Search results for: width
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 797

Search results for: width

167 Response of Yield and Morphological Characteristic of Rice Cultivars to Heat Stress at Different Growth Stages

Authors: Mohammad Taghi Karbalaei Aghamolki, Mohd Khanif Yusop, Fateh Chand Oad, Hamed Zakikhani, Hawa Zee Jaafar, Sharifh Kharidah, Mohamed Hanafi Musa, Shahram Soltani

Abstract:

The high temperatures during sensitive growth phases are changing rice morphology as well as influencing yield. In the glass house study, the treatments were: growing conditions [normal growing (32oC+2) and heat stress (38oC+2) day time and 22oC+2 night time], growth stages (booting, flowering and ripening) and four cultivars (Hovaze, Hashemi, Fajr, as exotic and MR219 as indigenous). The heat chamber was prepared covered with plastic, and automatic heater was adjusted at 38oC+2 (day) and 22oC+2 (night) for two weeks in every growth stages. Rice morphological and yield under the influence of heat stress during various growth stages showed taller plants in Hashsemi due to its tall character. The total tillers per hill were significantly higher in Fajr receiving heat stress during booting stage. In all growing conditions and growth stages, Hashemi recorded higher panicle exertion and flag leaf length. The flag leaf width in all situations was found higher in Hovaze. The total tillers per hill were more in Fajr, although heat stress was imposed during booting and flowering stages. The indigenous MR219 in all situations of growing conditions, growth stages recorded higher grain yield. However, its grain yield slightly decreased when heat stress was imposed during booting and flowering. Similar results were found in all other exotic cultivars recording to lower grain yield in the heat stress condition during booting and flowering. However, plants had no effect on heat stress during ripening stage.

Keywords: rice, growth, heat, temperature, stress, morphology, yield

Procedia PDF Downloads 278
166 Study on the Wave Dissipation Performance of Double-Cylinder and Double-Plate Floating Breakwater

Authors: Liu Bijin

Abstract:

Floating breakwaters have several advantages, including being environmentally friendly, easy to construct, and cost-effective regardless of water depth. They have a broad range of applications in coastal engineering. However, they face significant challenges due to the unstable effect of wave dissipation, structural vulnerability, and high mooring system requirements. This paper investigates the wave dissipation performance of a floating breakwater structure. The structure consists of double cylinders, double vertical plates, and horizontal connecting plates. The investigation is carried out using physical model tests and numerical simulation methods based on STAR-CCM+. This paper discusses the impact of wave elements, relative vertical plate heights, and relative horizontal connecting plate widths on the wave dissipation performance of the double-cylinder, double-plate floating breakwater (DCDPFB). The study also analyses the changes in local vorticity and velocity fields around the DCDPFB to determine the optimal structural dimensions. The study found that the relative width of the horizontal connecting plate, the relative height of the vertical plate, and the size of the semi-cylinder are the key factors affecting the wave dissipation performance of the DCDPFB. The transmittance coefficient is minimally affected by the wave height and the depth of water entry. The local vortex and velocity field formed around the DCDPFB are important factors for dissipating wave energy. The test section of the DCDPFB, constructed according to the relative optimal structural dimensions, showed good wave dissipation performance during offshore prototype tests. The test section of DCDPFB, constructed with optimal structural dimensions, exhibits excellent wave dissipation performance in offshore prototype tests.

Keywords: floating breakwater, wave dissipation performance, transmittance coefficient, model test

Procedia PDF Downloads 57
165 Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation

Authors: Hailemariam Solomon, Taye Tadesse, Daniel Nadew, Firezer Girma

Abstract:

Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity.

Keywords: roor sysytem architecture, root angle, narrow root angle, wider root angle, drought

Procedia PDF Downloads 75
164 Numerical Simulation of a Single Cell Passing through a Narrow Slit

Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu

Abstract:

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.

Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration

Procedia PDF Downloads 336
163 Urban Corridor Management Strategy Based on Intelligent Transportation System

Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain

Abstract:

Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.

Keywords: congestion, ITS strategies, mobility, safety

Procedia PDF Downloads 444
162 Cryptic Diversity: Identifying Two Morphologically Similar Species of Invasive Apple Snails in Peninsular Malaysia

Authors: Suganiya Rama Rao, Yoon-Yen Yow, Thor-Seng Liew, Shyamala Ratnayeke

Abstract:

Invasive snails in the genus Pomacea have spread across Southeast Asia including Peninsular Malaysia. Apart from significant economic costs to wetland crops, very little is known about the snails’ effects on native species, and wetland function through their alteration of macrophyte communities. This study was conducted to establish diagnostic characteristics of Pomacea species in the Malaysian environment using genetic and morphological criteria. Snails were collected from eight localities in northern and central regions of Peninsular Malaysia. The mitochondrial COI gene of 52 adult snails was amplified and sequenced. Maximum likelihood analysis was used to analyse species identity and assess phylogenetic relationships among snails from different geographic locations. Shells of the two species were compared using geometric morphometric analysis and covariance analyses. Shell height accounted for most of the observed variation between P. canaliculata and P. maculata, with the latter possessing a smaller mean ratio of shell height: aperture height (p < 0.0001) and shell height to shell width (give p < 0.0001). Genomic and phylogenetic analysis demonstrated the presence of two monophyletic taxa, P. canaliculata and P. maculata, in Peninsular Malaysia samples. P. maculata co-occurred with P. canaliculata in 5 localities, but samples from 3 localities contained only P. canaliculata. This study is the first to confirm the presence of two of the most invasive species of Pomacea in Peninsular Malaysia using a genomic approach. P. canaliculata appears to be the more widespread species. Despite statistical differences, both quantitative and qualitative morphological characteristics demonstrate much interspecific overlap and intraspecific variability; thus morphology alone cannot reliably verify species identity. Molecular techniques for distinguishing between these two highly invasive Pomacea species are needed to understand their specific ecological niches and develop effective protocols for their management.

Keywords: Pomacea canaliculata, Pomacea maculata, invasive species, phylog enetic analysis, geometric morphometric analysis

Procedia PDF Downloads 263
161 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 68
160 Varying Frequency Application of Vermicast as Supplemented with 19-19-19+Me in the Agronomic Performance of Lettuce (Lactuca sativa)

Authors: Jesryl B. Paulite, Eixer Niel V. Enesco

Abstract:

Lettuce is not well known in the lowland locality in the tropical countries like Philippines. Farmers thought that this crop is not adaptable to the climate that we have in lowland. But some new varieties can tolerate warmer conditions. The massive use of pesticides in lettuce production might chronically affect human health and environment. The move of the Philippine government is toward organic. One of the organic material is vermicompost. It is an organic fertilizer that serves as soil conditioner and enhances soil fertility and promotes vigorous and healthy crop growth and Supplementation of 19-19-19+M.E. will make it better since it contains N-P-K and selected microelements to meet the nutritive requirements of the crop. The experiment was conducted at Purok 3, Brgy. Tiburcia, Kapalong, Davao del Norte from February 6, 2014 to March 4, 2014. The study was conducted to determine the effect of varying frequency application of vermicast as supplemented with 19-19-19+M.E. in lettuce. Specifically, this aimed to 1.) Identify the agronomic performance of lettuce as affected by varying frequency application of vermicast as supplemented with 19-19-19+M.E.; 2.) Assess the economic profitability of lettuce as applied with vermicast as supplemented with 19-19-19+M.E. The study was laid out in Randomized Complete Block Design (RCBD) with four treatments and three replications. The treatments were as follow: T1 – Untreated, T2 - Weekly Application, T3- Bi-weekly Application, and T4- Monthly Application. The data on percent (%) mortality were transformed using square root of transformation before Analysis of Variance (ANOVA). Results revealed not significant in terms of percent mortality in weekly and monthly application of the treatment having a mean of 1.76 % and 3.09 %. However, Significant differences were observed in agronomic performances such as; plant height with a mean of 10.63 cm in weekly application and 6.40 cm for the untreated, leaf width with a mean of 10.80 cm for the weekly application and 6.03 for the untreated, fresh weight with a mean of 25.67 g for the weekly application and 6.83 g for the untreated, and yield with a mean of 1,208.33 kg/ha for the weekly application and 327.08 kg/ha for the untreated, respectively. Results further exposed that profitability of lettuce in terms of Return of Production Cost (RPC) were; bi-weekly with 91.01 %, monthly with 68.20 %, weekly with 25.34 % and untreated (control) with 16.69 %.

Keywords: agronomic performance, economic profitability, vermicast, percent mortality, 19-19-19+ME

Procedia PDF Downloads 449
159 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 266
158 A Comparative Study of Euglena gracilis Cultivations for Improving Laminaribiose Phosphorylase Production

Authors: Akram Abi, Clarissa Müller, Hans-Joachim Jördening

Abstract:

Laminaribiose is a beta-1,3-glycoside which is used in the medical field for the treatment of dermatitis and also can be used as a building block for new pharmaceutics. The conventional process of laminaribiose production is the uneconomical process of hydrolysis of laminarin extracted from natural polysaccharides of plant origin. A more economical approach however is attainable by enzymatically synthesis of laminaribiose via a reverse phosphorylase reaction catalyzed by laminaribiose phosphorylase (LP) from Euglena gracilis. Different cultivation methods of Euglena gracilis and the effect on LP production have been investigated. Buffered/unbuffered heterotrophic and mixotrophic cultivations of Euglena gracilis has been carried out. Changes of biomass and LP production, glucose level and pH, cell count and shape has been monitored in the course of time. The results obtained from experiments each in three repetitions, show that in the heterotrophic cultivation of Euglena gracilis not only more biomass is produced compared to mixotrophic cultivation, but also higher specific protein concentration is achieved. Furthermore, the LP activity test showed that the protein extracted from heterotrophically cultured cells has a higher LP activity. It was also observed that the cells develop in a distinctive different shape between these two cultures and have different length to width ratios. Taking the heterotrophic culture as the more efficient cultivation method in LP production, another comparative experiment between buffered and unbuffered heterothrophic culture was carried out that showed the unbuffered culture has advantages over the other one in respect of both LP production and resulting activity. A hetrotrophic cultivation of Euglena gracilis in a 5L bioreactor with controlled operating conditions showed a distinctive improvement of all the aspects of culture compared to the shaking flask cultivations. Biomass production was improved from 5 to more than 8 g/l (dry weight) which resulted in a specific protein concentration of 45 g/l in the heterotrophic cultivation in the bioreactor. In further attempts to improve LP production, different purification methods were tested and each method was checks through an activity assay. A laminaribiose yield of 35% was achieved which was by far the highest amount amongst different methods tested.

Keywords: euglena gracilis, heterotrophic culture, laminaribiose production, mixotrophic culture

Procedia PDF Downloads 366
157 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation

Procedia PDF Downloads 73
156 Simulation of Concrete Wall Subjected to Airblast by Developing an Elastoplastic Spring Model in Modelica Modelling Language

Authors: Leo Laine, Morgan Johansson

Abstract:

To meet the civilizations future needs for safe living and low environmental footprint, the engineers designing the complex systems of tomorrow will need efficient ways to model and optimize these systems for their intended purpose. For example, a civil defence shelter and its subsystem components needs to withstand, e.g. airblast and ground shock from decided design level explosion which detonates with a certain distance from the structure. In addition, the complex civil defence shelter needs to have functioning air filter systems to protect from toxic gases and provide clean air, clean water, heat, and electricity needs to also be available through shock and vibration safe fixtures and connections. Similar complex building systems can be found in any concentrated living or office area. In this paper, the authors use a multidomain modelling language called Modelica to model a concrete wall as a single degree of freedom (SDOF) system with elastoplastic properties with the implemented option of plastic hardening. The elastoplastic model was developed and implemented in the open source tool OpenModelica. The simulation model was tested on the case with a transient equivalent reflected pressure time history representing an airblast from 100 kg TNT detonating 15 meters from the wall. The concrete wall is approximately regarded as a concrete strip of 1.0 m width. This load represents a realistic threat on any building in a city like area. The OpenModelica model results were compared with an Excel implementation of a SDOF model with an elastic-plastic spring using simple fixed timestep central difference solver. The structural displacement results agreed very well with each other when it comes to plastic displacement magnitude, elastic oscillation displacement, and response times.

Keywords: airblast from explosives, elastoplastic spring model, Modelica modelling language, SDOF, structural response of concrete structure

Procedia PDF Downloads 130
155 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy

Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha

Abstract:

In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.

Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA

Procedia PDF Downloads 154
154 Development of Knitted Seersucker Fabric for Improved Comfort Properties

Authors: Waqas Ashraf, Yasir Nawab, Haritham Khan, Habib Awais, Shahbaz Ahmad

Abstract:

Seersucker is a popular lightweight fabric widely used in men’s and women’s suiting, casual wear, children’s clothing, house robes, bed spreads and for spring and summer wear. The puckered effect generates air spaces between body and the fabric, keeping the wearer cool in hot conditions. The aim of this work was to develop knitted seersucker fabric on single cylinder weft knitting machine using plain jersey structure. Core spun cotton yarn and cotton spun yarn of same linear density were used. Core spun cotton yarn, contains cotton fiber in the sheath and elastase filament in the core. The both yarn were fed at regular interval to feeders on the machine. The loop length and yarn tension were kept constant at each feeder. The samples were then scoured and bleached. After wet processing, the fabric samples were washed and tumble dried. Parameters like loop length, stitch density and areal density were measured after conditioning these samples for 24 hours in Standard atmospheric condition. Produced sample has a regular puckering stripe along the width of the fabric with same height. The stitch density of both the flat and puckered area of relaxed fabric was found to be different .Air permeability and moisture management tests were performed. The results indicated that the knitted seersucker fabric has better wicking and moisture management properties as the flat area contact, whereas puckered area held away from the skin. Seersucker effect in knitted fabric was achieved by the difference of contraction of both sets of courses produced from different types of yarns. The seer sucker fabric produce by knitting technique is less expensive as compared to woven seer sucker fabric as there is no need of yarn preparation. The knitted seersucker fabric is more practicable for summer dresses, skirts, blouses, shirts, trousers and shorts.

Keywords: air permeability, knitted structure, moisture management, seersucker

Procedia PDF Downloads 326
153 Numerical Modelling of Prestressed Geogrid Reinforced Soil System

Authors: Soukat Kumar Das

Abstract:

Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.

