Search results for: health data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30704

Search results for: health data

24134 Optimal Trajectory Finding of IDP Ventilation Control with Outdoor Air Information and Indoor Health Risk Index

Authors: Minjeong Kim, Seungchul Lee, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

A trajectory of set-point of ventilation control systems plays an important role for efficient ventilation inside subway stations since it affects the level of indoor air pollutants and ventilation energy consumption. To maintain indoor air quality (IAQ) at a comfortable range with lower ventilation energy consumption, the optimal trajectory of the ventilation control system needs to be determined. The concentration of air pollutants inside the station shows a diurnal variation in accordance with the variations in the number of passengers and subway frequency. To consider the diurnal variation of IAQ, an iterative dynamic programming (IDP) that searches for a piecewise control policy by separating whole duration into several stages is used. When outdoor air is contaminated by pollutants, it enters the subway station through the ventilation system, which results in the deteriorated IAQ and adverse effects on passenger health. In this study, to consider the influence of outdoor air quality (OAQ), a new performance index of the IDP with the passenger health risk and OAQ is proposed. This study was carried out for an underground subway station at Seoul Metro, Korea. The optimal set-points of the ventilation control system are determined every 3 hours, then, the ventilation controller adjusts the ventilation fan speed according to the optimal set-point changes. Compared to manual ventilation system which is operated irrespective of the OAQ, the IDP-based ventilation control system saves 3.7% of the energy consumption. Compared to the fixed set-point controller which is operated irrespective of the IAQ diurnal variation, the IDP-based controller shows better performance with a 2% decrease in energy consumption, maintaining the comfortable IAQ range inside the station.

Keywords: indoor air quality, iterative dynamic algorithm, outdoor air information, ventilation control system

Procedia PDF Downloads 503
24133 The Family Sense of Coherence of Early Childhood Education Students

Authors: M. Demir, A. Demir

Abstract:

The aim of this study is to examine the family sense of coherence of early childhood education students. The Family Sense of Coherence Inventory has applied to 233 (108 girls and 125 boys) early childhood education students in Turkey. At the stage of data collection, with the aim of determining the family sense of coherence of early childhood education students, Family Sense of Coherence Inventory which was developed by Çeçen (2007) was used. In the process of the analysis of data, independent samples t-test, and one-way ANOVA were used. According to the results of the study, there were significant differences between some demographic variables in terms of the family sense of coherence.

Keywords: family sense of coherence, early childhood education students

Procedia PDF Downloads 169
24132 Remote Learning During Pandemic: Malaysian Classroom

Authors: Hema Vanita Kesevan

Abstract:

The global spread of Covid-19 virus in early 2020 has led to major changes in many walks of life, including the education system. Traditional face to face lessons that were carried out for years has been replaced by online learning. Although online learning has been used before the pandemic, it has not been the only source of teaching and learning. This drastic change has brought significant impact to the process of teaching and learning in many classrooms around the world. Likewise, in country like Malaysia that that has been promoting online learning but has not utilize it fully due to many restrictions in terms of technology, accessibility, and online literacy, the sudden change to full online platform learning in all educational sector has definitely caused Issues in terms of its adaptation and usage. Although many studies have been conducted to explore the efficiency and impact of online learning during the pandemic, studies focusing on the same are limited in Malaysian classroom context, especially in English language classrooms. Thus, this study seeks to explore on the efficacy and effectiveness of online learning tools in ESL classroom contexts during the pandemic. The aim of this study is to understand the educator's and student's perceptions on the implementation of online learning tools in the teaching and learning process and the types of online learning tools that were used to assist the teaching and learning process during the pandemic. Particularly, this study focused to explore the types of online learning tools used in Malaysian schools and university during the online teaching and learning process and further explores how the various types of tools used impacted the students' participation in the lessons conducted. The participants of this study are secondary school students, teachers, and university students. Data will be collected in terms of survey questionnaire and interviews. The survey data intends to obtain information on the types of online learning used in ESL teaching and learning practices during the pandemic, how the various types of online tools influence students' participation during lessons. The interview data from the teachers serves to provide information about the selection of online learning tools, challenges of using it to conduct online lessons, and other arising issues. A mixed method design will be used to analysed the data obtained. The questionnaire will be analysed quantitatively using descriptive analysis meanwhile, the interview data will be analysed qualitatively.

Keywords: Covid 19, online learning tools, ESL classroom, effectiveness, efficacy

Procedia PDF Downloads 237
24131 The Influence of Intellectual Capital Disclosures on Market Capitalization Growth

Authors: Nyoman Wijana, Chandra Arha

Abstract:

Disclosures of Intellectual Capital (IC) is a presentation of corporate information assets that are not recorded in the financial statements. This disclosures is very helpful because it provides inform corporate assets are intangible. In the new economic era, the company's intangible assets will determine company's competitive advantage. This study aimed to examine the effect of IC disclosures on market capitalization growth. Observational studies conducted over ten years in 2002-2011. The purpose of this study was to determine the effect for last ten years. One hundred samples of the company's largest market capitalization in 2011 traced back to last ten years. Data that used, are in 2011, 2008, 2005, and 2002 Method that’s used for acquiring the data is content analysis. The analytical method used is Ordinanary Least Square (OLS) and analysis tools are e views 7 This software using Pooled Least Square estimation parameters are specifically designed for panel data. The results of testing analysis showed inconsistent expression levels affect the growth of the market capitalization in each year of observation. The results of this study are expected to motivate the public company in Indonesia to do more voluntary IC disclosures and encourage regulators to make regulations in a comprehensive manner so that all categories of the IC must be disclosed by the company.

