Search results for: covering materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7476

Search results for: covering materials

816 A Comparative Analysis on Survival in Patients with Node Positive Cutaneous Head and Neck Squamous Cell Carcinoma as per TNM 7th and Tnm 8th Editions

Authors: Petr Daniel Edward Kovarik, Malcolm Jackson, Charles Kelly, Rahul Patil, Shahid Iqbal

Abstract:

Introduction: Recognition of the presence of extra capsular spread (ECS) has been a major change in the TNM 8th edition published by the American Joint Committee on Cancer in 2018. Irrespective of the size or number of lymph nodes, the presence of ECS makes N3b disease a stage IV disease. The objective of this retrospective observational study was to conduct a comparative analysis of survival outcomes in patients with lymph node-positive cutaneous head and neck squamous cell carcinoma (CHNSCC) based on their TNM 7th and TNM 8th editions classification. Materials and Methods: From January 2010 to December 2020, 71 patients with CHNSCC were identified from our centre’s database who were treated with radical surgery and adjuvant radiotherapy. All histopathological reports were reviewed, and comprehensive nodal mapping was performed. The data were collected retrospectively and survival outcomes were compared using TNM 7th and 8th editions. Results: The median age of the whole group of 71 patients was 78 years, range 54 – 94 years, 63 were male and 8 female. In total, 2246 lymph nodes were analysed; 195 were positive for cancer. ECS was present in 130 lymph nodes, which led to a change in TNM staging. The details on N-stage as per TNM 7th edition was as follows; pN1 = 23, pN2a = 14, pN2b = 32, pN2c = 0, pN3 = 2. After incorporating the TNM 8th edition criterion (presence of ECS), the details on N-stage were as follows; pN1 = 6, pN2a = 5, pN2b = 3, pN2c = 0, pN3a = 0, pN3b = 57. This showed an increase in overall stage. According to TNM 7th edition, there were 23 patients were with stage III and remaining 48 patients, stage IV. As per TNM 8th edition, there were only 6 patients with stage III as compared to 65 patients with stage IV. For all patients, 2-year disease specific survival (DSS) and overall survival (OS) were 70% and 46%. 5-year DSS and OS rates were 66% and 20% respectively. Comparing the survival between stage III and stage IV of the two cohorts using both TNM 7th and 8th editions, there is an obvious greater survival difference between the stages if TNM 8th staging is used. However, meaningful statistics were not possible as the majority of patients (n = 65) were with stage IV and only 6 patients were stage III in the TNM 8th cohort. Conclusion: Our study provides a comprehensive analysis on lymph node data mapping in this specific patient population. It shows a better differentiation between stage III and stage IV in the TNM 8th edition as compared to TNM 7th however meaningful statistics were not possible due to the imbalance of patients in the sub-cohorts of the groups.

Keywords: cutaneous head and neck squamous cell carcinoma, extra capsular spread, neck lymphadenopathy, TNM 7th and 8th editions

Procedia PDF Downloads 107
815 Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae

Authors: Yumeho Obata, Mariko Era, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita

Abstract:

Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent.

Keywords: fatty acid salts, spices, antiproliferative effects, dermatophagoides farinae

Procedia PDF Downloads 234
814 Evaluating the Factors That Influence Caries Reduction During Pregnancy

Authors: Mimoza Canga, Irene Malagnino, Vergjini Mulo, Alketa Qafmolla, Vito Antonio Malagnino

Abstract:

Background: Dental caries is the most common dental disease and pregnancy represents a special process of physical, hormonal and metabolic changes in pregnant women, which is accompanied by an imbalance in the oral cavity. Objective: The objective of this study is to evaluate caries reduction after dental visits, the scaling of teeth, fluoridated water, brushing of the teeth and using fluoride toothpaste before and during pregnancy. Materials and methods: This study was conducted in the time period March 2018- September 2021, the age range of the participants was: 18-41 years old. The sample taken under observation was composed of 84 pregnant women. The questionnaire included the demographic characteristics of the sample, such as age, women's education level was primary, secondary, and higher education. Based on women's education level, our analysis found that 25.9% of pregnant women had completed primary education, 35.2% of them had secondary education and 38.9% of pregnant women had higher education. The descriptive and analytical research analysis is formulated as a longitudinal study. Statistical analysis was performed using IBM SPSS Statistics 23.0. The significance level (α) was set at 0.05, whereas P-value and analysis of variance (ANOVA) were used to analyze the data. Results: In the present study, it was observed that there is a strong relationship between dental visits and the scaling of the teeth with the value of P˂ .0001. While the number of teeth with caries before pregnancy and fluoridated water have a P-value=0.002. If we compare the same factor with the number of teeth with dental caries during pregnancy, the correlation is P-value = 0.0001. The number of teeth with caries before pregnancy and carbohydrates consumption has a strong relation with P-value=0.05. According to the present research, the number of teeth with dental caries before pregnancy in relation to brushing the teeth has a P-value ˂ 0.05. Furthermore, in the actual research, it was established that using fluoride toothpaste doesn’t affect the number of teeth with caries before pregnancy with a P-value= .314. Conclusion: According to the results of the present study performed in Albania, it was found out that the periodical dental visits, scaling of the teeth, fluoridated water, brushing of the teeth influenced caries reduction before and during pregnancy. In comparison, the usage of fluoride toothpaste did not have any effect on dental caries reduction in the same time period. The recommendations are as follows: maintaining oral hygiene, using fluoridated water and brushing the teeth regularly. Healthcare providers should inform pregnant women about the importance of oral health and the implementation of measures to manage dental caries.

Keywords: brushing of the teeth, dental visits, dental scaling, fluoridated water, pregnancy

Procedia PDF Downloads 194
813 The Effects of Molecular and Climatic Variability on the Occurrence of Aspergillus Species and Aflatoxin Production in Commercial Maize from Different Agro-climatic Regions in South Africa

Authors: Nji Queenta Ngum, Mwanza Mulunda

Abstract:

Introduction Most African research reports on the frequent aflatoxin contamination of various foodstuffs, with researchers rarely specifying which of the Aspergillus species are present in these commodities. Numerous research works provide evidence of the ability of fungi to grow, thrive, and interact with other crop species and focus on the fact that these processes are largely affected by climatic variables. South Africa is a water-stressed country with high spatio-temporal rainfall variability; moreover, temperatures have been projected to rise at a rate twice the global rate. This weather pattern change may lead to crop stress encouraging mold contamination with subsequent mycotoxin production. In this study, the biodiversity and distribution of Aspergillus species with their corresponding toxins in maize from six distinct maize producing regions with different weather patterns in South Africa were investigated. Materials And Methods By applying cultural and molecular methods, a total of 1028 maize samples from six distinct agro-climatic regions were examined for contamination by the Aspergillus species while the high performance liquid chromatography (HPLC) method was applied to analyse the level of contamination by aflatoxins. Results About 30% of the overall maize samples were contaminated by at least one Aspergillus species. Less than 30% (28.95%) of the 228 isolates subjected to the aflatoxigenic test was found to possess at least one of the aflatoxin biosynthetic genes. Furthermore, almost 20% were found to be contaminated with aflatoxins, with mean total aflatoxin concentration levels of 64.17 ppb. Amongst the contaminated samples, 59.02% had mean total aflatoxin concentration levels above the SA regulatory limit of 20ppb for animals and 10 for human consumption. Conclusion In this study, climate variables (rainfall reduction) were found to significantly (p<0.001) influence the occurrence of the Aspergillus species (especially Aspergillus fumigatus) and the production of aflatoxin in South Africa commercial maize by maize variety, year of cultivation as well as the agro-climatic region in which the maize is cultivated. This included, amongst others, a reduction in the average annual rainfall of the preceding year to about 21.27 mm, and, as opposed to other regions whose average maximum rainfall ranged between 37.24 – 44.1 mm, resulted in a significant increase in the aflatoxin contamination of maize.

Keywords: aspergillus species, aflatoxins, diversity, drought, food safety, HPLC and PCR techniques

Procedia PDF Downloads 76
812 Nanoporous Metals Reinforced with Fullerenes

Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca

Abstract:

Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.

Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals

Procedia PDF Downloads 239
811 Mass Media and Tobacco in Bangladesh: An Investigation on the Role of Mass Media in the Light of Tobacco Control

Authors: Tahsina Sadeque Kapil Ahmed

Abstract:

Context: The tobacco epidemic is one of the biggest public health threats the world has ever faced. Tobacco use is a widespread phenomenon in Bangladesh, and that causes numerous deaths and disabilities in a year. The studies conducted elsewhere have strengthened the evidence that mass media campaigns conducted in the context of comprehensive tobacco control programs can promote quitting and reduce smoking, as well as smokeless tobacco prevalence. Awareness building campaigns in mass-media against tobacco use should be prioritized more, and this paper will be an initiative towards enhancing mass-media’s role in controlling tobacco in Bangladesh. Objective: the main objective of this study is to investigate the role of mass-media in controlling tobacco in Bangladesh. Methods: This is a qualitative study and both primary, as well as secondary data were used where information gathered through the Key Informant Interviews (KIIs) and media contents. The employees of media houses (five national papers, two online news portals and six TV channels) were selected as study respondent. Media Content Analysis is used through the broad range of ‘texts’ from transcripts of interviews and discussions along with the materials like reports, footages, advertisements, talk-shows, articles etc. Results: The study result documented several opinions of discussants where Mass media was found to play a strong role in support of the amended tobacco control law and its implication that could be created public support against tobacco farming, exposing to companies’ tactics and other tobacco control activities. The study results also revealed that in controlling tobacco supply and demand effectively, media has been assisting the government and anti-tobacco activities productively. Majority of the Key Informants opined spontaneously on tobacco control program publicity, organizational interference, and influence of other activities on media. They also emphasized role of media for activities of anti-tobacco organizations, awareness building actions, popularization of tobacco control law and its amendment. Conclusion and Recommendation: The study shows evidence that mass media coverage of tobacco control issues is influencing the context of comprehensive tobacco control programs. To reduce tobacco consumption, along with strict enforcement efforts, media should be used to assist with the implementation of the tobacco control law. A sustained nationwide campaign to educate the masses against the dangers of smoking and smokeless tobacco is needed, and media can play an important role in creating further awareness about the dangers associated with tobacco consumption.

Keywords: Bangladesh media, mass media, role of media, tobacco control

Procedia PDF Downloads 213
810 Integrated Human Resources and Work Environment Management System

Authors: Loreta Kaklauskiene, Arturas Kaklauskas

Abstract:

The Integrated Human Resources and Work Environment Management (HOWE) System optimises employee productivity, improves the work environment, and, at the same time, meets the employer’s strategic goals. The HOWE system has been designed to ensure an organisation can successfully compete in the global market, thanks to the high performance of its employees. The HOWE system focuses on raising workforce productivity and improving work conditions to boost employee performance and motivation. The methods used in our research are linear correlation, INVAR multiple criteria analysis, digital twin, and affective computing. The HOWE system is based on two patents issued in Lithuania (LT 6866, LT 6841) and one European Patent application (No: EP 4 020 134 A1). Our research analyses ways to make human resource management more efficient and boost labour productivity by improving and adapting a personalised work environment. The efficiency of human capital and labour productivity can be increased by applying personalised workplace improvement systems that can optimise lighting colours and intensity, scents, data, information, knowledge, activities, media, games, videos, music, air pollution, humidity, temperature, vibrations, and other workplace aspects. HOWE generates and maintains a personalised workspace for an employee, taking into account the person’s affective, physiological and emotional (APSE) states. The purpose of this project was to create a HOWE for the customisation of quality control in smart workspaces taking into account the user’s APSE states in an integrated manner as a single unit. This customised management of quality control covers the levels of lighting and colour intensities, scents, media, information, activities, learning materials, games, music, videos, temperature, energy efficiency, the carbon footprint of a workspace, humidity, air pollution, vibrations and other aspects of smart spaces. The system is based on Digital Twins technology, seen as a logical extension of BIM.

Keywords: human resource management, health economics, work environment, organizational behaviour and employee productivity, prosperity in work, smart system

Procedia PDF Downloads 75
809 Vulnerability of the Rural Self-Constructed Housing with Social Programs and His Economic Impact in the South-East of Mexico

Authors: Castillo-Acevedo J, Mena-Rivero R, Silva-Poot H

Abstract:

In Mexico, as largely of the developing countries, the rural housing is a study object, since the diversity of constructive idiosyncrasies for locality, involves various factors that make it vulnerable; an important aspect of study is the progressive deterioration that is seen in the rural housing. Various social programs, contribute financial resources in the field of housing to provide support for families living in rural areas, however, they do not provide a coordination with the self-construction that is usually the way in which is built in these areas. The present study, exposes the physical situation and an economic assessment that presents the rural self-constructed housing in three rural communities in the south of the state of Quintana Roo, Mexico, which were built with funding from federal social programs. The information compilation was carried out in a period of seven months in which there was used the intentional sampling of typical cases, where the object study was the housing constructed with supports of the program “Rural Housing” between the year 2009 and 2014. Instruments were used as the interview, ballot papers of observation, ballot papers of technical verification and various measuring equipment laboratory for the classification of pathologies; for the determination of some pathologies constructive Mexican standards were applied how NMX-C-192-ONNCCE, NMX-C-111-ONNCCE, NMX-C-404-ONNCCE and finally used the software of Opus CMS ® with the help of tables of the National Consumer Price Index (CPI) for update of costs and wages according to the line of being applied in Mexico, were used for an economic valuation. The results show 11 different constructive pathologies and exposes greater presence with the 22.50% to the segregation of the concrete; the economic assessment shows that 80% of self-constructed housing, exceed the cost of construction it would have compared to a similar dwelling built by a construction company; It is also exposed to the 46.10% of the universe of study represent economic losses in materials to the social activities by houses not built. The system of self-construction used by the social programs, affect to some extent the program objectives applied in underserved areas, as implicit and additional costs affect the economic capacity of beneficiaries who invest time and effort in an activity that are not specialists, which this research provides foundations for sustainable alternatives or possibly eliminate the practice of self-construction of implemented social programs in marginalized rural communities in the south of state of Quintana Roo, Mexico.

Keywords: economic valuation, pathologies constructive, rural housing, social programs

Procedia PDF Downloads 532
808 Dinoflagellate Thecal Plates as a Green Cellulose Source

Authors: Alvin Chun Man Kwok, Wai Sun Chan, Wei Yuan, Joseph Tin Yum Wong

Abstract:

Cellulose, the most abundant biopolymer, is the major constituent of plant and dinoflagellate cell walls. Thecate dinoflagellates, in particular, are renowned for their remarkable capacity to synthesize intricate cellulosic thecal plates (CTPs). Unlike the extracellular two-dimensional structure of plant cell walls, these CTPs are three-dimensional and reside within the cellular structure itself. The deposition of CTPs occurs with remarkable precision, and their arrangement serves as crucial taxonomic markers. It is noteworthy that these plates possess the hardness of wood, despite the absence of lignin. Partial and prolonged hydrolysis of CTPs results in the formation of uniform long bundles and lowdimensional, modular crystalline whiskers. This observation aligns with the consistent nanomechanical properties, suggesting a CTPboard structure. The unique composition and structural characteristics of CTPs distinguish them from other cellulose-based materials in the natural world. Spectroscopic studies using Raman and FTIR methods indicate a clear low crystallinity index, with the OH shift becoming more distinct following SDS treatment. Birefringence imaging confirms the highly organized structure of CTPs, demonstrating varying degrees of anisotropy in different regions, including both seaward and cytosolic passages. The knockdown of a cellulose synthase enzyme in dinoflagellates resulted in severe malformation of CTPs and hindered the life-cycle transition. Unlike certain other microalgal groups, these unique circum-spherical depositions of CTPs were not pre-fabricated and transported "to site," but synthesized within alveolar sacs at the specific site. Our research is particularly focused on unraveling the mechanisms underlying the biodeposition of CTPs and exploring their potential biotechnological applications. Understanding the processes involved in CTP formation can pave the way for harnessing their unique properties for various practical applications. Dinoflagellates play a crucial role as major agents of algal blooms and are also known for producing anti-greenhouse sulfur compounds such as DMS/DMSP, highlighting the significance of CTPs as a carbon-neutral source of cellulose. Grant acknowledgement: Research in the laboratory are supported by GRF16104523 from Research Grant Council to JTYW.

Keywords: cellulosic thecal plates, dinoflagellates, cellulose, cell wall

Procedia PDF Downloads 99
807 An Analysis of Insulation Defects in TRNC: The Case of Toros Dormitory of Eastern Mediterranean University

Authors: Arash Imani Fooladi

Abstract:

In recent years, with the growing population and decrease in the amount of non-renewable energy supplies, which is caused by the uncontrolled energy use, the world witnesses air pollution and destruction of the natural resources. Most of the buildings which are constructed in order to inhabit this great amount of population have minimum facilities. With the passing time researchers began to feel anxious about increase in the amount of energy which people are continuously using and they tried to find some ways to solve it. One of the methods, which human being has used all during the history, was considering the orientation, size, form and shape of the building during design process and trying to take advantage of the methods which his ancestors used in order to make buildings thermally comfortable. In the last forty years with the development of building materials a new way of conserving energy, called insulation, was invented. In North Cyprus, with its adverse weather condition (hot and dry summers and rainy winters) no method was used to make buildings thermally comfortable. This fact leads to wasting a noticeable amount of energy for heating and cooling the buildings. The main aim of this article is to evaluate the defects of insulation in North Cyprus and to introduce some suggestions to improve the current defects of insulation. Therefore, this paper focuses on the Toros dormitory and the construction firms in TRNC. Toros Dormitory is situated in North Cyprus and it is one of the dormitories of Eastern Mediterranean University. Lots of problems are observed with its insulation. Forty students who inhabit in this dormitory are selected randomly in order to study these defects. Close ended questionnaires are used to find out the level of satisfaction of these students on the subject. Furthermore, eight constructors in North Cyprus are selected to study their level of satisfaction, the most important factors for choosing an insulation type and the material they often use as insulation. The results demonstrated that most of the students in the dormitory are not satisfied with the thermal conditions. Constructors are also unsatisfied with the insulating conditions in TRNC. They claimed that polystyrene which is commonly used is not the proper material for insulation in this area. Finally ICF system is evaluated, it is a new system of construction which also works as an insulation and recently it is being used all over the world. The material is suggested as a proper insulation type for North Cyprus.

