specimens. All perforated appendices were managed with delayed primary closure. Patients were followed up for 28 days to assess complications. Mean age of patient presentation was 27 years; mean pre-operative waiting time following admission was 24 hours; average hospital stay was 72 hours; accuracy of clinical diagnosis of appendicitis as confirmed by histology was 87.1%; post operative wound infection rate was 8.3%, and among them 5% had perforated appendices; 4 patients had post operative complications managed without re-opening. There was no fistula formation or mortality reported. Current study was compared with previously published data: a comparison on management of acute appendicitis in Sri Lanka vs. United Kingdom (UK). The diagnosis of current study was equally accurate, but post operative complications were significantly reduced - (current study-9.6%, compared Sri Lankan study-16.4%; compared UK study-14.1%). During the recent years, there has been an exponential rise in the use of Computerised Tomography (CT) imaging in the assessment of patients with acute appendicitis. Even though, the diagnostic accuracy without using CT, and treatment outcome of acute appendicitis in this study match other local studies as well as with data compared to UK. Therefore CT usage has not increased the diagnostic accuracy of acute appendicitis significantly. Especially, delayed primary closure may have reduced post operative wound infection rate for ruptured appendices, therefore suggest this approach for further evaluation as a safer and an effective practice in other hospitals worldwide as well.

Keywords: acute appendicitis, computerised tomography, diagnostic accuracy, delayed primary closure

Procedia PDF Downloads 171
19369 Prediction of Ionic Liquid Densities Using a Corresponding State Correlation

Authors: Khashayar Nasrifar

Abstract:

Ionic liquids (ILs) exhibit particular properties exemplified by extremely low vapor pressure and high thermal stability. The properties of ILs can be tailored by proper selection of cations and anions. As such, ILs are appealing as potential solvents to substitute traditional solvents with high vapor pressure. One of the IL properties required in chemical and process design is density. In developing corresponding state liquid density correlations, scaling hypothesis is often used. The hypothesis expresses the temperature dependence of saturated liquid densities near the vapor-liquid critical point as a function of reduced temperature. Extending the temperature dependence, several successful correlations were developed to accurately correlate the densities of normal liquids from the triple point to a critical point. Applying mixing rules, the liquid density correlations are extended to liquid mixtures as well. ILs are not molecular liquids, and they are not classified among normal liquids either. Also, ILs are often used where the condition is far from equilibrium. Nevertheless, in calculating the properties of ILs, the use of corresponding state correlations would be useful if no experimental data were available. With well-known generalized saturated liquid density correlations, the accuracy in predicting the density of ILs is not that good. An average error of 4-5% should be expected. In this work, a data bank was compiled. A simplified and concise corresponding state saturated liquid density correlation is proposed by phenomena-logically modifying reduced temperature using the temperature-dependence for an interacting parameter of the Soave-Redlich-Kwong equation of state. This modification improves the temperature dependence of the developed correlation. Parametrization was next performed to optimize the three global parameters of the correlation. The correlation was then applied to the ILs in our data bank with satisfactory predictions. The correlation of IL density applied at 0.1 MPa and was tested with an average uncertainty of around 2%. No adjustable parameter was used. The critical temperature, critical volume, and acentric factor were all required. Methods to extend the predictions to higher pressures (200 MPa) were also devised. Compared to other methods, this correlation was found more accurate. This work also presents the chronological order of developing such correlations dealing with ILs. The pros and cons are also expressed.

Keywords: correlation, corresponding state principle, ionic liquid, density

Procedia PDF Downloads 134
19368 Genre Analysis of Postgraduate Theses and Dissertations: Case of Statement of the Problem

Authors: H. Mashhady, H. A. Manzoori, M. Doosti, M. Fatollahi

Abstract:

This study reports a descriptive research in the form of a genre analysis of postgraduates' theses and dissertations at three Iranian universities, including Ferdowsi, Tehran, and Tarbiat Moddares universities. The researchers sought to depict the generic structure of “statement of the problem” section of PhD dissertations and MA theses. Moreover, researchers desired to find any probable variety based on the year the dissertations belonged, to see weather genre-consciousness developed among Iranian postgraduates. To obtain data, “statement of the problem” section of 90 Ph.D. dissertations and MA theses from 2001 to 2013 in Teaching English as a Foreign Language (TEFL) at above-mentioned universities was selected. Frequency counts was employed for the quantitative method of data analysis, while genre analysis was used as the qualitative method. Inter-rater reliability was found to be about 0.93. Results revealed that students in different degrees at each of these universities used various generic structures for writing “statement of the problem”. Moreover, comparison of different time periods (2001-2006, and 2007-2013) revealed that postgraduates in the second time period, regardless of their degree and university, employed more similar generic structures which can be optimistically attributed to a general raise in genre awareness.

