Search results for: learning integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9364

Search results for: learning integration

2734 eTransformation Framework for the Cognitive Systems

Authors: Ana Hol

Abstract:

Digital systems are in the cognitive wave of the eTransformations and are now extensively aimed at meeting the individuals’ demands, both those of customers requiring services and those of service providers. It is also apparent that successful future systems will not just simply open doors to the traditional owners/users to offer and receive services such as Uber for example does today, but will in the future require more customized and cognitively enabled infrastructures that will be responsive to the system user’s needs. To be able to identify what is required for such systems, this research reviews the historical and the current effects of the eTransformation process by studying: 1. eTransitions of company websites and mobile applications, 2. Emergence of new sheared economy business models as Uber and, 3. New requirements for demand driven, cognitive systems capable of learning and just in time decision making. Based on the analysis, this study proposes a Cognitive eTransformation Framework capable of guiding implementations of new responsive and user aware systems.

Keywords: system implementations, AI supported systems, cognitive systems, eTransformation

Procedia PDF Downloads 238
2733 Effects of Teaching Strategies on Students Academic Achievement in Secondary Physics Education for Quality Assurance

Authors: Collins Molua

Abstract:

This paper investigated the effect of Teaching Strategies on Academic Achievement in Secondary Physics Education as a quality assurance process for the teaching and learning of the subject. Teaching strategies investigated were the interactive, independent and dependent strategies. Three null hypotheses were tested at p< 0.05 using one instrument, physics achievement test(PAT).The data were analyzed using analysis of covariance (ANCOVA).Results showed that teaching strategies have significant effect on students achievement; the joint effect of the teaching strategies was also significant on students achievement in Physics. The interactive teaching strategies was recommended for teaching the subject and the students should be exposed to practical, computer literacy to stimulate interest and curiosity to enhance quality.

Keywords: quality, assurance, secondary education, strategies, physics

Procedia PDF Downloads 328
2732 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: FSASEC, academic environment model, decision trees, k-nearest neighbor, machine learning, popularity index, support vector machine

Procedia PDF Downloads 200
2731 Online Authenticity Verification of a Biometric Signature Using Dynamic Time Warping Method and Neural Networks

Authors: Gałka Aleksandra, Jelińska Justyna, Masiak Albert, Walentukiewicz Krzysztof

Abstract:

An offline signature is well-known however not the safest way to verify identity. Nowadays, to ensure proper authentication, i.e. in banking systems, multimodal verification is more widely used. In this paper the online signature analysis based on dynamic time warping (DTW) coupled with machine learning approaches has been presented. In our research signatures made with biometric pens were gathered. Signature features as well as their forgeries have been described. For verification of authenticity various methods were used including convolutional neural networks using DTW matrix and multilayer perceptron using sums of DTW matrix paths. System efficiency has been evaluated on signatures and signature forgeries collected on the same day. Results are presented and discussed in this paper.

Keywords: dynamic time warping, handwritten signature verification, feature-based recognition, online signature

Procedia PDF Downloads 175
2730 BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching

Authors: Gianna Zou

Abstract:

Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed.

Keywords: BART, Bayesian, matching, regression

Procedia PDF Downloads 147
2729 Study on Capability of the Octocopter Configurations in Finite Element Analysis Simulation Environment

Authors: Jeet Shende, Leonid Shpanin, Misko Abramiuk, Mattew Goodwin, Nicholas Pickett

Abstract:

Energy harvesting on board the Unmanned Ariel Vehicle (UAV) is one of the most rapidly growing emerging technologies and consists of the collection of small amounts of energy, for different applications, from unconventional sources that are incidental to the operation of the parent system or device. Different energy harvesting techniques have already been investigated in the multirotor drones, where the energy collected comes from the systems surrounding ambient environment and typically involves the conversion of solar, kinetic, or thermal energies into electrical energy. The energy harvesting from the vibrated propeller using the piezoelectric components inside the propeller has also been proven to be feasible. However, the impact on the UAV flight performance using this technology has not been investigated. In this contribution the impact on the multirotor drone operation has been investigated at different flight control configurations which support the efficient performance of the propeller vibration energy harvesting. The industrially made MANTIS X8-PRO octocopter frame kit was used to explore the octocopter operation which was modelled using SolidWorks 3D CAD package for simulation studies. The octocopter flight control strategy is developed through integration of the SolidWorks 3D CAD software and MATLAB/Simulink simulation environment for evaluation of the octocopter behaviour under different simulated flight modes and octocopter geometries. Analysis of the two modelled octocopter geometries and their flight performance is presented via graphical representation of simulated parameters. The possibility of not using the landing gear in octocopter geometry is demonstrated. The conducted study evaluates the octocopter’s flight control technique and its impact on the energy harvesting mechanism developed on board the octocopter. Finite Element Analysis (FEA) simulation results of the modelled octocopter in operation are presented exploring the performance of the octocopter flight control and structural configurations. Applications of both octocopter structures and their flight control strategy are discussed.

Keywords: energy harvesting, flight control modelling, object modeling, unmanned aerial vehicle

Procedia PDF Downloads 77
2728 Relationships between Motor Skills and Self-Perceived Athletic Competence in a Sample of Primary School Children

Authors: Cristina-Corina Bențea, Teodora-Mihaela Iconomescu, Laurențiu-Gabriel Talaghir, Claudiu Mereuță, Anamaria Berdilă

Abstract:

The study aims to examine the relationships between motor abilities, self-evaluation of athletic competence, and demographic characteristics in a sample of late-childhood participants. Defined as physical elements that enable the movements, motor skills are classified according to movement precision as gross and fine motor skills. Across their development, children enhance their ability to coordinate the limbs to produce different actions. In educational settings, they perform various instructional activities that involve the improvement of their athletic prowess and are taught how to strengthen their gross and fine motor abilities. Also, in relation to their activities, children tend to evaluate themselves differently across the various domains of their life. Starting from childhood, athletic competence is one of the area-specific evaluations of competence that refers to one’s ability to do well at sports, including outdoor games. Method: The sample consisted of fifty-eight primary school children, thirty girls, and twenty-eight boys, with ages between 8-10 years. The Bruininks-Oseretsky test of motor proficiency was used to assess both gross and fine motor skills in eight specific areas (fine motor precision, fine motor integration, manual dexterity, bilateral coordination, balance, running speed and agility, upper-limb coordination, strength). Athletic competence self-perceived was assessed with one of the six subscales of the Self-Perception Profile for Children. Results: Were examined both the relationships between each motor skills scale and subscales and between motor skills and general self-perceived athletic competence. Results indicated correlations between the athletic competence and four motor skills subscales depending on the gender and age of the children. The findings of the study were discussed related to the possibility to improve children's physical proficiency in educational settings according to the level of self-perceived athletic competence.

Keywords: gross motor skills, fine motor skills, athletic competence, self-evaluation, children, education

Procedia PDF Downloads 85
2727 The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text

Authors: Almagul Assainova , Dariya Abykenova, Liudmila Goncharenko, Sergey Sybachin, Saule Rakhimova, Abay Aman

Abstract:

The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text.

Keywords: handwriting recognition system, image recognition, Kazakh font, machine learning, neural networks

Procedia PDF Downloads 262
2726 Human Capital and the Innovation System: A Case Study of the Mpumalanga Province, South Africa

Authors: Maria E. Eggink

Abstract:

Human capital is one of the essential factors in an innovation system and innovation is the driving force of economic growth and development. Schumpeter focused on the entrepreneur as innovator, but the evolutionary economists shifted the focus to all participants in the innovation system. Education and training institutions are important participants in an innovation system, but there is a gap in literature on competence building as part of the analysis of innovation systems. In this paper the education and training institutions’ competence building role in the innovation system is examined. The Mpumalanga Province of South Africa is used as a case study. It was found that the absence of a university, the level of education, the quality and performance in the education sector and the condition of the education infrastructure have not been conducive to learning.