Keywords: thermal comfort, insulation, building envelop, hot and humid climate, ICF system

Procedia PDF Downloads 343
806 Evaluation of the Effect of Magnetic Field on Fibroblast Attachment in Contact with PHB/Iron Oxide Nanocomposite

Authors: Shokooh Moghadam, Mohammad Taghi Khorasani, Sajjad Seifi Mofarah, M. Daliri

Abstract:

Through the recent two decades, the use of magnetic-property materials with the aim of target cell’s separation and eventually cancer treatment has incredibly increased. Numerous factors can alter the efficacy of this method on curing. In this project, the effect of magnetic field on adhesion of PDL and L929 cells on nanocomposite of iron oxide/PHB with different density of iron oxides (1%, 2.5%, 5%) has been studied. The nanocamposite mentioned includes a polymeric film of poly hydroxyl butyrate and γ-Fe2O3 particles with the average size of 25 nanometer dispersed in it and during this process, poly vinyl alcohol with 98% hydrolyzed and 78000 molecular weight was used as an emulsion to achieve uniform distribution. In order to get the homogenous film, the solution of PHB and iron oxide nanoparticles were put in a dry freezer and in liquid nitrogen, which resulted in a uniform porous scaffold and for removing porosities a 100◦C press was used. After the synthesis of a desirable nanocomposite film, many different tests were performed, First, the particles size and their distribution in the film were evaluated by transmission electron microscopy (TEM) and even FTIR analysis and DMTA test were run in order to observe and accredit the chemical connections and mechanical properties of nanocomposites respectively. By comparing the graphs of case and control samples, it was established that adding nano particles caused an increase in crystallization temperature and the more density of γ-Fe2O3 lead to more Tg (glass temperature). Furthermore, its dispersion range and dumping property of samples were raised up. Moreover, the toxicity, morphologic changes and adhesion of fibroblast and cancer cells were evaluated by a variety of tests. All samples were grown in different density and in contact with cells for 24 and 48 hours within the magnetic fields of 2×10^-3 Tesla. After 48 hours, the samples were photographed with an optic and SEM and no sign of toxicity was traced. The number of cancer cells in the case of sample group was fairly more than the control group. However, there are many gaps and unclear aspects to use magnetic field and their effects in cancer and all diseases treatments yet to be discovered, not to neglect that there have been prominent step on this way in these recent years and we hope this project can be at least a minimum movement in this issue.

Keywords: nanocomposite, cell attachment, magnetic field, cytotoxicity

Procedia PDF Downloads 259
805 Stress-Strain Relation for Hybrid Fiber Reinforced Concrete at Elevated Temperature

Authors: Josef Novák, Alena Kohoutková

Abstract:

The performance of concrete structures in fire depends on several factors which include, among others, the change in material properties due to the fire. Today, fiber reinforced concrete (FRC) belongs to materials which have been widely used for various structures and elements. While the knowledge and experience with FRC behavior under ambient temperature is well-known, the effect of elevated temperature on its behavior has to be deeply investigated. This paper deals with an experimental investigation and stress‑strain relations for hybrid fiber reinforced concrete (HFRC) which contains siliceous aggregates, polypropylene and steel fibers. The main objective of the experimental investigation is to enhance a database of mechanical properties of concrete composites with addition of fibers subject to elevated temperature as well as to validate existing stress-strain relations for HFRC. Within the investigation, a unique heat transport test, compressive test and splitting tensile test were performed on 150 mm cubes heated up to 200, 400, and 600 °C with the aim to determine a time period for uniform heat distribution in test specimens and the mechanical properties of the investigated concrete composite, respectively. Both findings obtained from the presented experimental test as well as experimental data collected from scientific papers so far served for validating the computational accuracy of investigated stress-strain relations for HFRC which have been developed during last few years. Owing to the presence of steel and polypropylene fibers, HFRC becomes a unique material whose structural performance differs from conventional plain concrete when exposed to elevated temperature. Polypropylene fibers in HFRC lower the risk of concrete spalling as the fibers burn out shortly with increasing temperature due to low ignition point and as a consequence pore pressure decreases. On the contrary, the increase in the concrete porosity might affect the mechanical properties of the material. To validate this thought requires enhancing the existing result database which is very limited and does not contain enough data. As a result of the poor database, only few stress-strain relations have been developed so far to describe the structural performance of HFRC at elevated temperature. Moreover, many of them are inconsistent and need to be refined. Most of them also do not take into account the effect of both a fiber type and fiber content. Such approach might be vague especially when high amount of polypropylene fibers are used. Therefore, the existing relations should be validated in detail based on other experimental results.

Keywords: elevated temperature, fiber reinforced concrete, mechanical properties, stress strain relation

Procedia PDF Downloads 339
804 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 163
803 Measuring Human Perception and Negative Elements of Public Space Quality Using Deep Learning: A Case Study of Area within the Inner Road of Tianjin City

Authors: Jiaxin Shi, Kaifeng Hao, Qingfan An, Zeng Peng

Abstract:

Due to a lack of data sources and data processing techniques, it has always been difficult to quantify public space quality, which includes urban construction quality and how it is perceived by people, especially in large urban areas. This study proposes a quantitative research method based on the consideration of emotional health and physical health of the built environment. It highlights the low quality of public areas in Tianjin, China, where there are many negative elements. Deep learning technology is then used to measure how effectively people perceive urban areas. First, this work suggests a deep learning model that might simulate how people can perceive the quality of urban construction. Second, we perform semantic segmentation on street images to identify visual elements influencing scene perception. Finally, this study correlated the scene perception score with the proportion of visual elements to determine the surrounding environmental elements that influence scene perception. Using a small-scale labeled Tianjin street view data set based on transfer learning, this study trains five negative spatial discriminant models in order to explore the negative space distribution and quality improvement of urban streets. Then it uses all Tianjin street-level imagery to make predictions and calculate the proportion of negative space. Visualizing the spatial distribution of negative space along the Tianjin Inner Ring Road reveals that the negative elements are mainly found close to the five key districts. The map of Tianjin was combined with the experimental data to perform the visual analysis. Based on the emotional assessment, the distribution of negative materials, and the direction of street guidelines, we suggest guidance content and design strategy points of the negative phenomena in Tianjin street space in the two dimensions of perception and substance. This work demonstrates the utilization of deep learning techniques to understand how people appreciate high-quality urban construction, and it complements both theory and practice in urban planning. It illustrates the connection between human perception and the actual physical public space environment, allowing researchers to make urban interventions.

Keywords: human perception, public space quality, deep learning, negative elements, street images

Procedia PDF Downloads 115
802 Current Concepts of Male Aesthetics: Facial Areas to Be Focused and Prioritized with Botulinum Toxin and Hyaluronic Acid Dermal Fillers Combination Therapies, Recommendations on Asian Patients

Authors: Sadhana Deshmukh

Abstract:

Objective: Men represent only a fraction of the medical aesthetic practice. They are increasingly becoming more cosmetically-inclined. The primary objective is to harmonize facial proportion by prioritizing and focusing on forehead nose, cheek and chin complex. Introduction: Despite tremendous variability, diverse population of the Indian subcontinent, the male skull is unique in its overall larger size, and shape. Men tend to have a large forehead with prominent supraorbital ridges, wide glabella, square orbit, and a prominent protruding mandible. Men have increased skeletal muscle mass, with less facial subcutaneous fat. Facial aesthetics is evolving rapidly. Commonly published canons of facial proportions usually represent feminine standards and are not applicable to males. Strict adherence to these norms is therefore not necessary to obtain satisfying results in male patients. Materials and Methods: Male patients age group 30-60 years have been enrolled. Botulinum toxin and hyaluronic acid fillers were used to update consensus recommendations for facial rejuvenation using these two types of products alone and in combination. Results: There are specific recommendations by facial area, focusing on relaxing musculature, restoring volume, recontouring using toxin and dermal fillers alone and in combination. For upper face, though botulinum toxin remains the cornerstone of treatment, temples and forehead fillers are recommended for optimal results. In Mid face, these fillers are placed more laterally to maintain the masculine look. Botulinum toxin and fillers in combination can improve outcomes in the lower face. Chin augmentation remains the center point for lower face. Conclusions: Males are more likely to have shorter doctor visits, less likely to ask questions, have a lower attention to bodily changes. The physician must patiently gauge male patients’ aging and cosmetic goals. Clinicians can also benefit from ongoing guidance on products, tailoring treatments, treating multiple facial areas, and using combinations of products. An appreciation that rejuvenation is 3-dimensional process involving muscle control, volume restoration and recontouring helps.

Keywords: male aesthetics, botulinum toxin, hyaluronic acid dermal fillers, Asian patients

Procedia PDF Downloads 157
801 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator

Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li

Abstract:

A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.

Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator

Procedia PDF Downloads 154
800 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 98
799 Colloids and Heavy Metals in Groundwaters: Tangential Flow Filtration Method for Study of Metal Distribution on Different Sizes of Colloids

Authors: Jiancheng Zheng

Abstract:

When metals are released into water from mining activities, they undergo changes chemically, physically and biologically and then may become more mobile and transportable along the waterway from their original sites. Natural colloids, including both organic and inorganic entities, are naturally occurring in any aquatic environment with sizes in the nanometer range. Natural colloids in a water system play an important role, quite often a key role, in binding and transporting compounds. When assessing and evaluating metals in natural waters, their sources, mobility, fate, and distribution patterns in the system are the major concerns from the point of view of assessing environmental contamination and pollution during resource development. There are a few ways to quantify colloids and accordingly study how metals distribute on different sizes of colloids. Current research results show that the presence of colloids can enhance the transport of some heavy metals in water, while heavy metals may also have an influence on the transport of colloids when cations in the water system change colloids and/or the ion strength of the water system changes. Therefore, studies into the relationship between different sizes of colloids and different metals in a water system are necessary and needed as natural colloids in water systems are complex mixtures of both organic and inorganic as well as biological materials. Their stability could be sensitive to changes in their shapes, phases, hardness and functionalities due to coagulation and deposition et al. and chemical, physical, and biological reactions. Because metal contaminants’ adsorption on surfaces of colloids is closely related to colloid properties, it is desired to fraction water samples as soon as possible after a sample is taken in the natural environment in order to avoid changes to water samples during transportation and storage. For this reason, this study carried out groundwater sample processing in the field, using Prep/Scale tangential flow filtration systems with 3-level cartridges (1 kDa, 10 kDa and 100 kDa). Groundwater samples from seven sites at Fort MacMurray, Alberta, Canada, were fractionated during the 2015 field sampling season. All samples were processed within 3 hours after samples were taken. Preliminary results show that although the distribution pattern of metals on colloids may vary with different samples taken from different sites, some elements often tend to larger colloids (such as Fe and Re), some to finer colloids (such as Sb and Zn), while some of them mainly in the dissolved form (such as Mo and Be). This information is useful to evaluate and project the fate and mobility of different metals in the groundwaters and possibly in environmental water systems.

Keywords: metal, colloid, groundwater, mobility, fractionation, sorption

Procedia PDF Downloads 363
798 Manufacturing and Calibration of Material Standards for Optical Microscopy in Industrial Environments

Authors: Alberto Mínguez-Martínez, Jesús De Vicente Y Oliva

Abstract:

It seems that we live in a world in which the trend in industrial environments is the miniaturization of systems and materials and the fabrication of parts at the micro-and nano-scale. The problem arises when manufacturers want to study the quality of their production. This characteristic is becoming crucial due to the evolution of the industry and the development of Industry 4.0. As Industry 4.0 is based on digital models of production and processes, having accurate measurements becomes capital. At this point, the metrology field plays an important role as it is a powerful tool to ensure more stable production to reduce scrap and the cost of non-conformities. The most extended measuring instruments that allow us to carry out accurate measurements at these scales are optical microscopes, whether they are traditional, confocal, focus variation microscopes, profile projectors, or any other similar measurement system. However, the accuracy of measurements is connected to the traceability of them to the SI unit of length (the meter). The fact of providing adequate traceability to 2D and 3D dimensional measurements at micro-and nano-scale in industrial environments is a problem that is being studied, and it does not have a unique answer. In addition, if commercial material standards for micro-and nano-scale are considered, we can find that there are two main problems. On the one hand, those material standards that could be considered complete and very interesting do not give traceability of dimensional measurements and, on the other hand, their calibration is very expensive. This situation implies that these kinds of standards will not succeed in industrial environments and, as a result, they will work in the absence of traceability. To solve this problem in industrial environments, it becomes necessary to have material standards that are easy to use, agile, adaptive to different forms, cheap to manufacture and, of course, traceable to the definition of meter with simple methods. By using these ‘customized standards’, it would be possible to adapt and design measuring procedures for each application and manufacturers will work with some traceability. It is important to note that, despite the fact that this traceability is clearly incomplete, this situation is preferable to working in the absence of it. Recently, it has been demonstrated the versatility and the utility of using laser technology and other AM technologies to manufacture customized material standards. In this paper, the authors propose to manufacture a customized material standard using an ultraviolet laser system and a method to calibrate it. To conclude, the results of the calibration carried out in an accredited dimensional metrology laboratory are presented.

Keywords: industrial environment, material standards, optical measuring instrument, traceability

Procedia PDF Downloads 122
797 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent

Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen

Abstract:

Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.