Keywords: genre, genre analysis, Ph.D. and MA dissertations, statement of the problem, generic structure

Procedia PDF Downloads 671
19367 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study

Authors: Catherine Mary Abou-Zaid

Abstract:

This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.

Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education

Procedia PDF Downloads 320
19366 Public Accountability, a Challenge to Sustainable Development: A Case Study of Uganda

Authors: Nassali Celine Lindah

Abstract:

The study sought to find out how public accountability is a challenge to sustainable development in Uganda. The study was guided by the following set of objectives included establishing the challenges of Public accountability, the importance of accountability in Uganda, and the possible solutions to the problems identified in the study. In order to ensure proper accountability there should be proper control of resources, specifically the control of both public revenue and expenditures. Stakeholders should also be involved in the accountability process. Accountability can reduce corruption and other abuses, assure compliance with standards and procedures, and improve performance and organizational learning. The study involved qualitative and quantitative data collection techniques. A sample of 20 respondents from various districts/towns was used using both technical staff and non-technical staff members. The study utilized secondary and primary data, which was obtained using interviews and observations. The study reached a conclusion that the major challenges of Public accountability in Uganda are poor leadership, poor resource management, unethical behavior by the government officials and political involvement, among others. The study also recommended that the policymakers should design relevant guidelines/policies to help promote the process of public accountability in Uganda like prosecution and convictions, strengthen public expenditure management benchmarking and performance measurements, among others.

Keywords: accountability, sustainability, government activities, government sector

Procedia PDF Downloads 142
19365 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland

Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski

Abstract:

PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.

Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks

Procedia PDF Downloads 153
19364 Social Adjustment of Adolescence Living with Step Parent Families in Pakistan

Authors: Akbar Ali

Abstract:

This study played an important role in the investigation of social adjustment of adolescent living with step parent families in Pakistan. Families plays an crucial role in the training and adjustment of adolescents’ personal, social and academic life. Adolescents living with parent families often experience different challenges which affects their social adjustment in the family and which further have impact on their academic and social life. One of central theme investigated in this study is parenting practice and other major theme is parental capital. The objectives of the study were to determine how different parenting styles being practiced in family affects adolescents’ adjustment and what is the role of parental capital in adolescents adjustment. qualitative approach was adopted for this research. Adolescents who are studying at college and living with step parent families participated in this study. Data was collected through interviews. Collected data was analyzed through NVIVO. Through findings, it is stated that parenting style and parental capital determining factors affecting adolescents’ adjustment and family experiences. The study suggest a comprehensive and practical approach for the adjustment of adolescents. Government should establish counselling and enabling facilities for adolescents’ for the wellbeing and better social adjustment.

Keywords: adolescents, academic life, parental capital, parental practices, social adjustment

Procedia PDF Downloads 19
19363 Predicting the Relationship Between the Corona Virus Anxiety and Psychological Hardiness in Staff Working at Hospital in Shiraz Iran

Authors: Gholam Reza Mirzaei, Mehran Roost

Abstract:

This research was conducted with the aim of predicting the relationship between coronavirus anxiety and psychological hardiness in employees working at Shahid Beheshti Hospital in Shiraz. The current research design was descriptive and correlational. The statistical population of the research consisted of all the employees of Shahid Beheshti Hospital in Shiraz in 2021. From among the statistical population, 220 individuals were selected and studied based on available sampling. To collect data, Kobasa's psychological hardiness questionnaire and coronavirus anxiety questionnaire were used. After collecting the data, the scores of the participants were analyzed using Pearson's correlation coefficient multiple regression analysis and SPSS-24 statistical software. The results of Pearson's correlation coefficient showed that there is a significant negative correlation between psychological hardiness and its components (challenge, commitment, and control) with coronavirus anxiety; also, psychological hardiness with a beta coefficient of 0.20 could predict coronavirus anxiety in hospital employees. Based on the results, plans can be made to enhance psychological hardiness through educational workshops to relieve the anxiety of the healthcare staff.