Keywords: education institutions, human capital, innovation systems, Mpumalanga Province

Procedia PDF Downloads 380
2725 The Code-Mixing of Japanese, English, and Thai in Line Chat

Authors: Premvadee Na Nakornpanom

Abstract:

Language mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study was an attempt to explore the characteristics of the mixing of Japanese, English and Thai in a mobile chat room by students with their background of Japanese, English, and Thai. The result found that Insertion of Thai and English content words was a very common linguistic phenomenon embedded in the utterances. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotional-related. A Japanese sentence-final question particle“か”(ka) was added to the end of the sentence based on Thai grammar rule. Moreover, some unique characteristics were created. The non-verbal cues were represented in personal, Thai styles by inserting textual representations of images or feelings available on the websites into streams of conversations.

Keywords: code-mixing, Japanese, English, Thai, line chat

Procedia PDF Downloads 652
2724 A Conceptual Framework for Integrating Musical Instrument Digital Interface Composition in the Music Classroom

Authors: Aditi Kashi

Abstract:

While educational technologies have taken great strides, especially in Musical Instrument Digital Interface (MIDI) composition, teachers across the world are still adjusting to incorporate such technology into their curricula. While using MIDI in the classroom has become more common, limited class time and a strong focus on performance have made composition a lesser priority. The balance between music theory, performance time, and composition learning is delicate and difficult to maintain for many music educators. This makes including MIDI in the classroom. To address this issue, this paper aims to outline a general conceptual framework centered around a key element of music theory to integrate MIDI composition into the music classroom to not only introduce students to digital composition but also enhance their understanding of music theory and its applicability.

Keywords: educational framework, education technology, MIDI, music education

Procedia PDF Downloads 86
2723 Sports Preference Intervention as a Predictor of Sustainable Participation at Risk Teenagers in Ibadan Metropolis, Ibadan Nigerian

Authors: Felix Olajide Ibikunle

Abstract:

Introductory Statement: Sustainable participation of teenagers in sports requires deliberate and concerted plans and managerial policy rooted in the “philosophy of catch them young.” At risk, teenagers need proper integration into societal aspiration: This direction will go a long way to streamline them into security breaches and attractive nuisance free lifestyles. Basic Methodology: The population consists of children between 13-19 years old. A proportionate sampling size technique of 60% was adopted to select seven zones out of 11 geo-political zones in the Ibadan metropolis. Qualitative information and interview were used to collect needed information. The majority of the teenagers were out of school, street hawkers, motor pack touts and unserious vocation apprentices. These groups have the potential for security breaches in the metropolis and beyond. Five hundred and thirty-four (534) respondents were used for the study. They were drawn from Ojoo, Akingbile and Moniya axis = 72; Agbowo, Ajibode and Apete axis = 74; Akobo, Basorun and Idi-ape axis 79; Wofun, Monatan and Iyana-Church axis = 78; Molete, Oke-ado and Oke-Bola axis = 75; Beere, Odinjo, Elekuro axis = 77; Eleyele, Ologuneru and Alesinloye axis = 79. Major Findings: Multiple regression was used to analyze the independent variables and percentages. The respondents' average age was 15.6 years old, and 100% were male. The instrument (questionnaire) used yielded; sport preference (r = 0.72), intervention (r = 0.68), and sustainable participation (r = 0.70). The relative contributions of sport preference on the participation of at risk teenagers was (F-ratio = 1.067); Intervention contribution of sport on the participation of at risk teenagers = produced (F-ratio of 12.095) was significant while, sustainable participation of at risk teenagers produced (F-ratio = 1.062) was significant. Closing Statement: The respondents’ sport preference stimulated their participation in sports. The intervention exposed at risk-teenagers to coaching, which activated their interest and participation in sports. At the same time, sustainable participation contributed positively to evolving at risk teenagers' participation in their preferred sport.