Keywords: bearing, geogrid, prestressed, reinforced

Procedia PDF Downloads 403
152 Physicochemical and Functional significance of Two Lychee (Litchi chinensis Sonn.) Cultivars Gola and Surakhi from Pakistan

Authors: Naila Safdar, Faria Riasat, Azra Yasmin

Abstract:

Lychee is an emerging fruit crop in Pakistan. Two famous cultivars of lychee, Gola and Surakhi, were collected from Khanpur Orchard, Pakistan and their whole fruit (including peel, pulp and seed) was investigated for pomological features and therapeutic activities. Both cultivars differ in shape and size with Gola having large size (3.27cm length, 2.36cm width) and more flesh to seed ratio (8.65g). FTIR spectroscopy and phytochemical tests confirmed presence of different bioactive compounds like phenol, flavonoids, quinones, anthraquinones, tannins, glycosides, and alkaloids, in both lychee fruits. Atomic absorption spectroscopy indicated an increased amount of potassium, magnesium, sodium, iron, and calcium in Gola and Surakhi fruits. Small amount of trace metals, zinc and copper, were also detected in lychee fruit, while heavy metals lead, mercury, and nickel were absent. These two lychee cultivars were also screened for antitumor activity by Potato disc assay with maximum antitumor activity shown by aqueous extract of Surakhi seed (77%) followed by aqueous extract of Gola pulp (74%). Antimicrobial activity of fruit parts was checked by agar well diffusion method against six bacterial strains Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Bacillus sp. MB083, and Bacillus sp. MB141. Highest antimicrobial activity was shown by methanolic extract of Gola pulp (27mm ± 0.70) and seed (19.5mm ± 0.712) against Enterococcus faecalis. DPPH scavenging assay revealed highest antioxidant activity by aqueous extract of Gola peel (98.10%) followed by n-hexane extract of Surakhi peel (97.73%). Results obtained by reducing power assay also corroborated with the results of DPPH scavenging activity.

Keywords: antimicrobial evaluation, antitumor assay, gola, phytoconstituents, reactive oxygen species, Surakhi

Procedia PDF Downloads 408
151 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 257
150 Investigating Constructions and Operation of Internal Combustion Engine Water Pumps

Authors: Michał Gęca, Konrad Pietrykowski, Grzegorz Barański

Abstract:

The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft engine, diesel engine, flow, water pump

Procedia PDF Downloads 252
149 The Numerical and Experimental Analysis of Compressed Composite Plate in Asymmetrical Arrangement of Layers

Authors: Katarzyna Falkowicz

Abstract:

The work focused on the original concept of a thin-walled plate element with a cut-out, for use as a spring or load-bearing element. The subject of the study were rectangular plates with a cut-out with variable geometrical parameters and with a variable angle of fiber arrangement, made of a carbon-epoxy composite with high strength properties in an asymmetrical arrangement, subjected to uniform compression. The influence of geometrical parameters of the cut-out and the angle of fiber arrangement on the value of critical load of the structure and buckling form was investigated. Uniform thin plates are relatively cheap to manufacture, however due to their low bending stiffness; they can carry relatively small loads. The lowest form of loss of plate stability, which is the bending form, leads to its rapid destruction due to high deflection increases, with a slight increase in compressive load - low rigidity of the structure. However, the stiffness characteristics of the structure change significantly when the work of plate is forcing according to the higher flexural-torsional form of buckling. The plate is able to carry a much higher compressive load while maintaining much stiffer work characteristics in the post-critical range. The calculations carried out earlier show that plates with forced higher form of buckling are characterized by stable, progressive paths of post-critical equilibrium, enabling their use as elastic elements. The characteristics of such elements can be designed in a wide range by changing the geometrical parameters of the cut-out, i.e. height and width as well as by changing the angle of fiber arrangement The commercial ABAQUS program using the finite element method was used to develop the discrete model and perform numerical calculations. The obtained results are of significant practical importance in the design of structures with elastic elements, allowing to achieve the required maintenance characteristics of the device.

Keywords: buckling mode, numerical method, unsymmetrical laminates, thin-walled elastic elements

Procedia PDF Downloads 106
148 Inferring Thimlich Ohinga Gender Identity Through Ethnoarchaeological Analysis

Authors: David Maina Muthegethi

Abstract:

The Victoria Basin is associated with gateway for migration to Southern part of Africa. Different communities migrated through the region including the Bantus and Nilotic communities that occupy present day Kenya and Tanzania. A distinct culture of dry-stone technology emerged around 15th century current era, a period associated with peopling of the western Kenya region. One of the biggest dry-stone walls enclosure is Thimlich Ohinga archaeological site. The site was constructed around fourteenth century current era. Architectural design was oval shaped stone structures that were around 4 meters and 2 meters in length and width respectively. The main subsistence strategies of the community that was crop faming, pastoralism, fishing, hunting and gathering. This paper attempts to examine gender dynamics of Thimlich Ohinga society. At that end, attempts are made to infer gender roles as manifested in archaeological record. Therefore, the study entails examination of material evidence excavated from the site. Also, ethnoarchaeological study of contemporary Luo community was undertaken in order to make inferences and analogies concerning gender roles of Thimlich Ohinga society. Overall, the study involved examination of cultural materials excavated from Thimlich Ohinga, extensive survey of the site and ethnography of Luo community. In total, an extensive survey and interviews of 20 households was undertaken in South Kanyamkango ward, Migori County in Western Kenya. The key findings point out that Thimlich Ohinga gender identities were expressed in material forms through architecture, usage of spaces, subsistence strategies, dietary patterns and household organization. Also, gender as social identity was dynamic and responsive to diversification of subsistence strategies and intensification of regional trade as documented in contemporary Luo community. The paper reiterates importance of ethnoarchaeological methods in reconstruction of past social organization as manifested in material record.

Keywords: ethnoarchaeological, gender, subsistence patterns, Thimlich Ohinga

Procedia PDF Downloads 77
147 Morphometric and Radiographic Studies on the Tarsal Bones of Adult Chinkara (Gazella bennettii)

Authors: Salahud Din, Saima Masood, Hafsa Zaneb, Habib-Ur Rehman, Imad Khan, Muqader Shah

Abstract:

The present study was carried out on the gross anatomy, biometery and radiographic analysis of tarsal bones in twenty specimens of adult chinkara (Gazella bennettii). The desired bones were collected from the graveyards present in the locality of the different safari parks and zoos in Pakistan. To observe the edges and articulations between the bones, the radiographic images were acquired in craniocaudals and mediolateral views of the intact limbs. The gross and radiographic studies of the tarsus of adult Chinkara were carried out in University of Veterinary and Animal Sciences, Lahore, Pakistan. The tarsus of chinkara comprised of five bones both grossly and radiographically, settled in three transverse rows: tibial and fibular tarsal in the proximal, central and fourth fused tarsal in the middle row, the first, second and third fused tarsal in the distal row. The fibular tarsal was the largest and longest bone of the hock, situated on the lateral side and had a bulbous tuber calcis 'point of the hock' at the proximal extremity which projects upward and backward. The average maximum height and breadth for fibular tarsal was 5.61 ± 0.23 cm and 2.06 ± 0.13 cm, respectively. The tibial tarsal bones were the 2nd largest bone of the proximal row and lie on the medial side of the tarsus bears trochlea at either end. The average maximum height and breadth for tibial tarsal was 2.79 ± 0.05 cm and 1.74 ± 0.01 cm, respectively. The central and the fourth tarsals were fused to form a large bone which extends across the entire width of the tarsus and articulates with all bones of the tarsus. A nutrient foramen was present in the center of the non auricular area, more prominent on the ventral surface. The average maximum height and breadth for central and fourth fused tarsal was 1.51 ± 0.13 cm and 2.08 ± 0.07 cm, respectively. The first tarsal was a quadrilateral piece of bone placed on the poteriomedial surface of the hock. The greatest length and maximum breadth of the first tarsal was 0.94 ± 0.01 cm and 1.01 ± 0.01 cm, respectively. The second and third fused tarsal bone resembles the central but was smaller and triangular in outline. It was situated between the central above and the large metatarsal bone below. The greatest length and maximum breadth of second and third fused tarsal was 0.98 ± 0.01 cm and 1.49 ± 0.01 cm.

Keywords: chinkara, morphometry, radiography, tarsal bone

Procedia PDF Downloads 174
146 A Study on Reinforced Concrete Beams Enlarged with Polymer Mortar and UHPFRC

Authors: Ga Ye Kim, Hee Sun Kim, Yeong Soo Shin

Abstract:

Many studies have been done on the repair and strengthening method of concrete structure, so far. The traditional retrofit method was to attach fiber sheet such as CFRP (Carbon Fiber Reinforced Polymer), GFRP (Glass Fiber Reinforced Polymer) and AFRP (Aramid Fiber Reinforced Polymer) on the concrete structure. However, this method had many downsides in that there are a risk of debonding and an increase in displacement by a shortage of structure section. Therefore, it is effective way to enlarge the structural member with polymer mortar or Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) as a means of strengthening concrete structure. This paper intends to investigate structural performance of reinforced concrete (RC) beams enlarged with polymer mortar and compare the experimental results with analytical results. Nonlinear finite element analyses were conducted to compare the experimental results and predict structural behavior of retrofitted RC beams accurately without cost consuming experimental process. In addition, this study aims at comparing differences of retrofit material between commonly used material (polymer mortar) and recently used material (UHPFRC) by conducting nonlinear finite element analyses. In the first part of this paper, the RC beams having different cover type were fabricated for the experiment and the size of RC beams was 250 millimeters in depth, 150 millimeters in width and 2800 millimeters in length. To verify the experiment, nonlinear finite element models were generated using commercial software ABAQUS 6.10-3. From this study, both experimental and analytical results demonstrated good strengthening effect on RC beam and showed similar tendency. For the future, the proposed analytical method can be used to predict the effect of strengthened RC beam. In the second part of the study, the main parameters were type of retrofit materials. The same nonlinear finite element models were generated to compare the polymer mortar with UHPFRCC. Two types of retrofit material were evaluated and retrofit effect was verified by analytical results.