Keywords: adsorption, nanoporous silicon, ore solution, scandium

Procedia PDF Downloads 146
796 Liability of AI in Workplace: A Comparative Approach Between Shari’ah and Common Law

Authors: Barakat Adebisi Raji

Abstract:

In the workplace, Artificial Intelligence has, in recent years, emerged as a transformative technology that revolutionizes how organizations operate and perform tasks. It is a technology that has a significant impact on transportation, manufacturing, education, cyber security, robotics, agriculture, healthcare, and so many other organizations. By harnessing AI technology, workplaces can enhance productivity, streamline processes, and make more informed decisions. Given the potential of AI to change the way we work and its impact on the labor market in years to come, employers understand that it entails legal challenges and risks despite the advantages inherent in it. Therefore, as AI continues to integrate into various aspects of the workplace, understanding the legal and ethical implications becomes paramount. Also central to this study is the question of who is held liable where AI makes any defaults; the person (company) who created the AI, the person who programmed the AI algorithm or the person who uses the AI? Thus, the aim of this paper is to provide a detailed overview of how AI-related liabilities are addressed under each legal tradition and shed light on potential areas of accord and divergence between the two legal cultures. The objectives of this paper are to (i) examine the ability of Common law and Islamic law to accommodate the issues and damage caused by AI in the workplace and the legality of compensation for such injury sustained; (ii) to discuss the extent to which AI can be described as a legal personality to bear responsibility: (iii) examine the similarities and disparities between Common Law and Islamic Jurisprudence on the liability of AI in the workplace. The methodology adopted in this work was qualitative, and the method was purely a doctrinal research method where information is gathered from the primary and secondary sources of law, such as comprehensive materials found in journal articles, expert-authored books and online news sources. Comparative legal method was also used to juxtapose the approach of Islam and Common Law. The paper concludes that since AI, in its current legal state, is not recognized as a legal entity, operators or manufacturers of AI should be held liable for any damage that arises, and the determination of who bears the responsibility should be dependent on the circumstances surrounding each scenario. The study recommends the granting of legal personality to AI systems, the establishment of legal rights and liabilities for AI, the establishment of a holistic Islamic virtue-based AI ethics framework, and the consideration of Islamic ethics.

Keywords: AI, health- care, agriculture, cyber security, common law, Shari'ah

Procedia PDF Downloads 37
795 Muhammad`s Vision of Interaction with Supernatural Beings According to the Hadith in Comparison to Parallels of Other Cultures

Authors: Vladimir A. Rozov

Abstract:

Comparative studies of religion and ritual could contribute better understanding of human culture universalities. Belief in supernatural beings seems to be a common feature of the religion. A significant part of the Islamic concepts that concern supernatural beings is based on a tradition based on the Hadiths. They reflect, among other things, his ideas about a proper way to interact with supernatural beings. These ideas to a large extent follow from the pre-Islamic religious experience of the Arabs and had been reflected in a number of ritual actions. Some of those beliefs concern a particular function of clothing. For example, it is known that Muhammad was wrapped in clothes during the revelation of the Quran. The same thing was performed by pre-Islamic soothsayers (kāhin) and by rival opponents of Muhammad during their trances. Muhammad also turned the clothes inside out during religious rituals (prayer for rain). Besides these specific ways of clothing which prove the external similarity of Muhammad with the soothsayers and other people who claimed the connection with supernatural forces, the pre-Islamic soothsayers had another characteristic feature which is physical flaws. In this regard, it is worth to note Muhammad's so-called "Seal the Prophecy" (h̠ ātam an- nubūwwa) -protrusion or outgrowth on his back. Another interesting feature of Muhammad's behavior was his attitude to eating onion and garlic. In particular, the Prophet didn`t eat them and forbade people who had tasted these vegetables to enter mosques, until the smell ceases to be felt. The reason for this ban on eating onion and garlic is caused by a belief that the smell of these products prevents communication with otherworldly forces. The materials of the Hadith also suggest that Muhammad shared faith in the apotropical properties of water. Both of these ideas have parallels in other cultures of the world. Muhammad's actions supposed to provide an interaction with the supernatural beings are not accidental. They have parallels in the culture of pre-Islamic Arabia as well as in many past and present world cultures. The latter fact can be explained by the similarity of the universal human beliefs in supernatural beings and how they should be interacted with. Later a number of similar ideas shared by the Prophet Muhammad was legitimized by the Islamic tradition and formed the basis of popular Islamic rituals. Thus, these parallels emphasize the commonality of human notions of supernatural beings and also demonstrate the significance of the pre-Islamic cultural context in analyzing the genesis of Islamic religious beliefs.

Keywords: hadith, Prophet Muhammad, ritual, supernatural beings

Procedia PDF Downloads 389
794 Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte

Authors: Manuel Salado, Mikel Rincón, Arkaitz Fidalgo, Roberto Fernandez, Senentxu Lanceros-Méndez

Abstract:

Lithium-ion batteries (LIBs) are a promising technology for energy storage, but they suffer from safety concerns due to the use of flammable organic solvents in their liquid electrolytes. Solid-state electrolytes (SSEs) offer a potential solution to this problem, but they have their own limitations, such as poor ionic conductivity and high interfacial resistance. The aim of this research was to develop a new type of SSE based on metal-organic frameworks (MOFs) and ionic liquids (ILs). MOFs are porous materials with high surface area and tunable electronic properties, making them ideal for use in SSEs. ILs are liquid electrolytes that are non-flammable and have high ionic conductivity. A series of MOFs were synthesized, and their electrochemical properties were evaluated. The MOFs were then infiltrated with ILs to form a quasi-solid gel and solid xerogel SSEs. The ionic conductivity, interfacial resistance, and electrochemical performance of the SSEs were characterized. The results showed that the MOF-IL SSEs had significantly higher ionic conductivity and lower interfacial resistance than conventional SSEs. The SSEs also exhibited excellent electrochemical performance, with high discharge capacity and long cycle life. The development of MOF-IL SSEs represents a significant advance in the field of solid-state electrolytes. The high ionic conductivity and low interfacial resistance of the SSEs make them promising candidates for use in next-generation LIBs. The data for this research was collected using a variety of methods, including X-ray diffraction, scanning electron microscopy, and electrochemical impedance spectroscopy. The data was analyzed using a variety of statistical and computational methods, including principal component analysis, density functional theory, and molecular dynamics simulations. The main question addressed by this research was whether MOF-IL SSEs could be developed that have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. The results of this research demonstrate that MOF-IL SSEs are a promising new type of solid-state electrolyte for use in LIBs. The SSEs have high ionic conductivity, low interfacial resistance, and excellent electrochemical performance. These properties make them promising candidates for use in next-generation LIBs that are safer and have higher energy densities.