Keywords: IC disclosures, market capitalization growth, analytical method, OLS

Procedia PDF Downloads 343
24130 Analysis of Temporal Factors Influencing Minimum Dwell Time Distributions

Authors: T. Pedersen, A. Lindfeldt

Abstract:

The minimum dwell time is an important part of railway timetable planning. Due to its stochastic behaviour, the minimum dwell time should be considered to create resilient timetables. While there has been significant focus on how to determine and estimate dwell times, to our knowledge, little research has been carried out regarding temporal and running direction variations of these. In this paper, we examine how the minimum dwell time varies depending on temporal factors such as the time of day, day of the week and time of the year. We also examine how it is affected by running direction and station type. The minimum dwell time is estimated by means of track occupation data. A method is proposed to ensure that only minimum dwell times and not planned dwell times are acquired from the track occupation data. The results show that on an aggregated level, the average minimum dwell times in both running directions at a station are similar. However, when temporal factors are considered, there are significant variations. The minimum dwell time varies throughout the day with peak hours having the longest dwell times. It is also found that the minimum dwell times are influenced by weekday, and in particular, weekends are found to have lower minimum dwell times than most other days. The findings show that there is a potential to significantly improve timetable planning by taking minimum dwell time variations into account.

Keywords: minimum dwell time, operations quality, timetable planning, track occupation data

Procedia PDF Downloads 201
24129 Advances in Design Decision Support Tools for Early-stage Energy-Efficient Architectural Design: A Review

Authors: Maryam Mohammadi, Mohammadjavad Mahdavinejad, Mojtaba Ansari

Abstract:

The main driving force for increasing movement towards the design of High-Performance Buildings (HPB) are building codes and rating systems that address the various components of the building and their impact on the environment and energy conservation through various methods like prescriptive methods or simulation-based approaches. The methods and tools developed to meet these needs, which are often based on building performance simulation tools (BPST), have limitations in terms of compatibility with the integrated design process (IDP) and HPB design, as well as use by architects in the early stages of design (when the most important decisions are made). To overcome these limitations in recent years, efforts have been made to develop Design Decision Support Systems, which are often based on artificial intelligence. Numerous needs and steps for designing and developing a Decision Support System (DSS), which complies with the early stages of energy-efficient architecture design -consisting of combinations of different methods in an integrated package- have been listed in the literature. While various review studies have been conducted in connection with each of these techniques (such as optimizations, sensitivity and uncertainty analysis, etc.) and their integration of them with specific targets; this article is a critical and holistic review of the researches which leads to the development of applicable systems or introduction of a comprehensive framework for developing models complies with the IDP. Information resources such as Science Direct and Google Scholar are searched using specific keywords and the results are divided into two main categories: Simulation-based DSSs and Meta-simulation-based DSSs. The strengths and limitations of different models are highlighted, two general conceptual models are introduced for each category and the degree of compliance of these models with the IDP Framework is discussed. The research shows movement towards Multi-Level of Development (MOD) models, well combined with early stages of integrated design (schematic design stage and design development stage), which are heuristic, hybrid and Meta-simulation-based, relies on Big-real Data (like Building Energy Management Systems Data or Web data). Obtaining, using and combining of these data with simulation data to create models with higher uncertainty, more dynamic and more sensitive to context and culture models, as well as models that can generate economy-energy-efficient design scenarios using local data (to be more harmonized with circular economy principles), are important research areas in this field. The results of this study are a roadmap for researchers and developers of these tools.

Keywords: integrated design process, design decision support system, meta-simulation based, early stage, big data, energy efficiency

Procedia PDF Downloads 164
24128 Understanding Innovation by Analyzing the Pillars of the Global Competitiveness Index

Authors: Ujjwala Bhand, Mridula Goel

Abstract:

Global Competitiveness Index (GCI) prepared by World Economic Forum has become a benchmark in studying the competitiveness of countries and for understanding the factors that enable competitiveness. Innovation is a key pillar in competitiveness and has the unique property of enabling exponential economic growth. This paper attempts to analyze how the pillars comprising the Global Competitiveness Index affect innovation and whether GDP growth can directly affect innovation outcomes for a country. The key objective of the study is to identify areas on which governments of developing countries can focus policies and programs to improve their country’s innovativeness. We have compiled a panel data set for top innovating countries and large emerging economies called BRICS from 2007-08 to 2014-15 in order to find the significant factors that affect innovation. The results of the regression analysis suggest that government should make policies to improve labor market efficiency, establish sophisticated business networks, provide basic health and primary education to its people and strengthen the quality of higher education and training services in the economy. The achievements of smaller economies on innovation suggest that concerted efforts by governments can counter any size related disadvantage, and in fact can provide greater flexibility and speed in encouraging innovation.

