Search results for: experimental
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7117

Search results for: experimental

397 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 155
396 Effects of Long-Term Exposure of Cadmium to the Ovary of Lithobius forficatus (Myriapoda, Chilopoda)

Authors: Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Sebastian Student, Magdalena Rost-Roszkowska

Abstract:

Heavy metals polluting the environment, especially soil, have a harmful effect on organisms, because they can damage the organ structure, disturb their function and cause developmental disorders. They can affect not only the somatic tissues but also the germinal tissues. In the natural environment, plants and animals are exposed to short- and long-term exposure to these stressors, which have a major influence on the functioning of these organisms. Numerous animals have been treated as the bioindicators of the environment. Therefore, studies on any alterations caused by, e.g., heavy metals are in the center of interests of not only environmental but also medical and biological science. Myriapods are invertebrates which are bioindicators of the environment. One of the species which lives in the upper layers of soil, particularly under stones and rocks is Lithobius forficatus (Chilopoda), commonly known as the brown centipede or stone centipede. It is a European species of the family Lithobiidae. This centipede living in the soil is exposed to, e.g., heavy metals such as cadmium, lead, arsenic. The main goal of our project was to analyze the impact of long-term exposure to cadmium on the structure of ovary with the emphasis on the course of oogenesis. As the material for analysis of cadmium exposure to ovaries, we chose the centipede species, L. forficatus. Animals were divided into two experimental groups: C – the control group, the animals cultured in laboratory conditions in a horticultural soil; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2 for 45 days – long-term exposure. Animals were fed with Acheta and Chironomus larvae maintained in tap water. The analyzes were carried out using transmission electron microscopy (TEM), flow cytometry and laser scanning (confocal) microscopy. Here we present the results of long-term exposure to cadmium concentration in soil on the organ responsible for female germ cell formation. Analysis with the use of the transmission electron microscope showed changes in the ultrastructure of both somatic and germ cells in the ovary. Moreover, quantitative analysis revealed the decrease in the percentage of cells viability, the increase in the percentage of cells with depolarized mitochondria and increasing the number of early apoptotic cells. All these changes were statistically significant compared to the control. Additionally, an increase in the ADP/ATP index was recorded. However, changes were not statistically significant to the control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, centipede, ovary, ultrastructure

Procedia PDF Downloads 95
395 Modeling and Analysis Of Occupant Behavior On Heating And Air Conditioning Systems In A Higher Education And Vocational Training Building In A Mediterranean Climate

Authors: Abderrahmane Soufi

Abstract:

The building sector is the largest consumer of energy in France, accounting for 44% of French consumption. To reduce energy consumption and improve energy efficiency, France implemented an energy transition law targeting 40% energy savings by 2030 in the tertiary building sector. Building simulation tools are used to predict the energy performance of buildings but the reliability of these tools is hampered by discrepancies between the real and simulated energy performance of a building. This performance gap lies in the simplified assumptions of certain factors, such as the behavior of occupants on air conditioning and heating, which is considered deterministic when setting a fixed operating schedule and a fixed interior comfort temperature. However, the behavior of occupants on air conditioning and heating is stochastic, diverse, and complex because it can be affected by many factors. Probabilistic models are an alternative to deterministic models. These models are usually derived from statistical data and express occupant behavior by assuming a probabilistic relationship to one or more variables. In the literature, logistic regression has been used to model the behavior of occupants with regard to heating and air conditioning systems by considering univariate logistic models in residential buildings; however, few studies have developed multivariate models for higher education and vocational training buildings in a Mediterranean climate. Therefore, in this study, occupant behavior on heating and air conditioning systems was modeled using logistic regression. Occupant behavior related to the turn-on heating and air conditioning systems was studied through experimental measurements collected over a period of one year (June 2023–June 2024) in three classrooms occupied by several groups of students in engineering schools and professional training. Instrumentation was provided to collect indoor temperature and indoor relative humidity in 10-min intervals. Furthermore, the state of the heating/air conditioning system (off or on) and the set point were determined. The outdoor air temperature, relative humidity, and wind speed were collected as weather data. The number of occupants, age, and sex were also considered. Logistic regression was used for modeling an occupant turning on the heating and air conditioning systems. The results yielded a proposed model that can be used in building simulation tools to predict the energy performance of teaching buildings. Based on the first months (summer and early autumn) of the investigations, the results illustrate that the occupant behavior of the air conditioning systems is affected by the indoor relative humidity and temperature in June, July, and August and by the indoor relative humidity, temperature, and number of occupants in September and October. Occupant behavior was analyzed monthly, and univariate and multivariate models were developed.

Keywords: occupant behavior, logistic regression, behavior model, mediterranean climate, air conditioning, heating

Procedia PDF Downloads 39
394 The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review

Authors: Vanessa Bennemann, Gabriela Laste, Márcia Inês Goettert

Abstract:

The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases.

Keywords: pregnancy, thyroid, melatonin, high-risk pregnancy

Procedia PDF Downloads 110
393 Impaired Transient Receptor Potential Vanilloid 4-Mediated Dilation of Mesenteric Arteries in Spontaneously Hypertensive Rats

Authors: Ammar Boudaka, Maryam Al-Suleimani, Hajar BaOmar, Intisar Al-Lawati, Fahad Zadjali

Abstract:

Background: Hypertension is increasingly becoming a matter of medical and public health importance. The maintenance of normal blood pressure requires a balance between cardiac output and total peripheral resistance. The endothelium, through the release of vasodilating factors, plays an important role in the control of total peripheral resistance and hence blood pressure homeostasis. Transient Receptor Potential Vanilloid type 4 (TRPV4) is a mechanosensitive non-selective cation channel that is expressed on the endothelium and contributes to endothelium-mediated vasodilation. So far, no data are available about the morphological and functional status of this channel in hypertensive cases. Objectives: This study aimed to investigate whether there is any difference in the morphological and functional features of TRPV4 in the mesenteric artery of normotensive and hypertensive rats. Methods: Functional feature of TRPV4 in four experimental animal groups: young and adult Wistar-Kyoto rats (WKY-Y and WKY-A), young and adult spontaneously hypertensive rats (SHR-Y and SHR-A), was studied by adding 5 µM 4αPDD (TRPV4 agonist) to mesenteric arteries mounted in a four-chamber wire myograph and pre-contracted with 4 µM phenylephrine. The 4αPDD-induced response was investigated in the presence and absence of 1 µM HC067047 (TRPV4 antagonist), 100 µM L-NAME (nitric oxide synthase inhibitor), and endothelium. The morphological distribution of TRPV4 in the wall of rat mesenteric arteries was investigated by immunostaining. Real-time PCR was used in order to investigate mRNA expression level of TRPV4 in the mesenteric arteries of the four groups. The collected data were expressed as mean ± S.E.M. with n equal to the number of animals used (one vessel was taken from each rat). To determine the level of significance, statistical comparisons were performed using the student’s t-test and considered to be significantly different at p<0.05. Results: 4αPDD induced a relaxation response in the mesenteric arterial preparations (WKY-Y: 85.98% ± 4.18; n = 5) that was markedly inhibited by HC067047 (18.30% ± 2.86; n= 5; p<0.05), endothelium removal (19.93% ± 1.50; n = 5; p<0.05) and L-NAME (28.18% ± 3.09; n = 5; p<0.05). The 4αPDD-induced relaxation was significantly lower in SHR-Y compared to WKY-Y (SHR-Y: 70.96% ± 3.65; n = 6, WKY-Y: 85.98% ± 4.18; n = 5-6, p<0.05. Moreover, the 4αPDD-induced response was significantly lower in WKY-A than WKY-Y (WKY-A: 75.58 ± 1.30; n = 5, WKY-Y: 85.98% ± 4.18; n = 5, p<0.05). Immunostaining study showed immunofluorescent signal confined to the endothelial layer of the mesenteric arteries. The expression of TRPV4 mRNA in SHR-Y was significantly lower than in WKY-Y (SHR-Y; 0.67RU ± 0.34; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Furthermore, TRPV4 mRNA expression in WKY-A was lower than its expression in WKY-Y (WKY-A: 0.62RU ± 0.37; n = 4, WKY-Y: 2.34RU ± 0.15; n = 4, p<0.05). Conclusion: Stimulation of TRPV4, which is expressed on the endothelium of rat mesenteric artery, triggers an endothelium-mediated relaxation response that markedly decreases with hypertension and growing up changes due to downregulation of TRPV4 expression.