Keywords: the corona virus, commitment, hospital employees, psychological hardiness

Procedia PDF Downloads 65
19362 Investigation of Surface Electromyograph Signal Acquired from the around Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur, Ravinder Agarwal, Amod Kumar

Abstract:

Surface electromyography is a strategy to measure the muscle activity of the skin. Sensors placed on the skin recognize the electrical current or signal generated by active muscles. A lot of the research has focussed on the detection of signal from upper limb amputee with activity of triceps and biceps muscles. The purpose of this study was to correlate phantom movement and sEMG activity in residual stump muscles of transhumeral amputee from the shoulder muscles. Eight non- amputee and seven right hand amputees were recruited for this study. sEMG data were collected for the trapezius, pectoralis and teres muscles for elevation, protraction and retraction of shoulder. Contrast between the amputees and non-amputees muscles action have been investigated. Subsequently, to investigate the impact of class separability for different motions of shoulder, analysis of variance for experimental recorded data was carried out. Results were analyzed to recognize different shoulder movements and represent a step towards the surface electromyography controlled system for amputees. Difference in F ratio (p < 0.05) values indicates the distinction in mean therefore these analysis helps to determine the independent motion. The identified signal would be used to design more accurate and efficient controllers for the upper-limb amputee for researchers.

Keywords: around shoulder amputation, surface electromyography, analysis of variance, features

Procedia PDF Downloads 438
19361 It Is Time to Perform Total Laparoscopic Hysterectomy (TLH) without the Use of Uterine Manipulator: Kamran's TLH

Authors: Ahmed Gendia, Waseem Kamran

Abstract:

Objective: Total Laparoscopic hysterectomy (TLH) remains a common approach among laparoscopic surgeons. However, this approach depends on the use of uterine manipulator to facilitate the surgery. Although many studies reported the effectiveness of TLH with uterine manipulator, only few reported TLH without the use of any uterine or vaginal manipulation. the aim of this report is to demonstrate our Technique (kamran's TLH) in performing TLH without the use of any uterine or vaginal manipulation in benign conditions and report our intra- and post-operative outcomes. Methodology : surgical technique will be demonstrated through a short video highlighting the easy and safe to learn surgical steps. Additionally, the data of 86 patients who underwent KTLH for benign condition were retrospectively analyzed. the data included intra- and postoperative finding and complications. Results : A total of 86 hysterectomies were performed utilizing the Kamran's TLH ( KTHL). Mean age was 52.2 (±11) years old and BMI was 28.2(±7). Mean operative time was 64.7(±27.9) minutes and estimated bloods loss was 46.2(±54.6) ml. No intraoperative complications were recorded and there was no conversion to open surgery. Only one patient required readmission and surgery for vaginal vault dehiscence. Conclusion & Significance: Uterine manipulator is a key component in performing laparoscopic hysterectomy. However, our approach demonstrated that TLH can be safely performed without the use of any uterine or vaginal manipulation.

Keywords: laparoscopic hystrectomy, TLH, uterine manipulator, surgery

Procedia PDF Downloads 160
19360 Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan

Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Danial Hashmi, Richard Armstrong, Ahuti Shrestha, Iram Bano, Javed Hassan

Abstract:

This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability.

Keywords: climate variability, future discharge projection, positive degree day, regional climate model, water resource management

Procedia PDF Downloads 292
19359 An Empirical Study of Students’ Learning Attitude, Problem-solving Skills and Learning Engagement in an Online Internship Course During Pandemic

Authors: PB Venkataraman

Abstract:

Most of the real-life problems are ill-structured. They do not have a single solution but many competing solutions. The solution paths are non-linear and ambiguous, and the problem definition itself is many times a challenge. Students of professional education learn to solve such problems through internships. The current pandemic situation has constrained on-site internship opportunities; thus the students have no option but to pursue this learning online. This research assessed the learning gain of four undergraduate students in engineering as they undertook an online internship in an organisation over a period of eight weeks. A clinical interview at the end of the internship provided the primary data to assess the team’s problem-solving skills using a tested rubric. In addition to this, change in their learning attitudes were assessed through a pre-post study using a repurposed CLASS instrument for Electrical Engineering. Analysis of CLASS data indicated a shift in the sophistication of their learning attitude. A learning engagement survey adopting a 6-point Likert scale showed active participation and motivation in learning. We hope this new research will stimulate educators to exploit online internships even beyond the time of pandemic as more and more business operations are transforming into virtual.

Keywords: ill-structured problems, learning attitudes, internship, assessment, student engagement

Procedia PDF Downloads 207