Keywords: innovation, global competitiveness index, BRICS, economic growth

Procedia PDF Downloads 272
24127 The Importance of Generating Electricity through Wind Farms in the Brazilian Electricity Matrix, from 2013 to 2020

Authors: Alex Sidarta Guglielmoni

Abstract:

Since the 1970s, sustainable development has become increasingly present on the international agenda. The present work has as general objective to analyze, discuss and bring answers to the following question, what is the importance of the generation of electric energy through the wind power plants in the Brazilian electricity matrix between 2013 and 2019? To answer this question, we analyzed the generation of renewable energy from wind farms and the consumption of electricity in Brazil during the period of January 2013 until December 2020. The specific objectives of this research are: to analyze the public data, to identify the total wind generation, to identify the total wind capacity generation, to identify the percentage participation of the generation and generation capacity of wind energy in the Brazilian electricity matrix. In order to develop this research, it was necessary a bibliographic search, collection of secondary data, tabulation of generation data, and electricity capacity by a comparative analysis between wind power and the Brazilian electricity matrix. As a result, it was possible to observe how important Brazil is for global sustainable development and how much this country can grow with this, in view of its capacity and potential for generating wind power since this percentage has grown in past few years.

Keywords: wind power, Brazilian market, electricity matrix, generation capacity

Procedia PDF Downloads 131
24126 Revisiting the Swadesh Wordlist: How Long Should It Be

Authors: Feda Negesse

Abstract:

One of the most important indicators of research quality is a good data - collection instrument that can yield reliable and valid data. The Swadesh wordlist has been used for more than half a century for collecting data in comparative and historical linguistics though arbitrariness is observed in its application and size. This research compare s the classification results of the 100 Swadesh wordlist with those of its subsets to determine if reducing the size of the wordlist impact s its effectiveness. In the comparison, the 100, 50 and 40 wordlists were used to compute lexical distances of 29 Cushitic and Semitic languages spoken in Ethiopia and neighbouring countries. Gabmap, a based application, was employed to compute the lexical distances and to divide the languages into related clusters. The study shows that the subsets are not as effective as the 100 wordlist in clustering languages into smaller subgroups but they are equally effective in di viding languages into bigger groups such as subfamilies. It is noted that the subsets may lead to an erroneous classification whereby unrelated languages by chance form a cluster which is not attested by a comparative study. The chance to get a wrong result is higher when the subsets are used to classify languages which are not closely related. Though a further study is still needed to settle the issues around the size of the Swadesh wordlist, this study indicates that the 50 and 40 wordlists cannot be recommended as reliable substitute s for the 100 wordlist under all circumstances. The choice seems to be determined by the objective of a researcher and the degree of affiliation among the languages to be classified.

Keywords: classification, Cushitic, Swadesh, wordlist

Procedia PDF Downloads 300
24125 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 269
24124 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria

Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui

Abstract:

The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.

Keywords: atmospheric pollution, cement, dust, environment

Procedia PDF Downloads 344
24123 The Effect of Psychosocial, Behavioral and Disease Specific Characteristics on Health-Related Quality of Life after Primary Surgery for Colorectal Cancer: A Cross Sectional Study of a Regional Australian Population

Authors: Lakmali Anthony, Madeline Gillies

Abstract:

Background: Colorectal cancer (CRC) is usually managed with surgical resection. Many of the outcomes traditionally used to define successful operative management, such as resection margin, do not adequately reflect patients’ experience. Patient-reported outcomes (PRO), such as Health-Related Quality of life (HRQoL), provide a means by which the impact of surgery for cancer can be reported in a patient-centered way. HRQoL has previously been shown to be impacted by psychosocial, behavioral and disease-specific characteristics. This exploratory cross-sectional study aims to; (1) describe postoperative HRQoL in patients who underwent primary resection in a regional Australian hospital; (2) describe the prevalence of anxiety, depression and clinically significant fear of cancer recurrence (FCR) in this population; and (3) identify demographic, psychosocial, disease and treatment factors associated with poorer self-reported HRQoL. Methods: Consecutive patients who had resection of colorectal cancer in a single regional Australian hospital between 2015 and 2022 were eligible. Participants were asked to complete a survey instrument designed to assess HRQoL, as well as validated instruments that assess several other psychosocial PROs hypothesized to be associated with HRQoL; emotional distress, fear of cancer recurrence, social support, dispositional optimism, body image and spirituality. Demographic and disease-specific data were also collected via medical record review. Results: Forty-six patients completed the survey. Clinically significant levels of fear of recurrence as well as emotional distress, were present in this group. Many domains of HRQoL were significantly worse than an Australian reference population for CRC. Demographic and disease factors associated with poor HRQoL included smoking and ongoing adjuvant systemic therapy. The primary operation was not associated with HRQoL; however, the operative approach (laparoscopic vs. open) was associated with HRQoL for these patients. All psychosocial factors measured were associated with HRQoL, including cancer worry, emotional distress, body image and dispositional optimism. Conclusion: HRQoL is an important outcome in surgery for both research and clinical practice. This study provides an overview of the quality of life in a regional Australian population of postoperative colorectal cancer patients and the factors that affect it. Understanding HRQoL and awareness of patients particularly vulnerable to poor outcomes should be used to aid the informed consent and shared decision-making process between surgeon and patient.