Keywords: hypertension, endothelium, mesenteric artery, TRPV4

Procedia PDF Downloads 285
392 Mechanical Properties of Diamond Reinforced Ni Nanocomposite Coatings Made by Co-Electrodeposition with Glycine as Additive

Authors: Yanheng Zhang, Lu Feng, Yilan Kang, Donghui Fu, Qian Zhang, Qiu Li, Wei Qiu

Abstract:

Diamond-reinforced Ni matrix composite has been widely applied in engineering for coating large-area structural parts owing to its high hardness, good wear resistance and corrosion resistance compared with those features of pure nickel. The mechanical properties of Ni-diamond composite coating can be promoted by the high incorporation and uniform distribution of diamond particles in the nickel matrix, while the distribution features of particles are affected by electrodeposition process parameters, especially the additives in the plating bath. Glycine has been utilized as an organic additive during the preparation of pure nickel coating, which can effectively increase the coating hardness. Nevertheless, to author’s best knowledge, no research about the effects of glycine on the Ni-diamond co-deposition has been reported. In this work, the diamond reinforced Ni nanocomposite coatings were fabricated by a co-electrodeposition technique from a modified Watt’s type bath in the presence of glycine. After preparation, the SEM morphology of the composite coatings was observed combined with energy dispersive X-ray spectrometer, and the diamond incorporation was analyzed. The surface morphology and roughness were obtained by a three-dimensional profile instrument. 3D-Debye rings formed by XRD were analyzed to characterize the nickel grain size and orientation in the coatings. The average coating thickness was measured by a digital micrometer to deduce the deposition rate. The microhardness was tested by automatic microhardness tester. The friction coefficient and wear volume were measured by reciprocating wear tester to characterize the coating wear resistance and cutting performance. The experimental results confirmed that the presence of glycine effectively improved the surface morphology and roughness of the composite coatings. By optimizing the glycine concentration, the incorporation of diamond particles was increased, while the nickel grain size decreased with increasing glycine. The hardness of the composite coatings was increased as the glycine concentration increased. The friction and wear properties were evaluated as the glycine concentration was optimized, showing a decrease in the wear volume. The wear resistance of the composite coatings increased as the glycine content was increased to an optimum value, beyond which the wear resistance decreased. Glycine complexation contributed to the nickel grain refinement and improved the diamond dispersion in the coatings, both of which made a positive contribution to the amount and uniformity of embedded diamond particles, thus enhancing the microhardness, reducing the friction coefficient, and hence increasing the wear resistance of the composite coatings. Therefore, additive glycine can be used during the co-deposition process to improve the mechanical properties of protective coatings.

Keywords: co-electrodeposition, glycine, mechanical properties, Ni-diamond nanocomposite coatings

Procedia PDF Downloads 101
391 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc

Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia

Abstract:

This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.

Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc

Procedia PDF Downloads 176
390 Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle

Authors: Karolina Rutkowska, Hubert Pausch, Jolanta Oprzadek, Krzysztof Flisikowski

Abstract:

The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23).

Keywords: placenta, intrauterine growth restriction, miRNA, cattle

Procedia PDF Downloads 291
389 The Effect of Zeolite and Fertilizers on Yield and Qualitative Characteristics of Cabbage in the Southeast of Kazakhstan

Authors: Tursunay Vassilina, Aigerim Shibikeyeva, Adilet Sakhbek

Abstract:

Research has been carried out to study the influence of modified zeolite fertilizers on the quantitative and qualitative indicators of cabbage variety Nezhenka. The use of zeolite and mineral fertilizers had a positive effect on both the yield and quality indicators of the studied crop. The maximum increase in yield from fertilizers was 16.5 t/ha. Application of both zeolite and fertilizer increased the dry matter, sugar and vitamin C content of cabbage heads. It was established that the cabbage contains an amount of nitrates that is safe for human health. Among vegetable crops, cabbage has both food and feed value. One of the limiting factors in the sale of vegetable crops is the degradation of soil fertility due to depletion of nutrient reserves and erosion processes, and non-compliance with fertilizer application technologies. Natural zeolites are used as additives to mineral fertilizers for application in the field, which makes it possible to reduce their doses to minimal quantities. Zeolites improve the agrophysical and agrochemical properties of the soil and the quality of plant products. The research was carried out in a field experiment, carried out in 3 repetitions, on dark chestnut soil in 2023. The soil (pH = 7.2-7.3) of the experimental plot is dark chestnut, the humus content in the arable layer is 2.15%, gross nitrogen 0.098%, phosphorus, potassium 0.225 and 2.4%, respectively. The object of the study was the late cabbage variety Nezhenka. Scheme for applying fertilizers to cabbage: 1. Control (without fertilizers); 2. Zeolite 2t/ha; 3. N45P45K45; 4. N90P90K90; 5. Zeolite, 2 t/ha + N45P45K45; 6. Zeolite, 2 t/ha + N90P90K90. Yield accounting was carried out on a plot-by-plot basis manually. In plant samples, the following was determined: dry matter content by thermostatic method (at 105ºC); sugar content by Bertrand titration method, nitrate content by 1% diphenylamine solution, vitamin C by titrimetric method with acid solution. According to the results, it was established that the yield of cabbage was high – 42.2 t/ha in the treatment Zeolite, 2 t/ha + N90P90K90. When determining the biochemical composition of white cabbage, it was found that the dry matter content was 9.5% and increased with fertilized treatments. The total sugar content increased slightly with the use of zeolite (5.1%) and modified zeolite fertilizer (5.5%), the vitamin C content ranged from 17.5 to 18.16%, while in the control, it was 17.21%. The amount of nitrates in products also increased with increasing doses of nitrogen fertilizers and decreased with the use of zeolite and modified zeolite fertilizer but did not exceed the maximum permissible concentration. Based on the research conducted, it can be concluded that the application of zeolite and fertilizers leads to a significant increase in yield compared to the unfertilized treatment; contribute to the production of cabbage with good and high quality indicators.