Keywords: sport, preference, intervention, teenagers, sustainable, participation and risk teenagers

Procedia PDF Downloads 79
2722 ROSgeoregistration: Aerial Multi-Spectral Image Simulator for the Robot Operating System

Authors: Andrew R. Willis, Kevin Brink, Kathleen Dipple

Abstract:

This article describes a software package called ROS-georegistration intended for use with the robot operating system (ROS) and the Gazebo 3D simulation environment. ROSgeoregistration provides tools for the simulation, test, and deployment of aerial georegistration algorithms and is available at github.com/uncc-visionlab/rosgeoregistration. A model creation package is provided which downloads multi-spectral images from the Google Earth Engine database and, if necessary, incorporates these images into a single, possibly very large, reference image. Additionally a Gazebo plugin which uses the real-time sensor pose and image formation model to generate simulated imagery using the specified reference image is provided along with related plugins for UAV relevant data. The novelty of this work is threefold: (1) this is the first system to link the massive multi-spectral imaging database of Google’s Earth Engine to the Gazebo simulator, (2) this is the first example of a system that can simulate geospatially and radiometrically accurate imagery from multiple sensor views of the same terrain region, and (3) integration with other UAS tools creates a new holistic UAS simulation environment to support UAS system and subsystem development where real-world testing would generally be prohibitive. Sensed imagery and ground truth registration information is published to client applications which can receive imagery synchronously with telemetry from other payload sensors, e.g., IMU, GPS/GNSS, barometer, and windspeed sensor data. To highlight functionality, we demonstrate ROSgeoregistration for simulating Electro-Optical (EO) and Synthetic Aperture Radar (SAR) image sensors and an example use case for developing and evaluating image-based UAS position feedback, i.e., pose for image-based Guidance Navigation and Control (GNC) applications.

Keywords: EO-to-EO, EO-to-SAR, flight simulation, georegistration, image generation, robot operating system, vision-based navigation

Procedia PDF Downloads 104
2721 Assessment of Land Suitability for Tea Cultivation Using Geoinformatics in the Mansehra and Abbottabad District, Pakistan

Authors: Nasir Ashraf, Sajid Rahid Ahmad, Adeel Ahmad

Abstract:

Pakistan is a major tea consumer country and ranked as the third largest importer of tea worldwide. Out of all beverage consumed in Pakistan, tea is the one with most demand for which tea import is inevitable. Being an agrarian country, Pakistan should cultivate its own tea and save the millions of dollars cost from tea import. So the need is to identify the most suitable areas with favorable weather condition and suitable soils where tea can be planted. This research is conducted over District Mansehra and District Abbottabad in Khyber Pakhtoonkhwah Province of Pakistan where the most favorable conditions for tea cultivation already exist and National Tea Research Institute has done successful experiments to cultivate high quality tea. High tech approach is adopted to meet the objectives of this research by using the remotely sensed data i.e. Aster DEM, Landsat8 Imagery. The Remote Sensing data was processed in Erdas Imagine, Envi and further analyzed in ESRI ArcGIS spatial analyst for final results and representation of result data in map layouts. Integration of remote sensing data with GIS provided the perfect suitability analysis. The results showed that out of all study area, 13.4% area is highly suitable while 33.44% area is suitable for tea plantation. The result of this research is an impressive GIS based outcome and structured format of data for the agriculture planners and Tea growers. Identification of suitable tea growing areas by using remotely sensed data and GIS techniques is a pressing need for the country. Analysis of this research lets the planners to address variety of action plans in an economical and scientific manner which can lead tea production in Pakistan to meet demand. This geomatics based model and approach may be used to identify more areas for tea cultivation to meet our demand which we can reduce by planting our own tea, and our country can be independent in tea production.

Keywords: agrarian country, GIS, geoinformatics, suitability analysis, remote sensing

Procedia PDF Downloads 389
2720 Using Computer Vision and Machine Learning to Improve Facility Design for Healthcare Facility Worker Safety

Authors: Hengameh Hosseini

Abstract:

Design of large healthcare facilities – such as hospitals, multi-service line clinics, and nursing facilities - that can accommodate patients with wide-ranging disabilities is a challenging endeavor and one that is poorly understood among healthcare facility managers, administrators, and executives. An even less-understood extension of this problem is the implications of weakly or insufficiently accommodative design of facilities for healthcare workers in physically-intensive jobs who may also suffer from a range of disabilities and who are therefore at increased risk of workplace accident and injury. Combine this reality with the vast range of facility types, ages, and designs, and the problem of universal accommodation becomes even more daunting and complex. In this study, we focus on the implication of facility design for healthcare workers suffering with low vision who also have physically active jobs. The points of difficulty are myriad and could span health service infrastructure, the equipment used in health facilities, and transport to and from appointments and other services can all pose a barrier to health care if they are inaccessible, less accessible, or even simply less comfortable for people with various disabilities. We conduct a series of surveys and interviews with employees and administrators of 7 facilities of a range of sizes and ownership models in the Northeastern United States and combine that corpus with in-facility observations and data collection to identify five major points of failure common to all the facilities that we concluded could pose safety threats to employees with vision impairments, ranging from very minor to severe. We determine that lack of design empathy is a major commonality among facility management and ownership. We subsequently propose three methods for remedying this lack of empathy-informed design, to remedy the dangers posed to employees: the use of an existing open-sourced Augmented Reality application to simulate the low-vision experience for designers and managers; the use of a machine learning model we develop to automatically infer facility shortcomings from large datasets of recorded patient and employee reviews and feedback; and the use of a computer vision model fine tuned on images of each facility to infer and predict facility features, locations, and workflows, that could again pose meaningful dangers to visually impaired employees of each facility. After conducting a series of real-world comparative experiments with each of these approaches, we conclude that each of these are viable solutions under particular sets of conditions, and finally characterize the range of facility types, workforce composition profiles, and work conditions under which each of these methods would be most apt and successful.

Keywords: artificial intelligence, healthcare workers, facility design, disability, visually impaired, workplace safety

Procedia PDF Downloads 116
2719 Automatic Calibration of Agent-Based Models Using Deep Neural Networks

Authors: Sima Najafzadehkhoei, George Vega Yon

Abstract:

This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.

Keywords: ABM, calibration, CNN, LSTM, epidemiology

Procedia PDF Downloads 24
2718 Exploring the Nature and Meaning of Theory in the Field of Neuroeducation Studies

Authors: Ali Nouri

Abstract:

Neuroeducation is one of the most exciting research fields which is continually evolving. However, there is a need to develop its theoretical bases in connection to practice. The present paper is a starting attempt in this regard to provide a space from which to think about neuroeducational theory and invoke more investigation in this area. Accordingly, a comprehensive theory of neuroeducation could be defined as grouping or clustering of concepts and propositions that describe and explain the nature of human learning to provide valid interpretations and implications useful for educational practice in relation to philosophical aspects or values. Whereas it should be originated from the philosophical foundations of the field and explain its normative significance, it needs to be testable in terms of rigorous evidence to fundamentally advance contemporary educational policy and practice. There is thus pragmatically a need to include a course on neuroeducational theory into the curriculum of the field. In addition, there is a need to articulate and disseminate considerable discussion over the subject within professional journals and academic societies.

Keywords: neuroeducation studies, neuroeducational theory, theory building, neuroeducation research

Procedia PDF Downloads 448
2717 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone

Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg

Abstract:

Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.

Keywords: energy simulation, office building, tropical climate, zero energy buildings

Procedia PDF Downloads 184
2716 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: edge network, embedded network, MMA, matrix multiplication accelerator, semantic segmentation network

Procedia PDF Downloads 129
2715 Model of Optimal Centroids Approach for Multivariate Data Classification

Authors: Pham Van Nha, Le Cam Binh

Abstract:

Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.

Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization

Procedia PDF Downloads 208
2714 Intersectional Perspectives on Gender Equality in Higher Education: A Survey on Swiss Universities of Applied Science

Authors: Birgit Schmid, Brigitte Liebig, Susanne Burren, Maritza Le Breton, Martin Boehnel, Celestina Porta

Abstract:

Internationalization of students is part of the agenda of many universities worldwide. Yet, how well do universities achieve to guarantee educational success for male and female students of migrant background? This contribution aims on analyzing the effects of the Swiss university environment on perceived educational outcome of migrant students from a gender sensitive perspective. Social selectivity and gender inequalities strongly influence students’ access and success at universities. However, the complex interaction between universities and their disciplinary environments, and educational success of migrant students of both sex remains rarely examined so far. Starting from an intersectional perspective and neo-institutional approaches on higher education organizations, this contribution addresses formal/informal factors in the university environment in its impact on male/female students’ perception of well-being, success and dropout motivation. The paper starts from a most recent Swiss online-survey of Bachelor-students in two Universities of Applied Science and a University of Education in Switzerland. It compares students’ perspectives in four large BA degree courses with different male/female ratio, i.e. educational science, technical/computer science, economy, and social work (N=9`608). Results highlight the complex interplay of gender, migrant background and further dimensions of social differentiation on students’ perception in these different fields of education. Further, they illustrate correlations between students’ perception of discriminatory contexts, poor ratings of social integration and study success, as well a higher rate of dropout ideas. The paper lines out, that formal aspects of internationalization are less important for successfully integrating male/female migrant students than informal university conditions, such as a culture of diversity, which has to become integral part of internationalization strategies.

Keywords: gender and migration, higher education, internationalization, success

Procedia PDF Downloads 192
2713 Tips for Effective Intercultural Collaboration on the Evaluation of an International Program

Authors: Athanase Gahungu, Karen Freeman

Abstract:

Different groups of stakeholders expect the evaluation of an international, grant-funded program to inform them of the worth of the program - the funder, the agency operating the program and its community, and the citizens of the country where the program is implemented. This paper summarizes the challenges that intercultural teams of researchers faced as they crisscrossed a host country while evaluating a teaching and learning materials program, and offers useful tips for effective collaboration. Firstly, was recommended that the teams be representative of the cultures involved, and have the required research and program evaluation skills. Secondly, cultures involved must consistently establish and maintain a shared performance system. Thirdly, successful team members must be self-aware, inter-culturally knowledgeable, not just in communication, but in conceptualizing the political and social context of international grant-funded projects.

Keywords: program evaluation, international collaboration, intercultural, shared performance

Procedia PDF Downloads 537
2712 Predicting OpenStreetMap Coverage by Means of Remote Sensing: The Case of Haiti

Authors: Ran Goldblatt, Nicholas Jones, Jennifer Mannix, Brad Bottoms

Abstract:

Accurate, complete, and up-to-date geospatial information is the foundation of successful disaster management. When the 2010 Haiti Earthquake struck, accurate and timely information on the distribution of critical infrastructure was essential for the disaster response community for effective search and rescue operations. Existing geospatial datasets such as Google Maps did not have comprehensive coverage of these features. In the days following the earthquake, many organizations released high-resolution satellite imagery, catalyzing a worldwide effort to map Haiti and support the recovery operations. Of these organizations, OpenStreetMap (OSM), a collaborative project to create a free editable map of the world, used the imagery to support volunteers to digitize roads, buildings, and other features, creating the most detailed map of Haiti in existence in just a few weeks. However, large portions of the island are still not fully covered by OSM. There is an increasing need for a tool to automatically identify which areas in Haiti, as well as in other countries vulnerable to disasters, that are not fully mapped. The objective of this project is to leverage different types of remote sensing measurements, together with machine learning approaches, in order to identify geographical areas where OSM coverage of building footprints is incomplete. Several remote sensing measures and derived products were assessed as potential predictors of OSM building footprints coverage, including: intensity of light emitted at night (based on VIIRS measurements), spectral indices derived from Sentinel-2 satellite (normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), soil-adjusted vegetation index (SAVI), urban index (UI)), surface texture (based on Sentinel-1 SAR measurements)), elevation and slope. Additional remote sensing derived products, such as Hansen Global Forest Change, DLR`s Global Urban Footprint (GUF), and World Settlement Footprint (WSF), were also evaluated as predictors, as well as OSM street and road network (including junctions). Using a supervised classification with a random forest classifier resulted in the prediction of 89% of the variation of OSM building footprint area in a given cell. These predictions allowed for the identification of cells that are predicted to be covered but are actually not mapped yet. With these results, this methodology could be adapted to any location to assist with preparing for future disastrous events and assure that essential geospatial information is available to support the response and recovery efforts during and following major disasters.