Keywords: surgery, colorectal, cancer, PRO, HRQoL

Procedia PDF Downloads 73
24122 The Occurrence of Depression with Chronic Liver Disease

Authors: Roop Kiran, Muhammad Shoaib Zafar, Nazish Idrees Chaudhary

Abstract:

Depression is known to be the second most frequently occurring comorbid mental illness among patients suffering from chronic physical conditions. Around the world, depression is associated with chronic liver diseases as one of the dominant symptoms. This evidence brings attention to the research about various predictors for short life expectancy and poor quality of life in patients suffering from comorbid depression and CLD. Following are the objectives of this study i) measure the occurrence rate of comorbid depression among patients with CLD and ii) find the frequency of risk factors between patients with and without depression comorbid with CLD. This is a quantitative study with a cross-sectional design. The research data was collected through a measure called Hamilton Depression Rating Scale (HDRS) with a demographic Performa from 100 patients who visited the Department of Psychiatry for consultation at Mayo Hospital Lahore with a diagnosed CLD from the last four years. There were (42%) patients with CLD who had comorbid depression. Among depressed and non-depressed patients, significant differences were found (p<0.05) for unemployment in 25 (59.5%) males and 20 (34.5%) female patients, for co-morbidity in 25 (59.5%) males and 18 (31.0%) female patients, for illiteracy in 18 (42.9%) males and 13 (22.4%) female patients, for the history of CLD for more than the last 2years in 41 (97.6%) males and 47 (81.0%) female patients, for severity of CLD in 26 (61.9%) males and 20 (34.5%) female patients. This concludes that depression frequently occurs among patients with CLD. This study recommends considerable attention to plan preventative measures in the future and develop such intervention protocols that consider the management of risk factors that significantly influence comorbid depression with CLD.

Keywords: psychiatry, comorbid, health, quality of life

Procedia PDF Downloads 207
24121 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 65
24120 A Copula-Based Approach for the Assessment of Severity of Illness and Probability of Mortality: An Exploratory Study Applied to Intensive Care Patients

Authors: Ainura Tursunalieva, Irene Hudson

Abstract:

Continuous improvement of both the quality and safety of health care is an important goal in Australia and internationally. The intensive care unit (ICU) receives patients with a wide variety of and severity of illnesses. Accurately identifying patients at risk of developing complications or dying is crucial to increasing healthcare efficiency. Thus, it is essential for clinicians and researchers to have a robust framework capable of evaluating the risk profile of a patient. ICU scoring systems provide such a framework. The Acute Physiology and Chronic Health Evaluation III and the Simplified Acute Physiology Score II are ICU scoring systems frequently used for assessing the severity of acute illness. These scoring systems collect multiple risk factors for each patient including physiological measurements then render the assessment outcomes of individual risk factors into a single numerical value. A higher score is related to a more severe patient condition. Furthermore, the Mortality Probability Model II uses logistic regression based on independent risk factors to predict a patient’s probability of mortality. An important overlooked limitation of SAPS II and MPM II is that they do not, to date, include interaction terms between a patient’s vital signs. This is a prominent oversight as it is likely there is an interplay among vital signs. The co-existence of certain conditions may pose a greater health risk than when these conditions exist independently. One barrier to including such interaction terms in predictive models is the dimensionality issue as it becomes difficult to use variable selection. We propose an innovative scoring system which takes into account a dependence structure among patient’s vital signs, such as systolic and diastolic blood pressures, heart rate, pulse interval, and peripheral oxygen saturation. Copulas will capture the dependence among normally distributed and skewed variables as some of the vital sign distributions are skewed. The estimated dependence parameter will then be incorporated into the traditional scoring systems to adjust the points allocated for the individual vital sign measurements. The same dependence parameter will also be used to create an alternative copula-based model for predicting a patient’s probability of mortality. The new copula-based approach will accommodate not only a patient’s trajectories of vital signs but also the joint dependence probabilities among the vital signs. We hypothesise that this approach will produce more stable assessments and lead to more time efficient and accurate predictions. We will use two data sets: (1) 250 ICU patients admitted once to the Chui Regional Hospital (Kyrgyzstan) and (2) 37 ICU patients’ agitation-sedation profiles collected by the Hunter Medical Research Institute (Australia). Both the traditional scoring approach and our copula-based approach will be evaluated using the Brier score to indicate overall model performance, the concordance (or c) statistic to indicate the discriminative ability (or area under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for calibration. We will also report discrimination and calibration values and establish visualization of the copulas and high dimensional regions of risk interrelating two or three vital signs in so-called higher dimensional ROCs.