Keywords: cabbage, dry matter, nitrates, total sugar, yield, vitamin C

Procedia PDF Downloads 45
388 Augusto De Campos Translator: The Role of Translation in Brazilian Concrete Poetry Project

Authors: Juliana C. Salvadori, Jose Carlos Felix

Abstract:

This paper aims at discussing the role literary translation has played in Brazilian Concrete Poetry Movement – an aesthetic, critical and pedagogical project which conceived translation as poiesis, i.e., as both creative and critic work in which the potency (dynamic) of literary work is unfolded in the interpretive and critic act (energeia) the translating practice demands. We argue that translation, for concrete poets, is conceived within the framework provided by the reinterpretation –or deglutition– of Oswald de Andrade’s anthropophagy – a carefully selected feast from which the poets pick and model their Paideuma. As a case study, we propose to approach and analyze two of Augusto de Campos’s long-term translation projects: the translation of Emily Dickinson’s and E. E. Cummings’s works to Brazilian readers. Augusto de Campos is a renowned poet, translator, critic and one of the founding members of Brazilian Concrete Poetry movement. Since the 1950s he has produced a consistent body of translated poetry from English-speaking poets in which the translator has explored creative translation processes – transcreation, as concrete poets have named it. Campos’s translation project regarding E. E. Cummings’s poetry comprehends a span of forty years: it begins in 1956 with 10 poems and unfolds in 4 works – 20 poem(a)s, 40 poem(a)s, Poem(a)s, re-edited in 2011. His translations of Dickinson’s poetry are published in two works: O Anticrítico (1986), in which he translated 10 poems, and Emily Dickinson Não sou Ninguém (2008), in which the poet-translator added 35 more translated poems. Both projects feature bilingual editions: contrary to common sense, Campos translations aim at being read as such: the target readers, to fully enjoy the experience, must be proficient readers of English and, also, acquainted with the poets in translation – Campos expects us to perform translation criticism, as Antoine Berman has proposed, by assessing the choices he, as both translator and poet, has presented in order to privilege aesthetic information (verse lines, word games, etc.). To readers not proficient in English, his translations play a pedagogycal role of educating and preparing them to read both the target poet works as well as concrete poetry works – the detailed essays and prefaces in which the translator emphasizes the selection of works translated and strategies adopted enlighten his project as translator: for Cummings, it has led to the oblieraton of the more traditional and lyrical/romantic examples of his poetry while highlighting the more experimental aspects and poems; for Dickinson, his project has highligthed the more hermetic traits of her poems. To the domestic canons of both poets in Brazilian literary system, we analyze Campos’ contribution in this work.

Keywords: translation criticism, Augusto de Campos, E. E. Cummings, Emily Dickinson

Procedia PDF Downloads 264
387 Estimating Evapotranspiration Irrigated Maize in Brazil Using a Hybrid Modelling Approach and Satellite Image Inputs

Authors: Ivo Zution Goncalves, Christopher M. U. Neale, Hiran Medeiros, Everardo Mantovani, Natalia Souza

Abstract:

Multispectral and thermal infrared imagery from satellite sensors coupled with climate and soil datasets were used to estimate evapotranspiration and biomass in center pivots planted to maize in Brazil during the 2016 season. The hybrid remote sensing based model named Spatial EvapoTranspiration Modelling Interface (SETMI) was applied using multispectral and thermal infrared imagery from the Landsat Thematic Mapper instrument. Field data collected by the IRRIGER center pivot management company included daily weather information such as maximum and minimum temperature, precipitation, relative humidity for estimating reference evapotranspiration. In addition, soil water content data were obtained every 0.20 m in the soil profile down to 0.60 m depth throughout the season. Early season soil samples were used to obtain water-holding capacity, wilting point, saturated hydraulic conductivity, initial volumetric soil water content, layer thickness, and saturated volumetric water content. Crop canopy development parameters and irrigation application depths were also inputs of the model. The modeling approach is based on the reflectance-based crop coefficient approach contained within the SETMI hybrid ET model using relationships developed in Nebraska. The model was applied to several fields located in Minas Gerais State in Brazil with approximate latitude: -16.630434 and longitude: -47.192876. The model provides estimates of real crop evapotranspiration (ET), crop irrigation requirements and all soil water balance outputs, including biomass estimation using multi-temporal satellite image inputs. An interpolation scheme based on the growing degree-day concept was used to model the periods between satellite inputs, filling the gaps between image dates and obtaining daily data. Actual and accumulated ET, accumulated cold temperature and water stress and crop water requirements estimated by the model were compared with data measured at the experimental fields. Results indicate that the SETMI modeling approach using data assimilation, showed reliable daily ET and crop water requirements for maize, interpolated between remote sensing observations, confirming the applicability of the SETMI model using new relationships developed in Nebraska for estimating mainly ET and water requirements in Brazil under tropical conditions.

Keywords: basal crop coefficient, irrigation, remote sensing, SETMI

Procedia PDF Downloads 121
386 Multiphase Equilibrium Characterization Model For Hydrate-Containing Systems Based On Trust-Region Method Non-Iterative Solving Approach

Authors: Zhuoran Li, Guan Qin

Abstract:

A robust and efficient compositional equilibrium characterization model for hydrate-containing systems is required, especially for time-critical simulations such as subsea pipeline flow assurance analysis, compositional simulation in hydrate reservoirs etc. A multiphase flash calculation framework, which combines Gibbs energy minimization function and cubic plus association (CPA) EoS, is developed to describe the highly non-ideal phase behavior of hydrate-containing systems. A non-iterative eigenvalue problem-solving approach for the trust-region sub-problem is selected to guarantee efficiency. The developed flash model is based on the state-of-the-art objective function proposed by Michelsen to minimize the Gibbs energy of the multiphase system. It is conceivable that a hydrate-containing system always contains polar components (such as water and hydrate inhibitors), introducing hydrogen bonds to influence phase behavior. Thus, the cubic plus associating (CPA) EoS is utilized to compute the thermodynamic parameters. The solid solution theory proposed by van der Waals and Platteeuw is applied to represent hydrate phase parameters. The trust-region method combined with the trust-region sub-problem non-iterative eigenvalue problem-solving approach is utilized to ensure fast convergence. The developed multiphase flash model's accuracy performance is validated by three available models (one published and two commercial models). Hundreds of published hydrate-containing system equilibrium experimental data are collected to act as the standard group for the accuracy test. The accuracy comparing results show that our model has superior performances over two models and comparable calculation accuracy to CSMGem. Efficiency performance test also has been carried out. Because the trust-region method can determine the optimization step's direction and size simultaneously, fast solution progress can be obtained. The comparison results show that less iteration number is needed to optimize the objective function by utilizing trust-region methods than applying line search methods. The non-iterative eigenvalue problem approach also performs faster computation speed than the conventional iterative solving algorithm for the trust-region sub-problem, further improving the calculation efficiency. A new thermodynamic framework of the multiphase flash model for the hydrate-containing system has been constructed in this work. Sensitive analysis and numerical experiments have been carried out to prove the accuracy and efficiency of this model. Furthermore, based on the current thermodynamic model in the oil and gas industry, implementing this model is simple.