Keywords: retrofit material, polymer mortar, UHPFRC, nonlinear finite element analysis

Procedia PDF Downloads 419
145 Efficacy of Crystalline Admixtures in Self-Healing Capacity of Fibre Reinforced Concrete

Authors: Evangelia Tsampali, Evangelos Yfantidis, Andreas Ioakim, Maria Stefanidou

Abstract:

The purpose of this paper is the characterization of the effects of crystalline admixtures on concrete. Crystallites, aided by the presence of humidity, form idiomorphic crystals that block cracks and pores resulting in reduced porosity. In this project, two types of crystallines have been employed. The hydrophilic nature of crystalline admixtures helps the components to react with water and cement particles in the concrete to form calcium silicate hydrates and pore-blocking precipitates in the existing micro-cracks and capillaries. The underlying mechanism relies on the formation of calcium silicate hydrates and the resulting deposits of these crystals become integrally bound with the hydrated cement paste. The crystalline admixtures continue to activate throughout the life of the composite material when in the presence of moisture entering the concrete through hairline cracks, sealing additional gaps. The resulting concrete exhibits significantly increased resistance to water penetration under stress. Admixtures of calcium aluminates can also contribute to this healing mechanism in the same manner. However, this contribution is negligible compared to the calcium silicate hydrates due to the abundance of the latter. These crystalline deposits occur throughout the concrete volume and are a permanent part of the concrete mass. High-performance fibre reinforced cementitious composite (HPFRCC) were produced in the laboratory. The specimens were exposed in three healing conditions: water immersion until testing at 15 °C, sea water immersion until testing at 15 °C, and wet/dry cycles (immersion in tap water for 3 days and drying for 4 days). Specimens were pre-cracked at 28 days, and the achieved cracks width were in the range of 0.10–0.50 mm. Furthermore, microstructure observations and Ultrasonic Pulse Velocity tests have been conducted. Based on the outcomes, self-healing related indicators have also been defined. The results show almost perfect healing capability for specimens healed under seawater, better than for specimens healed in water while inadequate for the wet/dry exposure in both of the crystalline types.

Keywords: autogenous self-healing, concrete, crystalline admixtures, ultrasonic pulse velocity test

Procedia PDF Downloads 127
144 Uranoplasty Using Tongue Flap for Bilateral Clefts

Authors: Saidasanov Saidazal Shokhmurodovich, Topolnickiy Orest Zinovyevich, Afaunova Olga Arturovna

Abstract:

Relevance: Bilateral congenital cleft is one of the most complex forms of all clefts, which makes it difficult to choose a surgical method of treatment. During primary operations to close the hard and soft palate, there is a shortage of soft tissues and their lack during standard uranoplasty, and these factors aggravate the period of rehabilitation of patients. Materials and methods: The results of surgical treatment of children with bilateral cleft, who underwent uranoplasty using a flap from the tongue, were analyzed. The study used methods: clinical and statistical, which allowed us to solve the tasks, based on the principles of evidence-based medicine. Results and discussion: in our study, 15 patients were studied, who underwent surgical treatment in the following volume: uranoplasty using a flap from the tongue in two stages. Of these, 9 boys and 6 girls aged 2.5 to 6 years. The first stage was surgical treatment in the volume: veloplasty. The second stage was a surgical intervention in volume: uranoplasty using a flap from the tongue. In all patients, the width of the cleft ranged from 1.6-2.8 cm. All patients in this group were orthodontically prepared. Using this method, the surgeon can achieve the following results: maximum narrowing of the palatopharyngeal ring, long soft palate, complete closure of the hard palate, alveolar process, and the mucous membrane of the nasal cavity is also sutured, which creates good conditions for the next stage of osteoplastic surgery. Based on the result obtained, patients have positive results of working with a speech therapist. In all patients, the dynamics were positive without complications. Conclusions: Based on our observation, tongue flap uranoplasty is one of the effective techniques for patients with wide clefts of the hard and soft palate. The use of a flap from the tongue makes it possible to reduce the number of repeated reoperations and improve the quality of social adaptation of this group of patients, which is one of the important stages of rehabilitation. Upon completion of the stages of rehabilitation, all patients had the maximum improvement in functional, anatomical and social indicators.