Keywords: copula, intensive unit scoring system, ROC curves, vital sign dependence

Procedia PDF Downloads 154
24119 Prospects for the Development of e-Commerce in Georgia

Authors: Nino Damenia

Abstract:

E-commerce opens a new horizon for business development, which is why the presence of e-commerce is a necessary condition for the formation, growth, and development of the country's economy. Worldwide, e-commerce turnover is growing at a high rate every year, as the electronic environment provides great opportunities for product promotion. E-commerce in Georgia is developing at a fast pace, but it is still a relatively young direction in the country's economy. Movement restrictions and other public health measures caused by the COVID-19 pandemic have reduced economic activity in most economic sectors and countries, significantly affecting production, distribution, and consumption. The pandemic has accelerated digital transformation. Digital solutions enable people and businesses to continue part of their economic and social activities remotely. This has also led to the growth of e-commerce. According to the data of the National Statistics Service of Georgia, the share of online trade is higher in cities (27.4%) than in rural areas (9.1%). The COVID-19 pandemic has forced local businesses to expand their digital offerings. The size of the local market increased 3.2 times in 2020 to 138 million GEL. And in 2018-2020, the share of local e-commerce increased from 11% to 23%. In Georgia, the state is actively engaged in the promotion of activities based on information technologies. Many measures have been taken for this purpose, but compared to other countries, this process is slow in Georgia. The purpose of the study is to determine development prospects for the economy of Georgia based on the analysis of electronic commerce. Research was conducted around the issues using Georgian and foreign scientists' articles, works, reports of international organizations, collections of scientific conferences, and scientific electronic databases. The empirical base of the research is the data and annual reports of the National Statistical Service of Georgia, internet resources of world statistical materials, and others. While working on the article, a questionnaire was developed, based on which an electronic survey of certain types of respondents was conducted. The conducted research was related to determining how intensively Georgian citizens use online shopping, including which age category uses electronic commerce, for what purposes, and how satisfied they are. Various theoretical and methodological research tools, as well as analysis, synthesis, comparison, and other types of methods, are used to achieve the set goal in the research process. The research results and recommendations will contribute to the development of e-commerce in Georgia and economic growth based on it.

Keywords: e-commerce, information technology, pandemic, digital transformation

Procedia PDF Downloads 79
24118 Improving Infant Vaccination Rates Through Expanded Access to Care

Authors: Aidan Jacobsen, Morgan Motia, David Sam, Jonathan Mudge

Abstract:

Background: The Centers for Disease Control (CDC) lists vaccine requirements for children under two years old to correlate with development markers. CDC lists the coverage by age 24 months to be at least 90% nationally and 84% for Rhode Island Blackstone Valley Community Health Center (BVCHC) in Central Falls, Rhode Island, currently has a completed vaccination rate of 51% for children by the age of 24 months. Current barriers to care for up to date well child vaccinations include lack of transportation, parental work, childcare, and other social stressors. Objective: Increase the vaccination rate of children under the age of 24 months at BVCHC. Conduct a literature review to identify the common barriers preventing children under 24 months from receiving vaccinations. Reduce the barriers to expand access to vaccination care for infants Methods: Setting: Blackstone Valley Community Health Center, Pawtucket, RI Participants: (n=41), Patients between the age of 20-24 months, not up to date with the CDC vaccination recommendations and without a future appointment. QI Intervention: Patients were contacted via phone and offered an appointment during extra Saturday clinic hours in order to receive up to date vaccine care. A Saturday vaccine clinic was established specifically for patients in need of vaccines and having identified barriers to care. Conclusions: Expanding clinic hours and targeting non vaccine up –to-date patients can increase the current standard of childhood immunizations at BVCHC. Overcoming barriers preventing childhood immunization can improve access to providing up to date vaccinations. Other barriers still deter from reaching the national standard of immunizations rates.

Keywords: vaccinations, well child care, barriers to care, social determinants of health

Procedia PDF Downloads 76
24117 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 151
24116 Regional Disparities in the Level of Education in West Bengal

Authors: Nafisa Banu

Abstract:

The present study is an attempt to analyze the regional disparities in the level of education in West Bengal. The data based on secondary sources obtained from a census of India. The study is divided into four sections. The first section presents introductions, objectives and brief descriptions of the study area, second part discuss the methodology and data base, while third and fourth comprise the empirical results, interpretation, and conclusion respectively. For showing the level of educational development, 8 indicators have been selected and Z- score and composite score techniques have been applied. The present study finds out there are large variations of educational level due to various historical, economical, socio-cultural factors of the study area.