Keywords: equation of state, hydrates, multiphase equilibrium, trust-region method

Procedia PDF Downloads 150
385 Techno-Economic Analysis of 1,3-Butadiene and ε-Caprolactam Production from C6 Sugars

Authors: Iris Vural Gursel, Jonathan Moncada, Ernst Worrell, Andrea Ramirez

Abstract:

In order to achieve the transition from a fossil to bio-based economy, biomass needs to replace fossil resources in meeting the world’s energy and chemical needs. This calls for development of biorefinery systems allowing cost-efficient conversion of biomass to chemicals. In biorefinery systems, feedstock is converted to key intermediates called platforms which are converted to wide range of marketable products. The C6 sugars platform stands out due to its unique versatility as precursor for multiple valuable products. Among the different potential routes from C6 sugars to bio-based chemicals, 1,3-butadiene and ε-caprolactam appear to be of great interest. Butadiene is an important chemical for the production of synthetic rubbers, while caprolactam is used in production of nylon-6. In this study, ex-ante techno-economic performance of 1,3-butadiene and ε-caprolactam routes from C6 sugars were assessed. The aim is to provide insight from an early stage of development into the potential of these new technologies, and the bottlenecks and key cost-drivers. Two cases for each product line were analyzed to take into consideration the effect of possible changes on the overall performance of both butadiene and caprolactam production. Conceptual process design for the processes was developed using Aspen Plus based on currently available data from laboratory experiments. Then, operating and capital costs were estimated and an economic assessment was carried out using Net Present Value (NPV) as indicator. Finally, sensitivity analyses on processing capacity and prices was done to take into account possible variations. Results indicate that both processes perform similarly from an energy intensity point of view ranging between 34-50 MJ per kg of main product. However, in terms of processing yield (kg of product per kg of C6 sugar), caprolactam shows higher yield by a factor 1.6-3.6 compared to butadiene. For butadiene production, with the economic parameters used in this study, for both cases studied, a negative NPV (-642 and -647 M€) was attained indicating economic infeasibility. For the caprolactam production, one of the cases also showed economic infeasibility (-229 M€), but the case with the higher caprolactam yield resulted in a positive NPV (67 M€). Sensitivity analysis indicated that the economic performance of caprolactam production can be improved with the increase in capacity (higher C6 sugars intake) reflecting benefits of the economies of scale. Furthermore, humins valorization for heat and power production was considered and found to have a positive effect. Butadiene production was found sensitive to the price of feedstock C6 sugars and product butadiene. However, even at 100% variation of the two parameters, butadiene production remained economically infeasible. Overall, the caprolactam production line shows higher economic potential in comparison to that of butadiene. The results are useful in guiding experimental research and providing direction for further development of bio-based chemicals.

Keywords: bio-based chemicals, biorefinery, C6 sugars, economic analysis, process modelling

Procedia PDF Downloads 129
384 Modeling of Anisotropic Hardening Based on Crystal Plasticity Theory and Virtual Experiments

Authors: Bekim Berisha, Sebastian Hirsiger, Pavel Hora

Abstract:

Advanced material models involving several sets of model parameters require a big experimental effort. As models are getting more and more complex like e.g. the so called “Homogeneous Anisotropic Hardening - HAH” model for description of the yielding behavior in the 2D/3D stress space, the number and complexity of the required experiments are also increasing continuously. In the context of sheet metal forming, these requirements are even more pronounced, because of the anisotropic behavior or sheet materials. In addition, some of the experiments are very difficult to perform e.g. the plane stress biaxial compression test. Accordingly, tensile tests in at least three directions, biaxial tests and tension-compression or shear-reverse shear experiments are performed to determine the parameters of the macroscopic models. Therefore, determination of the macroscopic model parameters based on virtual experiments is a very promising strategy to overcome these difficulties. For this purpose, in the framework of multiscale material modeling, a dislocation density based crystal plasticity model in combination with a FFT-based spectral solver is applied to perform virtual experiments. Modeling of the plastic behavior of metals based on crystal plasticity theory is a well-established methodology. However, in general, the computation time is very high and therefore, the computations are restricted to simplified microstructures as well as simple polycrystal models. In this study, a dislocation density based crystal plasticity model – including an implementation of the backstress – is used in a spectral solver framework to generate virtual experiments for three deep drawing materials, DC05-steel, AA6111-T4 and AA4045 aluminum alloys. For this purpose, uniaxial as well as multiaxial loading cases, including various pre-strain histories, has been computed and validated with real experiments. These investigations showed that crystal plasticity modeling in the framework of Representative Volume Elements (RVEs) can be used to replace most of the expensive real experiments. Further, model parameters of advanced macroscopic models like the HAH model can be determined from virtual experiments, even for multiaxial deformation histories. It was also found that crystal plasticity modeling can be used to model anisotropic hardening more accurately by considering the backstress, similar to well-established macroscopic kinematic hardening models. It can be concluded that an efficient coupling of crystal plasticity models and the spectral solver leads to a significant reduction of the amount of real experiments needed to calibrate macroscopic models. This advantage leads also to a significant reduction of computational effort needed for the optimization of metal forming process. Further, due to the time efficient spectral solver used in the computation of the RVE models, detailed modeling of the microstructure are possible.

Keywords: anisotropic hardening, crystal plasticity, micro structure, spectral solver

Procedia PDF Downloads 294
383 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 213
382 The Conflict of Grammaticality and Meaningfulness of the Corrupt Words: A Cross-lingual Sociolinguistic Study

Authors: Jayashree Aanand, Gajjam

Abstract:

The grammatical tradition in Sanskrit literature emphasizes the importance of the correct use of Sanskrit words or linguistic units (sādhu śabda) that brings the meritorious values, denying the attribution of the same religious merit to the incorrect use of Sanskrit words (asādhu śabda) or the vernacular or corrupt forms (apa-śabda or apabhraṁśa), even though they may help in communication. The current research, the culmination of the doctoral research on sentence definition, studies the difference among the comprehension of both correct and incorrect word forms in Sanskrit and Marathi languages in India. Based on the total of 19 experiments (both web-based and classroom-controlled) on approximately 900 Indian readers, it is found that while the incorrect forms in Sanskrit are comprehended with lesser accuracy than the correct word forms, no such difference can be seen for the Marathi language. It is interpreted that the incorrect word forms in the native language or in the language which is spoken daily (such as Marathi) will pose a lesser cognitive load as compared to the language that is not spoken on a daily basis but only used for reading (such as Sanskrit). The theoretical base for the research problem is as follows: among the three main schools of Language Science in ancient India, the Vaiyākaraṇas (Grammarians) hold that the corrupt word forms do have their own expressive power since they convey meaning, while as the Mimāṁsakas (the Exegesists) and the Naiyāyikas (the Logicians) believe that the corrupt forms can only convey the meaning indirectly, by recalling their association and similarity with the correct forms. The grammarians argue that the vernaculars that are born of the speaker’s inability to speak proper Sanskrit are regarded as degenerate versions or fallen forms of the ‘divine’ Sanskrit language and speakers who could not use proper Sanskrit or the standard language were considered as Śiṣṭa (‘elite’). The different ideas of different schools strictly adhere to their textual dispositions. For the last few years, sociolinguists have agreed that no variety of language is inherently better than any other; they are all the same as long as they serve the need of people that use them. Although the standard form of a language may offer the speakers some advantages, the non-standard variety is considered the most natural style of speaking. This is visible in the results. If the incorrect word forms incur the recall of the correct word forms in the reader as the theory suggests, it would have added one extra step in the process of sentential cognition leading to more cognitive load and less accuracy. This has not been the case for the Marathi language. Although speaking and listening to the vernaculars is the common practice and reading the vernacular is not, Marathi readers have readily and accurately comprehended the incorrect word forms in the sentences, as against the Sanskrit readers. The primary reason being Sanskrit is spoken and also read in the standard form only and the vernacular forms in Sanskrit are not found in the conversational data.