Keywords: energy storage, solid-electrolyte, ionic liquid, metal-organic-framework, electrochemistry, organic inorganic plastic crystal

Procedia PDF Downloads 83
793 Utilization of Cervical Cancer Screening Among HIV Infected Women in Nairobi, Kenya

Authors: E. Njuguna, S. Ilovi, P. Muiruri, K. Mutai, J. Kinuthia, P. Njoroge

Abstract:

Introduction: Cervical cancer is the commonest cause of cancer-related morbidity and mortality among women in developing countries in Sub Saharan Africa. Screening for cervical cancer in all women regardless of HIV status is crucial for the early detection of cancer of the cervix when treatment is most effective in curing the disease. It is particularly more important to screen HIV infected women as they are more at risk of developing the disease and progressing faster once infected with HPV (Human Papilloma Virus). We aimed to determine the factors affecting the utilization of cervical cancer screenings among HIV infected women above 18 years of age at Kenyatta National Hospital (KNH) Comprehensive Care Center (CCC). Materials and Methods: A cross-sectional mixed quantitative and qualitative study involving randomly and purposefully selected HIV positive female respectively was conducted. Qualitative data collection involved 4 focus group discussions of eligible female participants while quantitative data were acquired by one to one interviewer administered structured questionnaires. The outcome variable was the utilization of cervical cancer screening. Data were entered into Access data base and analyzed using Stata version 11.1. Qualitative data were analyzed after coding for significant clauses and transcribing to determine themes arising. Results: We enrolled a total of 387 patients, mean age (IQ range) 40 years (36-44). Cervical cancer screening utilization was 46% despite a health care provider recommendation of 85%. The screening results were reported as normal in 72 of 81 (88.9%) and abnormal 7 of 81(8.6%) of the cases. Those who did not know their result were 2 of 81(2.5%). Patients were less likely to utilize the service with increasing number of years attending the clinic (OR 0.9, 95% CI 0.86-0.99, p-value 0.02), but more likely to utilize the service if recommendation by a staff was made (OR 10, 95% CI 4.2-23.9, p<0.001), and if cervical screening had been done before joining KNH CCC (OR 2.9, 95% CI 1.7-4.9, p < 0.001). Similarly, they were more likely to rate the services on cervical cancer screening as good (OR 5.0, 95% CI 1.7-3.4, p <0.001) and very good (OR 8.1, 95% CI 2.5-6.1, p<0.001) if they had utilized the service. The main barrier themes emerging from qualitative data included fear of screening due to excessive pain or bleeding, lack of proper communication on screening procedures and increased waiting time. Conclusions: Utilization of cervical cancer screening services was low despite health care recommendation. Patient socio-demographic characteristics did not influence whether or not they utilized the services, indicating the important role of the health care provider in the referral and provision of the service.

Keywords: cervical, cancer, HIV, women, comprehensive care center

Procedia PDF Downloads 275
792 Lung Tissue Damage under Diesel Exhaust Exposure: Modification of Proteins, Cells and Functions in Just 14 Days

Authors: Ieva Bruzauskaite, Jovile Raudoniute, Karina Poliakovaite, Danguole Zabulyte, Daiva Bironaite, Ruta Aldonyte

Abstract:

Introduction: Air pollution is a growing global problem which has been shown to be responsible for various adverse health outcomes. Immunotoxicity, such as dysregulated inflammation, has been proposed as one of the main mechanisms in air pollution-associated diseases. Chronic obstructive pulmonary disease (COPD) is among major morbidity and mortality causes worldwide and is characterized by persistent airflow limitation caused by the small airways disease (obstructive bronchiolitis) and irreversible parenchymal destruction (emphysema). Exact pathways explaining the air pollution induced and mediated disease states are still not clear. However, modern societies understand dangers of polluted air, seek to mitigate such effects and are in need for reliable biomarkers of air pollution. We hypothesise that post-translational modifications of structural proteins, e.g. citrullination, might be a good candidate biomarker. Thus, we have designed this study, where mice were exposed to diesel exhaust and the ongoing protein modifications and inflammation in lungs and other tissues were assessed. Materials And Methods: To assess the effects of diesel exhaust a in vivo study was designed. Mice (n=10) were subjected to everyday 2-hour exposure to diesel exhaust for 14 days. Control mice were treated the same way without diesel exhaust. The effects within lung and other tissues were assessed by immunohistochemistry of formalin-fixed and paraffin-embedded tissues. Levels of inflammation and citrullination related markers were investigated. Levels of parenchymal damage were also measured. Results: In vivo study corroborates our own data from in vitro and reveals diesel exhaust initiated inflammatory shift and modulation of lung peptidyl arginine deiminase 4 (PAD4), citrullination associated enzyme, levels. In addition, high levels of citrulline were observed in exposed lung tissue sections co-localising with increased parenchymal destruction. Conclusions: Subacute exposure to diesel exhaust renders mice lungs inflammatory and modifies certain structural proteins. Such structural changes of proteins may pave a pathways to lost/gain function of affected molecules and also propagate autoimmune processes within the lung and systemically.

Keywords: air pollution, citrullination, in vivo, lungs

Procedia PDF Downloads 156
791 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 128
790 Structural Optimization, Design, and Fabrication of Dissolvable Microneedle Arrays

Authors: Choupani Andisheh, Temucin Elif Sevval, Bediz Bekir

Abstract:

Due to their various advantages compared to many other drug delivery systems such as hypodermic injections and oral medications, microneedle arrays (MNAs) are a promising drug delivery system. To achieve enhanced performance of the MN, it is crucial to develop numerical models, optimization methods, and simulations. Accordingly, in this work, the optimized design of dissolvable MNAs, as well as their manufacturing, is investigated. For this purpose, a mechanical model of a single MN, having the geometry of an obelisk, is developed using commercial finite element software. The model considers the condition in which the MN is under pressure at the tip caused by the reaction force when penetrating the skin. Then, a multi-objective optimization based on non-dominated sorting genetic algorithm II (NSGA-II) is performed to obtain geometrical properties such as needle width, tip (apex) angle, and base fillet radius. The objective of the optimization study is to reach a painless and effortless penetration into the skin along with minimizing its mechanical failures caused by the maximum stress occurring throughout the structure. Based on the obtained optimal design parameters, master (male) molds are then fabricated from PMMA using a mechanical micromachining process. This fabrication method is selected mainly due to the geometry capability, production speed, production cost, and the variety of materials that can be used. Then to remove any chip residues, the master molds are cleaned using ultrasonic cleaning. These fabricated master molds can then be used repeatedly to fabricate Polydimethylsiloxane (PDMS) production (female) molds through a micro-molding approach. Finally, Polyvinylpyrrolidone (PVP) as a dissolvable polymer is cast into the production molds under vacuum to produce the dissolvable MNAs. This fabrication methodology can also be used to fabricate MNAs that include bioactive cargo. To characterize and demonstrate the performance of the fabricated needles, (i) scanning electron microscope images are taken to show the accuracy of the fabricated geometries, and (ii) in-vitro piercing tests are performed on artificial skin. It is shown that optimized MN geometries can be precisely fabricated using the presented fabrication methodology and the fabricated MNAs effectively pierce the skin without failure.