Keywords: education, regional disparity, literacy rate, Z-score, composite score

Procedia PDF Downloads 361
24115 Study of Morphological Changes of the River Ganga in Patna District, Bihar Using Remote Sensing and GIS Techniques

Authors: Bhawesh Kumar, A. P. Krishna

Abstract:

There are continuous changes upon earth’s surface by a variety of natural and anthropogenic agents cut, carry away and depositing of minerals from land. Running water has higher capacity of erosion than other geomorphologic agents. This research work has been carried out on Ganga River, whose channel is continuously changing under the influence of geomorphic agents and human activities in the surrounding regions. The main focus is to study morphological characteristics and sand dynamics of Ganga River with particular emphasis on bank lines and width changes using remote sensing and GIS techniques. The advance remote sensing data and topographical data were interpreted for obtaining 52 years of changes. For this, remote sensing data of different years (LANDSAT TM 1975, 1988, 1993, ETM 2005 and ETM 2012) and toposheet of SOI for the year 1960 were used as base maps for this study. Sinuosity ratio, braiding index and migratory activity index were also established. It was found to be 1.16 in 1975 and in 1988, 1993, 2005 and 2005 it was 1.09, 1.11, 1.1, 1.09 respectively. The analysis also shows that the minimum value found in 1960 was in reach 1 and maximum value is 4.8806 in 2012 found in reach 4 which suggests creation of number of islands in reach 4 for the year 2012. Migratory activity index (MAI), which is a standardized function of both length and time, was computed for the 8 representative reaches. MAI shows that maximum migration was in 1975-1988 in reach 6 and 7 and minimum migration was in 1993-2005. From the channel change analysis, it was found that the shifting of bank line was cyclic and the river Ganges showed a trend of southward maximum values. The advanced remote sensing data and topographical data helped in obtaining 52 years changes in the river due to various natural and manmade activities like flood, water velocity and excavation, removal of vegetation cover and fertile soil excavation for the various purposes of surrounding regions.

Keywords: braided index, migratory activity index (MAI), Ganga river, river morphology

Procedia PDF Downloads 353
24114 Exploring the Relationship Between Helicobacter Pylori Infection and the Incidence of Bronchogenic Carcinoma

Authors: Jose R. Garcia, Lexi Frankel, Amalia Ardeljan, Sergio Medina, Ali Yasback, Omar Rashid

Abstract:

Background: Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that affects nearly half of the population worldwide and humans serve as the principal reservoir. Infection rates usually follow an inverse relationship with hygiene practices and are higher in developing countries than developed countries. Incidence varies significantly by geographic area, race, ethnicity, age, and socioeconomic status. H. pylori is primarily associated with conditions of the gastrointestinal tract such as atrophic gastritis and duodenal peptic ulcers. Infection is also associated with an increased risk of carcinogenesis as there is evidence to show that H. pylori infection may lead to gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. It is suggested that H. pylori infection may be considered as a systemic condition, leading to various novel associations with several different neoplasms such as colorectal cancer, pancreatic cancer, and lung cancer, although further research is needed. Emerging evidence suggests that H. pylori infection may offer protective effects against Mycobacterium tuberculosis as a result of non-specific induction of interferon- γ (IFN- γ). Similar methods of enhanced immunity may affect the development of bronchogenic carcinoma due to the antiproliferative, pro-apoptotic and cytostatic functions of IFN- γ. The purpose of this study was to evaluate the correlation between Helicobacter pylori infection and the incidence of bronchogenic carcinoma. Methods: The data was provided by a Health Insurance Portability and Accountability Act (HIPAA) compliant national database to evaluate the patients infected versus patients not infected with H. pylori using ICD-10 and ICD-9 codes. Access to the database was granted by the Holy Cross Health, Fort Lauderdale for the purpose of academic research. Standard statistical methods were used. Results:-Between January 2010 and December 2019, the query was analyzed and resulted in 163,224 in both the infected and control group, respectively. The two groups were matched by age range and CCI score. The incidence of bronchogenic carcinoma was 1.853% with 3,024 patients in the H. pylori group compared to 4.785% with 7,810 patients in the control group. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.367 (0.353 - 0.383) with a confidence interval of 95%. The two groups were matched by treatment and incidence of cancer, which resulted in a total of 101,739 patients analyzed after this match. The incidence of bronchogenic carcinoma was 1.929% with 1,962 patients in the H. pylori and treatment group compared to 4.618% with 4,698 patients in the control group with treatment. The difference was statistically significant (p < 2.22x10-16) with an odds ratio of 0.403 (0.383 - 0.425) with a confidence interval of 95%.