Keywords: experimental sociolinguistics, grammaticality and meaningfulness, Marathi, Sanskrit

Procedia PDF Downloads 105
381 Attachment Theory and Quality of Life: Grief Education and Training

Authors: Jane E. Hill

Abstract:

Quality of life is an important component for many. With that in mind, everyone will experience some type of loss within his or her lifetime. A person can experience loss due to break up, separation, divorce, estrangement, or death. An individual may experience loss of a job, loss of capacity, or loss caused by human or natural-caused disasters. An individual’s response to such a loss is unique to them, and not everyone will seek services to assist them with their grief due to loss. Counseling can promote positive outcomes for clients that are grieving by addressing the client’s personal loss and helping the client process their grief. However, a lack of understanding on the part of counselors of how people grieve may result in negative client outcomes such as poor health, psychological distress, or an increased risk of depression. Education and training in grief counseling can improve counselors’ problem recognition and skills in treatment planning. The purpose of this study was to examine whether the Council for Accreditation of Counseling and Related Educational Programs (CACREP) master’s degree counseling students view themselves as having been adequately trained in grief theories and skills. Many people deal with grief issues that prevent them from having joy or purpose in their lives and that leaves them unable to engage in positive opportunities or relationships. This study examined CACREP-accredited master’s counseling students’ self-reported competency, training, and education in providing grief counseling. The implications for positive social change arising from the research may be to incorporate and promote education and training in grief theories and skills in a majority of counseling programs and to provide motivation to incorporate professional standards for grief training and practice in the mental health counseling field. The theoretical foundation used was modern grief theory based on John Bowlby’s work on Attachment Theory. The overall research question was how competent do master’s-level counselors view themselves regarding the education or training they received in grief theories or counseling skills in their CACREP-accredited studies. The author used a non-experimental, one shot survey comparative quantitative research design. Cicchetti’s Grief Counseling Competency Scale (GCCS) was administered to CACREP master’s-level counseling students enrolled in their practicum or internship experience, which resulted in 153 participants. Using a MANCOVA, there was significance found for relationships between coursework taken and (a) perceived assessment skills (p = .029), (b) perceived treatment skills (p = .025), and (c) perceived conceptual skills and knowledge (p = .003). Results of this study provided insight for CACREP master’s-level counseling programs to explore and discuss curriculum coursework inclusion of education and training in grief theories and skills.

Keywords: counselor education and training, grief education and training, grief and loss, quality of life

Procedia PDF Downloads 163
380 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis

Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov

Abstract:

Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.

Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil

Procedia PDF Downloads 94
379 Estimating the Efficiency of a Meta-Cognitive Intervention Program to Reduce the Risk Factors of Teenage Drivers with Attention Deficit Hyperactivity Disorder While Driving

Authors: Navah Z. Ratzon, Talia Glick, Iris Manor

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a chronic disorder that affects the sufferer’s functioning throughout life and in various spheres of activity, including driving. Difficulties in cognitive functioning and executive functions are often part and parcel of the ADHD diagnosis, and thus form a risk factor in driving. Studies examining the effectiveness of intervention programs for improving and rehabilitating driving in typical teenagers have been conducted in relatively small numbers; while studies on similar programs for teenagers with ADHD have been especially scarce. The aim of the present study has been to examine the effectiveness of a metacognitive occupational therapy intervention program for reducing risk factors in driving among teenagers with ADHD. The present study included 37 teenagers aged 17 to 19. They included 23 teenagers with ADHD divided into experimental (11) and control (12) groups; as well as 14 non-ADHD teenagers forming a second control group. All teenagers taking part in the study were examined in the Tel Aviv University driving lab, and underwent cognitive diagnoses and a driving simulator test. Every subject in the intervention group took part in 3 assessment meetings, and two metacognitive treatment meetings. The control groups took part in two assessment meetings with a follow-up meeting 3 months later. In all the study’s groups, the treatment’s effectiveness was tested by comparing monitoring results on the driving simulator at the first and second evaluations. In addition, the driving of 5 subjects from the intervention group was monitored continuously from a month prior to the start of the intervention, a month during the phase of the intervention and another month until the end of the intervention. In the ADHD control group, the driving of 4 subjects was monitored from the end of the first evaluation for a period of 3 months. The study’s findings were affected by the fact that the ADHD control group was different from the two other groups, and exhibited ADHD characteristics manifested by impaired executive functions and lower metacognitive abilities relative to their peers. The study found partial, moderate, non-significant correlations between driving skills and cognitive functions, executive functions, and perceptions and attitudes towards driving. According to the driving simulator test results and the limited sampling results of actual driving, it was found that a metacognitive occupational therapy intervention may be effective in reducing risk factors in driving among teenagers with ADHD relative to their peers with and without ADHD. In summary, the results of the present study indicate a positive direction that speaks to the viability of using a metacognitive occupational therapy intervention program for reducing risk factors in driving. A further study is required that will include a bigger number of subjects, add actual driving monitoring hours, and assign subjects randomly to the various groups.

Keywords: ADHD, driving, driving monitoring, metacognitive intervention, occupational therapy, simulator, teenagers

Procedia PDF Downloads 283
378 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 163
377 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria

Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola

Abstract:

Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.

Keywords: mitigating, antibiotics, phytobiotics, poultry farming

Procedia PDF Downloads 146
376 Additive Manufacturing – Application to Next Generation Structured Packing (SpiroPak)

Authors: Biao Sun, Tejas Bhatelia, Vishnu Pareek, Ranjeet Utikar, Moses Tadé

Abstract:

Additive manufacturing (AM), commonly known as 3D printing, with the continuing advances in parallel processing and computational modeling, has created a paradigm shift (with significant radical thinking) in the design and operation of chemical processing plants, especially LNG plants. With the rising energy demands, environmental pressures, and economic challenges, there is a continuing industrial need for disruptive technologies such as AM, which possess capabilities that can drastically reduce the cost of manufacturing and operations of chemical processing plants in the future. However, the continuing challenge for 3D printing is its lack of adaptability in re-designing the process plant equipment coupled with the non-existent theory or models that could assist in selecting the optimal candidates out of the countless potential fabrications that are possible using AM. One of the most common packings used in the LNG process is structured packing in the packed column (which is a unit operation) in the process. In this work, we present an example of an optimum strategy for the application of AM to this important unit operation. Packed columns use a packing material through which the gas phase passes and comes into contact with the liquid phase flowing over the packing, typically performing the necessary mass transfer to enrich the products, etc. Structured packing consists of stacks of corrugated sheets, typically inclined between 40-70° from the plane. Computational Fluid Dynamics (CFD) was used to test and model various geometries to study the governing hydrodynamic characteristics. The results demonstrate that the costly iterative experimental process can be minimized. Furthermore, they also improve the understanding of the fundamental physics of the system at the multiscale level. SpiroPak, patented by Curtin University, represents an innovative structured packing solution currently at a technology readiness level (TRL) of 5~6. This packing exhibits remarkable characteristics, offering a substantial increase in surface area while significantly enhancing hydrodynamic and mass transfer performance. Recent studies have revealed that SpiroPak can reduce pressure drop by 50~70% compared to commonly used commercial packings, and it can achieve 20~50% greater mass transfer efficiency (particularly in CO2 absorption applications). The implementation of SpiroPak has the potential to reduce the overall size of columns and decrease power consumption, resulting in cost savings for both capital expenditure (CAPEX) and operational expenditure (OPEX) when applied to retrofitting existing systems or incorporated into new processes. Furthermore, pilot to large-scale tests is currently underway to further advance and refine this technology.

Keywords: Additive Manufacturing (AM), 3D printing, Computational Fluid Dynamics (CFD, structured packing (SpiroPak)

Procedia PDF Downloads 34
375 Examining the Design of a Scaled Audio Tactile Model for Enhancing Interpretation of Visually Impaired Visitors in Heritage Sites

Authors: A. Kavita Murugkar, B. Anurag Kashyap

Abstract:

With the Rights for Persons with Disabilities Act (RPWD Act) 2016, the Indian government has made it mandatory for all establishments, including Heritage Sites, to be accessible for People with Disabilities. However, recent access audit surveys done under the Accessible India Campaign by Ministry of Culture indicate that there are very few accessibility measures provided in the Heritage sites for people with disabilities. Though there are some measures for the mobility impaired, surveys brought out that there are almost no provisions for people with vision impairment (PwVI) in heritage sites thus depriving them of a reasonable physical & intellectual access that facilitates an enjoyable experience and enriching interpretation of the Heritage Site. There is a growing need to develop multisensory interpretative tools that can help the PwVI in perceiving heritage sites in the absence of vision. The purpose of this research was to examine the usability of an audio-tactile model as a haptic and sound-based strategy for augmenting the perception and experience of PwVI in a heritage site. The first phase of the project was a multi-stage phenomenological experimental study with visually impaired users to investigate the design parameters for developing an audio-tactile model for PwVI. The findings from this phase included user preferences related to the physical design of the model such as the size, scale, materials, details, etc., and the information that it will carry such as braille, audio output, tactile text, etc. This was followed by the second phase in which a working prototype of an audio-tactile model is designed and developed for a heritage site based on the findings from the first phase of the study. A nationally listed heritage site from the author’s city was selected for making the model. The model was lastly tested by visually impaired users for final refinements and validation. The prototype developed empowers People with Vision Impairment to navigate independently in heritage sites. Such a model if installed in every heritage site, can serve as a technological guide for the Person with Vision Impairment, giving information of the architecture, details, planning & scale of the buildings, the entrances, location of important features, lifts, staircases, and available, accessible facilities. The model was constructed using 3D modeling and digital printing technology. Though designed for the Indian context, this assistive technology for the blind can be explored for wider applications across the globe. Such an accessible solution can change the otherwise “incomplete’’ perception of the disabled visitor, in this case, a visually impaired visitor and augment the quality of their experience in heritage sites.

Keywords: accessibility, architectural perception, audio tactile model , inclusive heritage, multi-sensory perception, visual impairment, visitor experience

Procedia PDF Downloads 83
374 Analysis of Interparticle interactions in High Waxy-Heavy Clay Fine Sands for Sand Control Optimization

Authors: Gerald Gwamba

Abstract:

Formation and oil well sand production is one of the greatest and oldest concerns for the Oil and gas industry. The production of sand particles may vary from very small and limited amounts to far elevated levels which has the potential to block or plug the pore spaces near the perforated points to blocking production from surface facilities. Therefore, the timely and reliable investigation of conditions leading to the onset or quantifying sanding while producing is imperative. The challenges of sand production are even more elevated while producing in Waxy and Heavy wells with Clay Fine sands (WHFC). Existing research argues that both waxy and heavy hydrocarbons exhibit far differing characteristics with waxy more paraffinic while heavy crude oils exhibit more asphaltenic properties. Moreover, the combined effect of WHFC conditions presents more complexity in production as opposed to individual effects that could be attributed to a consolidation of a surmountable opposing force. However, research on a combined high WHFC system could depict a better representation of the surmountable effect which in essence is more comparable to field conditions where a one-sided view of either individual effects on sanding has been argued to some extent misrepresentative of actual field conditions since all factors act surmountably. In recognition of the limited customized research on sand production studies with the combined effect of WHFC however, our research seeks to apply the Design of Experiments (DOE) methodology based on latest literature to analyze the relationship between various interparticle factors in relation to selected sand control methods. Our research aims to unearth a better understanding of how the combined effect of interparticle factors including: strength, cementation, particle size and production rate among others could better assist in the design of an optimal sand control system for the WHFC well conditions. In this regard, we seek to answer the following research question: How does the combined effect of interparticle factors affect the optimization of sand control systems for WHFC wells? Results from experimental data collection will inform a better justification for a sand control design for WHFC. In doing so, we hope to contribute to earlier contrasts arguing that sand production could potentially enable well self-permeability enhancement caused by the establishment of new flow channels created by loosening and detachment of sand grains. We hope that our research will contribute to future sand control designs capable of adapting to flexible production adjustments in controlled sand management. This paper presents results which are part of an ongoing research towards the authors' PhD project in the optimization of sand control systems for WHFC wells.

Keywords: waxy-heavy oils, clay-fine sands, sand control optimization, interparticle factors, design of experiments

Procedia PDF Downloads 109
373 Characterization of Phenolic Compounds from Carménère Wines during Aging with Oak Wood (Staves, Chips and Barrels)

Authors: E. Obreque-Slier, J. Laqui-Estaña, A. Peña-Neira, M. Medel-Marabolí

Abstract:

Wine is an important source of polyphenols. Red wines show important concentrations of nonflavonoid (gallic acid, ellagic acid, caffeic acid and coumaric acid) and flavonoid compounds [(+)-catechin, (-)-epicatechin, (+)-gallocatechin and (-)-epigallocatechin]. However, a significant variability in the quantitative and qualitative distribution of chemical constituents in wine has to be expected depending on an array of important factors, such as the varietal differences of Vitis vinifera and cultural practices. It has observed that Carménère grapes present a differential composition and evolution of phenolic compounds when compared to other varieties and specifically with Cabernet Sauvignon grapes. Likewise, among the cultural practices, the aging in contact with oak wood is a high relevance factor. Then, the extraction of different polyphenolic compounds from oak wood into wine during its ageing process produces both qualitative and quantitative changes. Recently, many new techniques have been introduced in winemaking. One of these involves putting new pieces of wood (oak chips or inner staves) into inert containers. It offers some distinct and previously unavailable flavour advantages, as well as new options in wine handling. To our best knowledge, there is not information about the behaviour of Carménère wines (Chilean emblematic cultivar) in contact with oak wood. In addition, the effect of aging time and wood product (barrels, chips or staves) on the phenolic composition in Carménère wines has not been studied. This study aims at characterizing the condensed and hydrolyzable tannins from Carménère wines during the aging with staves, chips and barrels from French oak wood. The experimental design was completely randomized with two independent assays: aging time (0-12 month) and different formats of wood (barrel, chips and staves). The wines were characterized by spectrophotometric (total tannins and fractionation of proanthocyanidins into monomers, oligomers and polymers) and HPLC-DAD (ellagitannins) analysis. The wines in contact with different products of oak wood showed a similar content of total tannins during the study, while the control wine (without oak wood) presented a lower content of these compounds. In addition, it was observed that the polymeric proanthocyanidin fraction was the most abundant, while the monomeric fraction was the less abundant fraction in all treatments in two sample. However, significative differences in each fractions were observed between wines in contact from barrel, chips, and staves in two sample dates. Finally, the wine from barrels presented the highest content of the ellagitannins from the fourth to the last sample date. In conclusion, the use of alternative formats of oak wood affects the chemical composition of wines during aging, and these enological products are an interesting alternative to contribute with tannins to wine.

Keywords: enological inputs, oak wood aging, polyphenols, red wine

Procedia PDF Downloads 140
372 Processing, Nutritional Assessment and Sensory Evaluation of Bakery Products Prepared from Orange Fleshed Sweet Potatoes (OFSP) and Wheat Composite Flours

Authors: Hategekimana Jean Paul, Irakoze Josiane, Ishimweyizerwe Valentin, Iradukunda Dieudonne, Uwanyirigira Jeannette

Abstract:

Orange fleshed sweet potatoes (OFSP) are highly grown and are available plenty in rural and urban local markets and its contribution in reduction of food insecurity in Rwanda is considerable. But the postharvest loss of this commodity is a critical challenge due to its high perishability. Several research activities have been conducted on how fresh food commodities can be transformed into extended shelf life food products for prevention of post-harvest losses. However, such activity was not yet well studied in Rwanda. The aim of the present study was the processing of backed products from (OFSP)combined with wheat composite flour and assess the nutritional content and consumer acceptability of new developed products. The perishability of OFSP and their related lack during off season can be eradicated by producing cake, doughnut and bread with OFSP puree or flour. The processing for doughnut and bread were made by making OFSP puree and other ingredients then a dough was made followed by frying and baking while for cake OFSP was dried through solar dryer to have a flour together with wheat flour and other ingredients to make dough cake and baking. For each product, one control and three experimental samples, (three products in three different ratios (30,40 and50%) of OFSP and the remaining percentage of wheat flour) were prepared. All samples including the control were analyzed for the consumer acceptability (sensory attributes). Most preferred samples (One sample for each product with its control sample and for each OFSP variety) were analyzed for nutritional composition along with control sample. The Cake from Terimbere variety and Bread from Gihingumukungu supplemented with 50% OFSP flour or Puree respectively were most acceptable except Doughnut from Vita variety which was highly accepted at 50% of OFSP supplementation. The moisture, ash, protein, fat, fiber, Total carbohydrate, Vitamin C, reducing sugar and minerals (Sodium, Potassium and Phosphorus.) content was different among products. Cake was rich in fibers (14.71%), protein (6.590%), and vitamin c(19.988mg/100g) compared to other samples while bread found to be rich in reducing sugar with 12.71mg/100g compared to cake and doughnut. Also doughnut was found to be rich in fat content with 6.89% compared to other samples. For sensory analysis, doughnut was highly accepted in ratio of 60:40 compared to other products while cake was least accepted at ratio of 50:50. The Proximate composition and minerals content of all the OFSP products were significantly higher as compared to the control samples.

Keywords: post-harvest loss, OFSP products, wheat flour, sensory evaluation, proximate composition

Procedia PDF Downloads 36
371 Influence of Laser Treatment on the Growth of Sprouts of Different Wheat Varieties

Authors: N. Bakradze, T. Dumbadze, N. Gagelidze, L. Amiranashvili, A. D. L. Batako

Abstract:

Cereals are considered as a strategic product in human life and it demand is increasing with the growth of world population. There is always shortage of cereals in various areas of the globe. For example, Georgia own production meets only 15-20% of the demand for grain, despite the fact that the country is considered one of the main centers of wheat origin. In Georgia, there are 14 types of wheat and more than 150 subspecies, and 40 subspecies of common wheat. Increasing wheat production is important for the country. One of the ways to solve the problem is to develop and implement new, environmentally and economically acceptable technologies. Such technologies include pre-sowing treatment of seed with a laser and associative nitrogen-fixing of the Azospirillum brasilensse bacteria. In the region there are Dika and Lomtagora which are among the most common in Georgia. Dika is a frost-resistant wheat, with a high ability to adapt to the environment, resistant to falling and it is sown in highlands. Dicka excellent properties are due to its strong immunity to fungal diseases; Dicka grains are rich in protein and lysine. Lomtagora 126 differs with its winter and drought resistance, and, it has a great ability to germinate. Lomtagora is characterized by a strong root system and a high budding capacity. It is an early variety, fall-resistant, easy to thresh and suitable for mechanized harvesting with large and red grains. The plant is moderately resistant to fungal diseases. This paper presents some preliminary experimental results where, a continuous CO2 laser at a power of 25-40 W/cm2 was used to radiate grains at a flow rate of 10-15 cm/sec. The treatment was carried out on grains of the Triticum aestivum L. var. of Lutescens (local variety name - Lomtagora 126), and Triticum carthlicum Nevski (local variety name - Dika). Here the grains were treated with Azospirillum brasilensse isolate (108-109 CFU / ml), which was isolated from the rhizosphere of wheat. It was observed that the germination of the wheat was not significantly influenced by either laser or bacteria treatment. In the case of the variety Lomtagora 126, when irradiated at an angle of 90°, it slightly improved the growth within 38 days of sawing, and in the case of irradiation at an angle of 90°+1, by 23%. The treatment of seeds with Azospirillum brazilense in both irradiated and non-irradiated variants led to an improvement in the growth of ssprouts. However, in the case of treatment with azospiril alone - by 22%, and with joint treatment of seeds with azospiril and irradiation - by 29%. In the case of the Dika wheat, the irradiation only led to an increase in growth by 8-9%, and the combine treatment of seeds with azospiril and irradiation - by 10-15%, in comparison with the control. Thus, the combine treatment of wheat of different varieties provided the best effect on the growth. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number CARYS 19-573)

Keywords: laser treatment, Azospirillum brasilensse, seeds, wheat varieties, Lomtagora, Dika

Procedia PDF Downloads 117
370 Study on Health Status and Health Promotion Models for Prevention of Cardiovascular Disease in Asylum Seekers at Asylum Seekers Center, Kupang-Indonesia

Authors: Era Dorihi Kale, Sabina Gero, Uly Agustine

Abstract:

Asylum seekers are people who come to other countries to get asylum. In line with that, they also carry the culture and health behavior of their country, which is very different from the new country they currently live in. This situation raises problems, also in the health sector. The approach taken must also be a culturally sensitive approach, where the culture and habits of the refugee's home area are also valued so that the health services provided can be right on target. Some risk factors that already exist in this group are lack of activity, consumption of fast food, smoking, and stress levels that are quite high. Overall this condition will increase the risk of an increased incidence of cardiovascular disease. This research is a descriptive and experimental study. The purpose of this study is to identify health status and develop a culturally sensitive health promotion model, especially related to the risk of cardiovascular disease for asylum seekers in detention homes in the city of Kupang. This research was carried out in 3 stages, stage 1 was conducting a survey of health problems and the risk of asylum seeker cardiovascular disease, Stage 2 developed a health promotion model, and stage 3 conducted a testing model of health promotion carried out. There were 81 respondents involved in this study. The variables measured were: health status, risk of cardiovascular disease and, health promotion models. Method of data collection: Instruments (questionnaires) were distributed to respondents answered for anamnese health status; then, cardiovascular risk measurements were taken. After that, the preparation of information needs and the compilation of booklets on the prevention of cardiovascular disease is carried out. The compiled booklet was then translated into Farsi. After that, the booklet was tested. Respondent characteristics: average lived in Indonesia for 4.38 years, the majority were male (90.1%), and most were aged 15-34 years (90.1%). There are several diseases that are often suffered by asylum seekers, namely: gastritis, headaches, diarrhea, acute respiratory infections, skin allergies, sore throat, cough, and depression. The level of risk for asylum seekers experiencing cardiovascular problems is 4 high risk people, 6 moderate risk people, and 71 low risk people. This condition needs special attention because the number of people at risk is quite high when compared to the age group of refugees. This is very related to the level of stress experienced by the refugees. The health promotion model that can be used is the transactional stress and coping model, using Persian (oral) and English for written information. It is recommended for health practitioners who care for refugees to always pay attention to aspects of culture (especially language) as well as the psychological condition of asylum seekers to make it easier to conduct health care and promotion. As well for further research, it is recommended to conduct research, especially relating to the effect of psychological stress on the risk of cardiovascular disease in asylum seekers.

Keywords: asylum seekers, health status, cardiovascular disease, health promotion

Procedia PDF Downloads 75
369 Characterization of Thin Woven Composites Used in Printed Circuit Boards by Combining Numerical and Experimental Approaches

Authors: Gautier Girard, Marion Martiny, Sebastien Mercier, Mohamad Jrad, Mohamed-Slim Bahi, Laurent Bodin, Francois Lechleiter, David Nevo, Sophie Dareys

Abstract:

Reliability of electronic devices has always been of highest interest for Aero-MIL and space applications. In any electronic device, Printed Circuit Board (PCB), providing interconnection between components, is a key for reliability. During the last decades, PCB technologies evolved to sustain and/or fulfill increased original equipment manufacturers requirements and specifications, higher densities and better performances, faster time to market and longer lifetime, newer material and mixed buildups. From the very beginning of the PCB industry up to recently, qualification, experiments and trials, and errors were the most popular methods to assess system (PCB) reliability. Nowadays OEM, PCB manufacturers and scientists are working together in a close relationship in order to develop predictive models for PCB reliability and lifetime. To achieve that goal, it is fundamental to characterize precisely base materials (laminates, electrolytic copper, …), in order to understand failure mechanisms and simulate PCB aging under environmental constraints by means of finite element method for example. The laminates are woven composites and have thus an orthotropic behaviour. The in-plane properties can be measured by combining classical uniaxial testing and digital image correlation. Nevertheless, the out-of-plane properties cannot be evaluated due to the thickness of the laminate (a few hundred of microns). It has to be noted that the knowledge of the out-of-plane properties is fundamental to investigate the lifetime of high density printed circuit boards. A homogenization method combining analytical and numerical approaches has been developed in order to obtain the complete elastic orthotropic behaviour of a woven composite from its precise 3D internal structure and its experimentally measured in-plane elastic properties. Since the mechanical properties of the resin surrounding the fibres are unknown, an inverse method is proposed to estimate it. The methodology has been applied to one laminate used in hyperfrequency spatial applications in order to get its elastic orthotropic behaviour at different temperatures in the range [-55°C; +125°C]. Next; numerical simulations of a plated through hole in a double sided PCB are performed. Results show the major importance of the out-of-plane properties and the temperature dependency of these properties on the lifetime of a printed circuit board. Acknowledgements—The support of the French ANR agency through the Labcom program ANR-14-LAB7-0003-01, support of CNES, Thales Alenia Space and Cimulec is acknowledged.

Keywords: homogenization, orthotropic behaviour, printed circuit board, woven composites

Procedia PDF Downloads 174
368 Soybean Seed Composition Prediction From Standing Crops Using Planet Scope Satellite Imagery and Machine Learning

Authors: Supria Sarkar, Vasit Sagan, Sourav Bhadra, Meghnath Pokharel, Felix B.Fritschi

Abstract:

Soybean and their derivatives are very important agricultural commodities around the world because of their wide applicability in human food, animal feed, biofuel, and industries. However, the significance of soybean production depends on the quality of the soybean seeds rather than the yield alone. Seed composition is widely dependent on plant physiological properties, aerobic and anaerobic environmental conditions, nutrient content, and plant phenological characteristics, which can be captured by high temporal resolution remote sensing datasets. Planet scope (PS) satellite images have high potential in sequential information of crop growth due to their frequent revisit throughout the world. In this study, we estimate soybean seed composition while the plants are in the field by utilizing PlanetScope (PS) satellite images and different machine learning algorithms. Several experimental fields were established with varying genotypes and different seed compositions were measured from the samples as ground truth data. The PS images were processed to extract 462 hand-crafted vegetative and textural features. Four machine learning algorithms, i.e., partial least squares (PLSR), random forest (RFR), gradient boosting machine (GBM), support vector machine (SVM), and two recurrent neural network architectures, i.e., long short-term memory (LSTM) and gated recurrent unit (GRU) were used in this study to predict oil, protein, sucrose, ash, starch, and fiber of soybean seed samples. The GRU and LSTM architectures had two separate branches, one for vegetative features and the other for textures features, which were later concatenated together to predict seed composition. The results show that sucrose, ash, protein, and oil yielded comparable prediction results. Machine learning algorithms that best predicted the six seed composition traits differed. GRU worked well for oil (R-Squared: of 0.53) and protein (R-Squared: 0.36), whereas SVR and PLSR showed the best result for sucrose (R-Squared: 0.74) and ash (R-Squared: 0.60), respectively. Although, the RFR and GBM provided comparable performance, the models tended to extremely overfit. Among the features, vegetative features were found as the most important variables compared to texture features. It is suggested to utilize many vegetation indices for machine learning training and select the best ones by using feature selection methods. Overall, the study reveals the feasibility and efficiency of PS images and machine learning for plot-level seed composition estimation. However, special care should be given while designing the plot size in the experiments to avoid mixed pixel issues.

Keywords: agriculture, computer vision, data science, geospatial technology

Procedia PDF Downloads 106