Keywords: microneedle, microneedle array fabrication, micro-manufacturing structural optimization, finite element analysis

Procedia PDF Downloads 113
789 Noncovalent Antibody-Nanomaterial Conjugates: A Simple Approach to Produce Targeted Nanomedicines

Authors: Nicholas Fletcher, Zachary Houston, Yongmei Zhao, Christopher Howard, Kristofer Thurecht

Abstract:

One promising approach to enhance nanomedicine therapeutic efficacy is to include a targeting agent, such as an antibody, to increase accumulation at the tumor site. However, the application of such targeted nanomedicines remains limited, in part due to difficulties involved with biomolecule conjugation to synthetic nanomaterials. One approach recently developed to overcome this has been to engineer bispecific antibodies (BsAbs) with dual specificity, whereby one portion binds to methoxy polyethyleneglycol (mPEG) epitopes present on synthetic nanomedicines, while the other binds to molecular disease markers of interest. In this way, noncovalent complexes of nanomedicine core, comprising a hyperbranched polymer (HBP) of primarily mPEG, decorated with targeting ligands are able to be produced by simple mixing. Further work in this area has now demonstrated such complexes targeting the breast cancer marker epidermal growth factor receptor (EGFR) to show enhanced binding to tumor cells both in vitro and in vivo. Indeed the enhanced accumulation at the tumor site resulted in improved therapeutic outcomes compared to untargeted nanomedicines and free chemotherapeutics. The current work on these BsAb-HBP conjugates focuses on further probing antibody-nanomaterial interactions and demonstrating broad applicability to a range of cancer types. Herein are reported BsAb-HBP materials targeted towards prostate-specific membrane antigen (PSMA) and study of their behavior in vivo using ⁸⁹Zr positron emission tomography (PET) in a dual-tumor prostate cancer xenograft model. In this model mice bearing both PSMA+ and PSMA- tumors allow for PET imaging to discriminate between nonspecific and targeted uptake in tumors, and better quantify the increased accumulation following BsAb conjugation. Also examined is the potential for formation of these targeted complexes in situ following injection of individual components? The aim of this approach being to avoid undesirable clearance of proteinaceous complexes upon injection limiting available therapeutic. Ultimately these results demonstrate BsAb functionalized nanomaterials as a powerful and versatile approach for producing targeted nanomedicines for a variety of cancers.

Keywords: bioengineering, cancer, nanomedicine, polymer chemistry

Procedia PDF Downloads 141
788 Applications of Space Technology in Flood Risk Mapping in Parts of Haryana State, India

Authors: B. S. Chaudhary

Abstract:

The severity and frequencies of different disasters on the globe is increasing in recent years. India is also facing the disasters in the form of drought, cyclone, earthquake, landslides, and floods. One of the major causes of disasters in northern India is flood. There are great losses and extensive damage to the agricultural crops, property, human, and animal life. This is causing environmental imbalances at places. The annual global figures for losses due to floods run into over 2 billion dollar. India is a vast country with wide variations in climate and topography. Due to widespread and heavy rainfall during the monsoon months, floods of varying magnitude occur all over the country during June to September. The magnitude depends upon the intensity of rainfall, its duration and also the ground conditions at the time of rainfall. Haryana, one of the agriculturally dominated northern states is also suffering from a number of disasters such as floods, desertification, soil erosion, land degradation etc. Earthquakes are also frequently occurring but of small magnitude so are not causing much concern and damage. Most of the damage in Haryana is due to floods. Floods in Haryana have occurred in 1978, 1988, 1993, 1995, 1998, and 2010 to mention a few. The present paper deals with the Remote Sensing and GIS applications in preparing flood risk maps in parts of Haryana State India. The satellite data of various years have been used for mapping of flood affected areas. The Flooded areas have been interpreted both visually and digitally and two classes-flooded and receded water/ wet areas have been identified for each year. These have been analyzed in GIS environment to prepare the risk maps. This shows the areas of high, moderate and low risk depending on the frequency of flood witness. The floods leave a trail of suffering in the form of unhygienic conditions due to improper sanitation, water logging, filth littered in the area, degradation of materials and unsafe drinking water making the people prone to many type diseases in short and long run. Attempts have also been made to enumerate the causes of floods. The suggestions are given for mitigating the fury of floods and proper management issues related to evacuation and safe places nearby.

Keywords: flood mapping, GIS, Haryana, India, remote sensing, space technology

Procedia PDF Downloads 209
787 From Research to Practice: Upcycling Cinema Icons

Authors: Mercedes Rodriguez Sanchez, Laura Luceño Casals

Abstract:

With the rise of social media, creative people and brands everywhere are constantly generating content. The students with Bachelor's Degrees in Fashion Design use platforms such as Instagram or TikTok to look for inspiration and entertainment, as well as a way to develop their own ideas and share them with a wide audience. Information and Communications Technologies (ICT) have become a central aspect of higher education, virtually affecting every aspect of the student experience. Following the current trend, during the first semester of the second year, a collaborative project across two subjects –Design Management and History of Fashion Design– was implemented. After an introductory class focused on the relationship between fashion and cinema, as well as a brief history of 20th-century fashion, the students freely chose a work team and an iconic look from a movie costume. They researched the selected movie and its sociocultural context, analyzed the costume and the work of the designer, and studied the style, fashion magazines and most popular films of the time. Students then redesigned and recreated the costume, for which they were compelled to recycle the materials they had available at home as an unavoidable requirement of the activity. Once completed the garment, students delivered in-class, team-based presentations supported by the final design, a project summary poster and a making-of video, which served as a documentation tool of the costume design process. The methodologies used include Challenge-Based Learning (CBL), debates, Internet research, application of Information and Communications Technologies, and viewing clips of classic films, among others. After finishing the projects, students were asked to complete two electronic surveys to measure the acquisition of transversal and specific competencies of each subject. Results reveal that this activity helped the students' knowledge acquisition, a deeper understanding of both subjects and their skills development. The classroom dynamic changed. The multidisciplinary approach encouraged students to collaborate with their peers, while educators were better able to keep students' interest and promote an engaging learning process. As a result, the activity discussed in this paper confirmed the research hypothesis: it is positive to propose innovative teaching projects that combine academic research with playful learning environments.

Keywords: cinema, cooperative learning, fashion design, higher education, upcycling

Procedia PDF Downloads 78