Keywords: bronchogenic carcinoma, helicobacter pylori, lung cancer, pathogen-associated molecular patterns

Procedia PDF Downloads 187
24113 e-Learning Security: A Distributed Incident Response Generator

Authors: Bel G Raggad

Abstract:

An e-Learning setting is a distributed computing environment where information resources can be connected to any public network. Public networks are very unsecure which can compromise the reliability of an e-Learning environment. This study is only concerned with the intrusion detection aspect of e-Learning security and how incident responses are planned. The literature reported great advances in intrusion detection system (ids) but neglected to study an important ids weakness: suspected events are detected but an intrusion is not determined because it is not defined in ids databases. We propose an incident response generator (DIRG) that produces incident responses when the working ids system suspects an event that does not correspond to a known intrusion. Data involved in intrusion detection when ample uncertainty is present is often not suitable to formal statistical models including Bayesian. We instead adopt Dempster and Shafer theory to process intrusion data for the unknown event. The DIRG engine transforms data into a belief structure using incident scenarios deduced by the security administrator. Belief values associated with various incident scenarios are then derived and evaluated to choose the most appropriate scenario for which an automatic incident response is generated. This article provides a numerical example demonstrating the working of the DIRG system.

Keywords: decision support system, distributed computing, e-Learning security, incident response, intrusion detection, security risk, statefull inspection

Procedia PDF Downloads 442
24112 Brainbow Image Segmentation Using Bayesian Sequential Partitioning

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate cross talk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds since biological information is inherently included in the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning

Procedia PDF Downloads 490
24111 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 288
24110 Acceptance towards Counselling Services among Flood Victims in Selangor

Authors: Husni Mohd Radzi, Lilie Zahara Ramly, Sapora Sipon, Salhah Abdullah

Abstract:

Malaysia have been experiencing series of huge floods all around the country for the past decades despide planned development done by local authorities. The floods incurred due to factors like natural climate change or man-made disaster. Floods have caused a lot of damages, destructions and losses in term of infrastructure, financial implications and physical health. However, other damaging aspect was not being given much attention are the psychological need of the flood victim. The traumatic impact from the natural disaster like floods may cause serious psychological and spiritual deterioration. Many flood relief shelters in the past did not provide counseling services for flood victims to consult, and as a result, it contributes to added stress among the flood victims, as the issue were not being addressed. Some studies indicates that flood victims did not look for counseling service being offered. A total of 257 flood victim was involved in this study. Main area of the study was Kg Bukit Changgang, Kg. Rancangan Tanah Belia, Kg. Labohan Dagang and Kg.Olak Lempit in Kuala Langat, Selangor. The flood victims have responded to the survey given and the data was analyze using SPSS for descriptive information and other measures. At least 13 victims were reported to have experienced moderate to severe level of stress and anxiety over the flood disaster incidents and a total of 88 respondents admitted to have at least thought and consider getting counseling service.

Keywords: perception, acceptance towards counseling, counseling service for flood victim, disaster

Procedia PDF Downloads 322
24109 Developing the P1-P7 Management and Analysis Software for Thai Child Evaluation (TCE) of Food and Nutrition Status

Authors: S. Damapong, C. Kingkeow, W. Kongnoo, P. Pattapokin, S. Pruenglamphu

Abstract:

As the presence of Thai children double burden malnutrition, we conducted a project to promote holistic age-appropriate nutrition for Thai children. Researchers developed P1-P7 computer software for managing and analyzing diverse types of collected data. The study objectives were: i) to use software to manage and analyze the collected data, ii) to evaluate the children nutritional status and their caretakers’ nutrition practice to create regulations for improving nutrition. Data were collected by means of questionnaires, called P1-P7. P1, P2 and P5 were for children and caretakers, and others were for institutions. The children nutritional status, height-for-age, weight-for-age, and weight-for-height standards were calculated using Thai child z-score references. Institution evaluations consisted of various standard regulations including the use of our software. The results showed that the software was used in 44 out of 118 communities (37.3%), 57 out of 240 child development centers and nurseries (23.8%), and 105 out of 152 schools (69.1%). No major problems have been reported with the software, although user efficiency can be increased further through additional training. As the result, the P1-P7 software was used to manage and analyze nutritional status, nutrition behavior, and environmental conditions, in order to conduct Thai Child Evaluation (TCE). The software was most widely used in schools. Some aspects of P1-P7’s questionnaires could be modified to increase ease of use and efficiency.

Keywords: P1-P7 software, Thai child evaluation, nutritional status, malnutrition

Procedia PDF Downloads 360
24108 Determination of the Factors Affecting Adjustment Levels of First Class Students at Elementary School

Authors: Sibel Yoleri

Abstract:

In this research it is aimed to determine the adjustment of students who attend the first class at elementary school to school in terms of several variables. The study group of the research consists of 286 students (131 female, 155 male) who continue attending the first class of elementary school in 2013-2014 academic year, in the city center of Uşak. In the research, ‘Personal Information Form’ and ‘Walker-Mcconnell Scale of Social Competence and School Adjustment’ have been used as data collection tools. In the analysis of data, the t-test has been applied in the independent groups to determine whether the sampling group students’ scores of school adjustment differ according to the sex variable or not. For the evaluation of data identified as not showing normal distribution, Mann Whitney U test has been applied for paired comparison, Kruskal Wallis H test has been used for multiple comparisons. In the research, all the statistical processes have been evaluated bidirectional and the level of significance has been accepted as .05. According to the results gathered from the research, a meaningful difference could not been identified in the level of students’ adjustment to school in terms of sex variable. At the end of the research, it is identified that the adjustment level of the students who have started school at the age of seven is higher than the ones who have started school at the age of five and the adjustment level of the students who have preschool education before the elementary school is higher than the ones who have not taken.