Keywords: disaster management, Haiti, machine learning, OpenStreetMap, remote sensing

Procedia PDF Downloads 125
2711 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 149
2710 Perceptions on Development of the Deaf in Higher Education Level: The Case of Special Education Students in Tiaong, Quezon, Philippines

Authors: Ashley Venerable, Rosario Tatlonghari

Abstract:

This study identified how college deaf students of Bartimaeus Center for Alternative Learning in Tiaong, Quezon, Philippines view development using visual communication techniques and generating themes from responses. Complete enumeration was employed. Guided by Constructivist Theory of Perception, past experiences and stored information influenced perception. These themes of development emerged: social development; pleasant environment; interpersonal relationships; availability of resources; employment; infrastructure development; values; and peace and security. Using the National Economic and Development Authority development indicators, findings showed the deaf students’ views on development were similar from the mainstream views. Responses also became more meaningful through visual communication techniques.

Keywords: deaf, development, perception, development indicators, visual communication

Procedia PDF Downloads 431
2709 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students

Authors: Majed A. Alsalem

Abstract:

In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.

Keywords: deaf and hard of hearing, digital books, literacy, technology

Procedia PDF Downloads 490
2708 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network

Authors: Li Hui, Riyadh Hindi

Abstract:

Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.

Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network

Procedia PDF Downloads 66
2707 Evolution of Classroom Languaging in Multilingual Contexts: Challenges and Prospects

Authors: Jabulani Sibanda, Clemence Chikiwa

Abstract:

This paper traces diverse language practices representative of equally diverse conceptions of language. To be dynamic with languaging practices, one needs to appreciate nuanced languaging practices, their challenges, prospects, and opportunities. The paper presents what we envision as three major conceptions of language that give impetus to diverse language practices. It examines theoretical models of the bilingual mental lexicon and how they inform language practices. The paper explores classroom languaging practices that have been promulgated and experimented with. The paper advocates the deployment of multisensory semiotic systems to complement linguistic classroom communication and the acknowledgement of learners’ linguistic and semiotic resources as valid in the learning enterprise. It recommends the enactment of specific clauses on language in education policies and curriculum documents that empower classroom interactants to exercise discretion in languaging practices.

Keywords: languaging, monolingual, multilingual, semiotic and linguistic repertoire

Procedia PDF Downloads 65
2706 Delineato: Designing Distraction-Free GUIs

Authors: Fernando Miguel Campos, Fernando Jesus Aguiar Campos, Pedro Filipe Campos

Abstract:

A large amount of software products offer a wide range and number of features. This is called featurities or creeping featurism and tends to rise with each release of the product. Feautiris often adds unnecessary complexity to software, leading to longer learning curves and overall confusing the users and degrading their experience. We take a look to a new design approach tendency that has been coming up, the so-called “What You Get Is What You Need” concept that argues that products should be very focused, simple and with minimalistic interfaces in order to help users conduct their tasks in distraction-free ambiances. This is not as simple to implement as it might sound and the developers need to cut down features. Our contribution illustrates and evaluates this design method through a novel distraction-free diagramming tool named Delineato Pro for Mac OS X in which the user is confronted with an empty canvas when launching the software and where tools only show up when really needed.

Keywords: diagramming, HCI, usability, user interface

Procedia PDF Downloads 527
2705 Banking Union: A New Step towards Completing the Economic and Monetary Union

Authors: Marijana Ivanov, Roman Šubić

Abstract:

The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, represent important steps towards completing the Economic and Monetary Union. It should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim that a former practice of the bail-out is replaced with the bail-in system through which bank failures will be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. It has to reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities, and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the single interbank money market. However, contrary to all the positive expectations related to the future functioning of the banking union, low and unbalanced economic growth rates remain a challenge for the maintenance of financial stability in the euro area, and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times, and large banks are still a matter of concern because of their systemic importance for individual countries and the euro zone as a whole. The creation of the SSM and the SRM should increase transparency of the banking system in the euro area and restore confidence that have been disturbed during the depression. It would provide a new opportunity to strengthen economic and financial systems in the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented to the large and significant banks (whereby one half of them operate in the core and most important euro area countries), while it is questionable to what extent the common resolution funds will be used for rescue of less important institutions.

Keywords: banking union, financial integration, single supervision mechanism (SSM)

Procedia PDF Downloads 470