Keywords: congenital cleft lips and palate, bilateral cleft, child surgery, maxillofacial surgery

Procedia PDF Downloads 120
143 Laser - Ultrasonic Method for the Measurement of Residual Stresses in Metals

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya

Abstract:

The theoretical analysis is carried out to get the relation between the ultrasonic wave velocity and the value of residual stresses. The laser-ultrasonic method is developed to evaluate the residual stresses and subsurface defects in metals. The method is based on the laser thermooptical excitation of longitudinal ultrasonic wave sand their detection by a broadband piezoelectric detector. A laser pulse with the time duration of 8 ns of the full width at half of maximum and with the energy of 300 µJ is absorbed in a thin layer of the special generator that is inclined relative to the object under study. The non-uniform heating of the generator causes the formation of a broadband powerful pulse of longitudinal ultrasonic waves. It is shown that the temporal profile of this pulse is the convolution of the temporal envelope of the laser pulse and the profile of the in-depth distribution of the heat sources. The ultrasonic waves reach the surface of the object through the prism that serves as an acoustic duct. At the interface ‚laser-ultrasonic transducer-object‘ the conversion of the most part of the longitudinal wave energy takes place into the shear, subsurface longitudinal and Rayleigh waves. They spread within the subsurface layer of the studied object and are detected by the piezoelectric detector. The electrical signal that corresponds to the detected acoustic signal is acquired by an analog-to-digital converter and when is mathematically processed and visualized with a personal computer. The distance between the generator and the piezodetector as well as the spread times of acoustic waves in the acoustic ducts are the characteristic parameters of the laser-ultrasonic transducer and are determined using the calibration samples. There lative precision of the measurement of the velocity of longitudinal ultrasonic waves is 0.05% that corresponds to approximately ±3 m/s for the steels of conventional quality. This precision allows one to determine the mechanical stress in the steel samples with the minimal detection threshold of approximately 22.7 MPa. The results are presented for the measured dependencies of the velocity of longitudinal ultrasonic waves in the samples on the values of the applied compression stress in the range of 20-100 MPa.

Keywords: laser-ultrasonic method, longitudinal ultrasonic waves, metals, residual stresses

Procedia PDF Downloads 326
142 Magnetophotonics 3D MEMS/NEMS System for Quantitative Mitochondrial DNA Defect Profiling

Authors: Dar-Bin Shieh, Gwo-Bin Lee, Chen-Ming Chang, Chen Sheng Yeh, Chih-Chia Huang, Tsung-Ju Li

Abstract:

Mitochondrial defects have a significant impact in many human diseases and aging associated phenotypes. The pathogenic mitochondrial DNA (mtDNA) mutations are diverse and usually present as heteroplasmic. mtDNA 4977bps deletion is one of the common mtDNA defects, and the ratio of mutated versus normal copy is significantly associated with clinical symptoms thus their quantitative detection has become an important unmet needs for advanced disease diagnosis and therapeutic guidelines. This study revealed a Micro-electro-mechanical-system (MEMS) enabled automatic microfluidic chip that only required minimal sample. The system integrated multiple laboratory operation steps into a Lab-on-a-Chip for high-sensitive and prompt measurement. The entire process including magnetic nanoparticle based mtDNA extraction in chip, mutation selective photonic DNA cleavage, and nanoparticle accelerated photonic quantitative polymerase chain reaction (qPCR). All subsystems were packed inside a miniature three-dimensional micro structured system and operated in an automatic manner. Integration of magnetic beads with microfluidic transportation could promptly extract and enrich the specific mtDNA. The near infrared responsive magnetic nanoparticles enabled micro-PCR to be operated by pulse-width-modulation controlled laser pulsing to amplify the desired mtDNA while quantified by fluorescence intensity captured by a complementary metal oxide system array detector. The proportions of pathogenic mtDNA in total DNA were thus obtained. Micro capillary electrophoresis module was used to analyze the amplicone products. In conclusion, this study demonstrated a new magnetophotonic based qPCR MEMS system that successfully detects and quantify specific disease related DNA mutations thus provides a promising future for rapid diagnosis of mitochondria diseases.

Keywords: mitochondrial DNA, micro-electro-mechanical-system, magnetophotonics, PCR

Procedia PDF Downloads 220
141 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models

Authors: Benbiao Song, Yan Gao, Zhuo Liu

Abstract:

Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.

Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram

Procedia PDF Downloads 264
140 Study of Morphological Changes of the River Ganga in Patna District, Bihar Using Remote Sensing and GIS Techniques

Authors: Bhawesh Kumar, A. P. Krishna

Abstract:

There are continuous changes upon earth’s surface by a variety of natural and anthropogenic agents cut, carry away and depositing of minerals from land. Running water has higher capacity of erosion than other geomorphologic agents. This research work has been carried out on Ganga River, whose channel is continuously changing under the influence of geomorphic agents and human activities in the surrounding regions. The main focus is to study morphological characteristics and sand dynamics of Ganga River with particular emphasis on bank lines and width changes using remote sensing and GIS techniques. The advance remote sensing data and topographical data were interpreted for obtaining 52 years of changes. For this, remote sensing data of different years (LANDSAT TM 1975, 1988, 1993, ETM 2005 and ETM 2012) and toposheet of SOI for the year 1960 were used as base maps for this study. Sinuosity ratio, braiding index and migratory activity index were also established. It was found to be 1.16 in 1975 and in 1988, 1993, 2005 and 2005 it was 1.09, 1.11, 1.1, 1.09 respectively. The analysis also shows that the minimum value found in 1960 was in reach 1 and maximum value is 4.8806 in 2012 found in reach 4 which suggests creation of number of islands in reach 4 for the year 2012. Migratory activity index (MAI), which is a standardized function of both length and time, was computed for the 8 representative reaches. MAI shows that maximum migration was in 1975-1988 in reach 6 and 7 and minimum migration was in 1993-2005. From the channel change analysis, it was found that the shifting of bank line was cyclic and the river Ganges showed a trend of southward maximum values. The advanced remote sensing data and topographical data helped in obtaining 52 years changes in the river due to various natural and manmade activities like flood, water velocity and excavation, removal of vegetation cover and fertile soil excavation for the various purposes of surrounding regions.

Keywords: braided index, migratory activity index (MAI), Ganga river, river morphology

Procedia PDF Downloads 349
139 Nose Macroneedling Tie Suture Hidden Technique

Authors: Mohamed Ghoz, Hala Alsabeh

Abstract:

Context: Macroscopic Nose Macroneedling (MNM) is a new non-surgical procedure for lifting and tightening the nose. It is a tissue-non-invasive technique that uses a needle to create micro-injuries in the skin. These injuries stimulate the production of collagen and elastin, which results in the tightening and lifting of the skin. Research Aim: The research aim of this study was to investigate the efficacy and safety of MNM for the treatment of nasal deformities. Methodology A total of 100 patients with nasal deformities were included in this study. The patients were randomly assigned to either the MNM group or the control group. The MNM group received a single treatment of MNM, while the control group received no treatment. The patients were evaluated at baseline, 6 months, and 12 months after treatment. Findings: The results of this study showed that MNM was effective in improving the appearance of the nose in patients with nasal deformities. At 6 months after treatment, the patients in the MNM group had significantly improved nasal tip projection, nasal bridge height, and nasal width compared to the patients in the control group. The improvements in nasal appearance were maintained at 12 months after treatment. Theoretical Importance: The findings of this study provide support for the use of MNM as a safe and effective treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities. Data Collection: Data was collected from the patients using a variety of methods, including clinical assessments, photographic assessments, and patient-reported outcome measures. Analysis Procedures: The data was analyzed using a variety of statistical methods, including descriptive statistics, inferential statistics, and meta-analysis. Question Addressed: The research question addressed in this study was whether MNM is an effective and safe treatment for nasal deformities. Conclusion: The findings of this study suggest that MNM is an effective and safe treatment for nasal deformities. MNM is a non-surgical procedure that is associated with minimal downtime and no risk of scarring. This makes it an attractive option for patients who are looking for a minimally invasive treatment for their nasal deformities.

Keywords: nose, surgery, tie, suture

Procedia PDF Downloads 75
138 Design of Large Parallel Underground Openings in Himalayas: A Case Study of Desilting Chambers for Punatsangchhu-I, Bhutan

Authors: Kanupreiya, Rajani Sharma

Abstract:

Construction of a single underground structure is itself a challenging task, and it becomes more critical in tectonically active young mountains such as the Himalayas which are highly anisotropic. The Himalayan geology mostly comprises of incompetent and sheared rock mass in addition to fold/faults, rock burst, and water ingress. Underground tunnels form the most essential and important structure in run-of-river hydroelectric projects. Punatsangchhu I hydroelectric project (PHEP-I), Bhutan (1200 MW) is a run-of-river scheme which has four parallel underground desilting chambers. The Punatsangchhu River carries a large quantity of silt load during monsoon season. Desilting chambers were provided to remove the silt particles of size greater than and equal to 0.2 mm with 90% efficiency, thereby minimizing the rate of damage to turbines. These chambers are 330 m long, 18 m wide at the center and 23.87 m high, with a 5.87 m hopper portion. The geology of desilting chambers was known from an exploratory drift which exposed low dipping foliation joint and six joint sets. The RMR and Q value in this reach varied from 40 to 60 and 1 to 6 respectively. This paper describes different rock engineering principles undertaken for safe excavation and rock support of the moderately jointed, blocky and thinly foliated biotite gneiss. For the design of rock support system of desilting chambers, empirical and numerical analysis was adopted. Finite element analysis was carried out for cavern design and finalization of pillar width using Phase2. Phase2 is a powerful tool for simulation of stage-wise excavation with simultaneous provision of support system. As the geology of the region had 7 sets of joints, in addition to FEM based approach, safety factors for potentially unstable wedges were checked using UnWedge. The final support recommendations were based on continuous face mapping, numerical modelling, empirical calculations, and practical experiences.

Keywords: dam siltation, Himalayan geology, hydropower, rock support, numerical modelling

Procedia PDF Downloads 93