Keywords: starting school, preschool education, school adjustment, Walker-Mcconnell Scale

Procedia PDF Downloads 493
24107 Comparative Analysis of Medical Tourism Industry among Key Nations in Southeast Asia

Authors: Nur A. Azmi, Suseela D. Chandran, Fadilah Puteh, Azizan Zainuddin

Abstract:

Medical tourism has been associated as a global phenomenon in developed and developing countries in the 21st century. Medical tourism is defined as an activity in which individuals who travel from one country to another country to seek or receive medical healthcare. Based on the global trend, the number of medical tourists is increasing annually, especially in the Southeast Asia (SEA) region. Since the establishment of Association of Southeast Asian Nations (ASEAN) in 1967, the SEA nations have worked towards regional integration in medical tourism. The medical tourism in the SEA has become the third-largest sector that contributes towards economic development. Previous research has demonstrated several factors that affect the development of medical tourism. However, despite the already published literature on SEA's medical tourism in the last ten years there continues to be a scarcity of research on niche areas each of the SEA countries. Hence, this paper is significant in enriching the literature in the field of medical tourism particularly in showcasing the niche market of medical tourism among the SEA best players namely Singapore, Thailand, Malaysia and Indonesia. This paper also contributes in offering a comparative analysis between the said nations whether they are complementing or competing with each other in the medical tourism sector. This then, will increase the availability of information in SEA region on medical tourism. The data was collected through an in-depth interview with various stakeholders and private hospitals. The data was then analyzed using two approaches namely thematic analysis (interview data) and document analysis (secondary data). The paper concludes by arguing that the ASEAN countries have specific niche market to promote their medical tourism industry. This paper also concludes that these key nations complement each other in the industry. In addition, the medical tourism sector in SEA region offers greater prospects for market development and expansion that witnessed the emerging of new key players from other nations.

Keywords: healthcare services, medical tourism, medical tourists, SEA region, comparative analysis

Procedia PDF Downloads 144
24106 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks

Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan

Abstract:

The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.

Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks

Procedia PDF Downloads 509
24105 Undernutrition Among Children Below Five Years of Age in Uganda: A Deep Dive into Space and Time

Authors: Vallence Ngabo Maniragaba

Abstract:

This study aimed at examining the variations of undernutrition among children below 5 years of age in Uganda. The approach of spatial and spatiotemporal analysis helped in identifying cluster patterns, hot spots and emerging hot spots. Data from the 6 Uganda Demographic and Health Surveys spanning from 1990 to 2016 were used with the main outcome variable being undernutrition among children <5 years of age. All data that were relevant to this study were retrieved from the survey datasets and combined with the 214 shape files for the districts of Uganda to enable spatial and spatiotemporal analysis. Spatial maps with the spatial distribution of the prevalence of undernutrition, both in space and time, were generated using ArcGIS Pro version 2.8. Moran’s I, an index of spatial autocorrelation, rules out doubts of spatial randomness in order to identify spatially clustered patterns of hot or cold spot areas. Furthermore, space-time cubes were generated to establish the trend in undernutrition as well as to mirror its variations over time and across Uganda. Moreover, emerging hot spot analysis was done to help identify the patterns of undernutrition over time. The results indicate a heterogeneous distribution of undernutrition across Uganda and the same variations were also evident over time. Moran’s I index confirmed spatial clustered patterns as opposed to random distributions of undernutrition prevalence. Four hot spot areas, namely; the Karamoja, the Sebei, the West Nile and the Toro regions were significantly evident, most of the central parts of Uganda were identified as cold spot clusters, while most of Western Uganda, the Acholi and the Lango regions had no statistically significant spatial patterns by the year 2016. The spatio-temporal analysis identified the Karamoja and Sebei regions as clusters of persistent, consecutive and intensifying hot spots, West Nile region was identified as a sporadic hot spot area while the Toro region was identified with both sporadic and emerging hotspots. In conclusion, undernutrition is a silent pandemic that needs to be handled with both hands. At 31.2 percent, the prevalence is still very high and unpleasant. The distribution across the country is nonuniform with some areas such as the Karamoja, the West Nile, the Sebei and the Toro regions being epicenters of undernutrition in Uganda. Over time, the same areas have experienced and exhibited high undernutrition prevalence. Policymakers, as well as the implementers, should bear in mind the spatial variations across the country and prioritize hot spot areas in order to have efficient, timely and region-specific interventions.

Keywords: undernutrition, spatial autocorrelation, hotspots analysis, geographically weighted regressions, emerging hotspots analysis, under-fives, Uganda

Procedia PDF Downloads 93