Search results for: statistical learning theory
14071 Impact of Knowledge Management on Learning Organizations
Authors: Gunmala Suri
Abstract:
The purpose of this study was to investigate the relationship between various dimensions of Knowledge Management and Learning Organizations. On the basis of the dimensions of Learning Organization, Hypothesis were formulated. Knowledge Management (KM) is taken as the independent variable and Learning Organization (LO) as a dependent variable. KM had 5 dimensions and LO had 7. For this study, a total of 92 participants took part and answered the questionnaire. The respondents were selected using Judgemental and Snowball sampling. The respondents were from SMEs in and around Chandigarh. SPSS was used to for the data analysis purposes. The results showed that the dimensions of KM had a positive influence on the dimensions of LO. The hypothesis were accepted.Keywords: knowledge management leadership, knowledge management, learning organization, knowledge management culture
Procedia PDF Downloads 41814070 A Study on Pre-Service English Teachers' Language Self Efficacy and Learning Goal Orientation
Authors: Erteki̇n Kotbaş
Abstract:
Teaching English as a Foreign Language (EFL) is on the front burner of many countries in the world, in particular for English language teaching departments that train EFL teachers. Under the head of motivational theories in foreign language education, there are numerous researches in literature. However; researches comprising English language self-efficacy and teachers’ learning goal orientation which has a positive impact on learning teachings skills are scarce. Examination of these English language self-efficacy beliefs and learning goal orientations of pre-service EFL teachers may broaden the horizons, considering the importance of self-efficacy and goal orientation on learning and teaching activities. At this juncture, present study aims to investigate the strong relationship between English language self efficacy and teachers’ learning goal orientation from Turkish context in addition to teacher students’ grade factor.Keywords: English language, learning goal orientation, self efficacy, pre-service teachers
Procedia PDF Downloads 46214069 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions
Authors: Vikrant Gupta, Amrit Goswami
Abstract:
The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition
Procedia PDF Downloads 13614068 Improving Listening Comprehension for EFL Pre-Intermediate Students through a Blended Learning Strategy
Authors: Heba Mustafa Abdullah
Abstract:
The research aimed at examining the effect of using a suggested blended learning (BL) strategy on developing EFL pre- intermediate students. The study adopted the quasi-experimental design. The sample of the research consisted of a group of 26 EFL pre- intermediate students. Tools of the study included a listening comprehension checklist and a pre-post listening comprehension test. Results were discussed in relation to several factors that affected the language learning process. Finally, the research provided beneficial contributions in relation to manipulating BL strategy with respect to language learning process in general and oral language learning in particular.Keywords: blended learning, english as a foreign language, listening comprehension, oral language instruction
Procedia PDF Downloads 56114067 Rethinking International Relations Theory through the Lens of Outside-in Logic of State-Building
Authors: Nana Kwasi Amoateng
Abstract:
The paper uses secondary information to investigate some longstanding limitations in International Relations (IR) theory. Specifically, the analysis highlights IR theory through the lens of J. C. Sharman’s brilliant concept of outside-in state-building logic in which some states, particularly those in Africa, have relied mainly on foreign resources to address local threats. The key findings are that IR theory has been largely understood from the perspective of an inside-out state-building logic, whereby Western and other advanced states have heavily relied on local resources to address foreign threats. In this vein, IR theorists, including Critical Theorists, have not been able to fully grasp African states and states elsewhere that have generally relied on an outside-in logic of state-building. The paper helps to fill a major gap in IR theory, which has mainly addressed criticisms of being Euro- or Western-centric or failing to include the unique experiences of states and other actors in the Global South by developing critical theories such as post-colonial theory and neo-colonialism. Although this has helped to understand some experiences of actors in the Global South, the fundamental difference between state-building in the West and the Global South, particularly Africa, has not been adequately explored to fully comprehend why, despite the works of Critical Theorists, IR theory still fails to capture many political and socioeconomic realities in Africa and elsewhere.Keywords: international relations theory, outside-in state-building logic, inside-out state-building logic, Africa
Procedia PDF Downloads 8414066 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2214065 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 15914064 The Continuing Professional Development of the Assessment through Research-Based Learning in Higher Education of Thailand
Authors: P. Junpeng, A. Tungkasamit
Abstract:
Research-based learning is the key for the national research universities of Thailand. The indicator reflects the success of the study in assessing the learning outcomes of students. The development of the lecturers is the most important mechanism in driving. Nowadays the lecturers lack the knowledge and skills of assessment for learning. Therefore, this study aims to develop the knowledge and skills for lecturer’s assessment through research-based learning in higher education. The target group were lecturers who teach in higher education from Khon Kaen University of Thailand. This study was a research and development involved the concept of continuing professional development. Research was conducted in 3 phases: 1) to inspire one’s thought, to accomplish both knowledge and skill, 2) to focus on changes, and 3) to reflect the changes as well as suggest the guidelines for development. The results showed that the lecturers enhanced their knowledge and skill in assessment and emphasized on assessment for learning rather than assessment of learning.Keywords: research-based nexus, professional development, assessment for learning, higher education
Procedia PDF Downloads 36314063 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake
Authors: Daniel S. Brox
Abstract:
Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.Keywords: seismic activation, statistical physics, geodynamics, signal processing
Procedia PDF Downloads 1714062 Lectures in Higher Education Using Teaching Strategies and Digital Tools to Overcome Challenges Faced in South Africa by Implementing Blended Learning
Authors: Thaiurie Govender, Shannon Verne
Abstract:
The Fourth Industrial Revolution has ushered in an era where technology significantly impacts various aspects of life, including higher education. Blended learning, which combines synchronous and asynchronous learning, has gained popularity as a pedagogical approach. However, its effective implementation is a challenge, particularly in the context of the COVID-19 pandemic and technological obstacles faced in South Africa. This study focused on lecturers' teaching and learning practices to implement blended learning, aiming to understand the teaching and learning strategies used with the integration of digital tools to facilitate the blended learning approach within a private higher educational institution in South Africa. Using heutagogy and constructivism theoretical frameworks, the study aimed to uncover insights into the lecturer’s teaching and learning practices to overcome challenges in designing and facilitating blended learning modules. Through a qualitative analysis, the themes of student engagement, teaching and learning strategies, digital tools, and feedback emerged, highlighting the complexities and opportunities in a blended learning classroom. The findings emphasize the importance of tailoring methods to students' needs and subject matter, aligning with constructivist principles. Recommendations include promoting professional development opportunities, addressing infrastructure issues, and fostering a supportive learning environment.Keywords: blended learning, digital tools, higher education, teaching strategies
Procedia PDF Downloads 5314061 Experiential Learning in an Earthquake Engineering Course Using Online Tools and Shake Table Exercises
Authors: Andres Winston Oreta
Abstract:
Experiential Learning (ELE) is a strategy for enhancing the teaching and learning of courses especially in civil engineering. This paper presents the adaption of the ELE framework in the delivery of various course requirements in an earthquake engineering course. Examples of how ELE is integrated using online tools and hands-on laboratory technology to address the course learning outcomes on earthquake engineering are presented. Student feedback shows that ELE using online tools and technology strengthens students’ understanding and intuition of seismic design and earthquake engineering concepts.Keywords: earthquake engineering, experiential learning, shake table, online, internet, civil engineering
Procedia PDF Downloads 2214060 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems
Authors: Belkacem Laimouche
Abstract:
With the field of artificial intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.Keywords: artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, interlaboratory comparison, data analysis, data reliability, measurement of bias impact on predictions, improvement of model accuracy and reliability
Procedia PDF Downloads 10514059 A Game Theory Analysis of The Enuma Elish
Authors: Bo Kampmann Walther
Abstract:
This essay provides an in-depth interpretation of the ancient Babylonian origin narrative, The Enuma Elish, through the lens of game theory. It examines the strategic interactions among the deities in the myth as if they were players in a game, focusing on understanding the dynamics of conflict, cooperation, and equilibrium within the narrative. The pivotal game theory concept known as Nash Equilibrium is given prominent consideration, but saddle points and optimal strategies will also be employed to uncover the decision-making processes of the divine figures, particularly in the cosmic battle for supremacy. This analysis demonstrates that the ancient narrative, beyond its mythological content, illustrates timeless principles of strategic behavior in the pursuit of game success.Keywords: Enuma Elish, game theory, Nash Equilibrium, Babylonian mythology, strategic interaction
Procedia PDF Downloads 2714058 DGA Data Interpretation Using Extension Theory for Power Transformer Diagnostics
Authors: O. P. Rahi, Manoj Kumar
Abstract:
Power transformers are essential and expensive equipments in electrical power system. Dissolved gas analysis (DGA) is one of the most useful techniques to detect incipient faults in power transformers. However, the identification of the faulted location by conventional method is not always an easy task due to variability of gas data and operational variables. In this paper, an extension theory based power transformer fault diagnosis method is presented. Extension theory tries to solve contradictions and incompatibility problems. This paper first briefly introduces the basic concept of matter element theory, establishes the matter element models for three-ratio method, and then briefly discusses extension set theory. Detailed analysis is carried out on the extended relation function (ERF) adopted in this paper for transformer fault diagnosis. The detailed diagnosing steps are offered. Simulation proves that the proposed method can overcome the drawbacks of the conventional three-ratio method, such as no matching and failure to diagnose multi-fault. It enhances diagnosing accuracy.Keywords: DGA, extension theory, ERF, fault diagnosis power transformers, fault diagnosis, fuzzy logic
Procedia PDF Downloads 41214057 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 18814056 Intelligent Process and Model Applied for E-Learning Systems
Authors: Mafawez Alharbi, Mahdi Jemmali
Abstract:
E-learning is a developing area especially in education. E-learning can provide several benefits to learners. An intelligent system to collect all components satisfying user preferences is so important. This research presents an approach that it capable to personalize e-information and give the user their needs following their preferences. This proposal can make some knowledge after more evaluations made by the user. In addition, it can learn from the habit from the user. Finally, we show a walk-through to prove how intelligent process work.Keywords: artificial intelligence, architecture, e-learning, software engineering, processing
Procedia PDF Downloads 19114055 Business Skills Laboratory in Action: Combining a Practice Enterprise Model and an ERP-Simulation to a Comprehensive Business Learning Environment
Authors: Karoliina Nisula, Samuli Pekkola
Abstract:
Business education has been criticized for being too theoretical and distant from business life. Different types of experiential learning environments ranging from manual role-play to computer simulations and enterprise resource planning (ERP) systems have been used to introduce the realistic and practical experience into business learning. Each of these learning environments approaches business learning from a different perspective. The implementations tend to be individual exercises supplementing the traditional courses. We suggest combining them into a business skills laboratory resembling an actual workplace. In this paper, we present a concrete implementation of an ERP-supported business learning environment that is used throughout the first year undergraduate business curriculum. We validate the implementation by evaluating the learning outcomes through the different domains of Bloom’s taxonomy. We use the role-play oriented practice enterprise model as a comparison group. Our findings indicate that using the ERP simulation improves the poor and average students’ lower-level cognitive learning. On the affective domain, the ERP-simulation appears to enhance motivation to learn as well as perceived acquisition of practical hands-on skills.Keywords: business simulations, experiential learning, ERP systems, learning environments
Procedia PDF Downloads 25914054 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies
Authors: Salina Budin, Shaira Ismail
Abstract:
Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science
Procedia PDF Downloads 24414053 Comprehensive Critical Review for Static and Dynamic Soil-Structure Interaction Between Winkler, Pasternak and Three-Dimensional Method of Buried Pipelines
Authors: N. E.Sam, S. R.Singh
Abstract:
Pipeline infrastructure are a valuable asset to the country that help in transporting fluid and gas from one place to another and contribute in keeping the country functioning both physically and economically. During seismic activity, additional loads are acted on the buried pipelines becoming a salient parameter to be studied in soil pipe interaction. Winkler Beam Theory is a commonly used approach for design of underground buried structures however this theory does not take into account shear and dynamic loading parameters in consideration. Shear can be addressed in Pasternak Theory – an improved model of Winkler Theory. However dynamic loading condition and horizontal displacement is not considered in either method. A comprehensive critical review between Winkler Beam Method, Pasternak Method and Three-Dimensional Method in finite element analysis is to be done in this paper for seismic forces. Study of the influence of depth and displacement of soil in correspondence to stiffness value and influence of horizontal displacement for design of underground structures is considered.Keywords: finite element, pasternak theory, seismic, soil-structure interaction, three-dimensional theory, winkler theory
Procedia PDF Downloads 7414052 MIMIC: A Multi Input Micro-Influencers Classifier
Authors: Simone Leonardi, Luca Ardito
Abstract:
Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media
Procedia PDF Downloads 18314051 The Effectiveness of Summative Assessment in Practice Learning
Authors: Abdool Qaiyum Mohabuth, Syed Munir Ahmad
Abstract:
Assessment enables students to focus on their learning, assessment. It engages them to work hard and motivates them in devoting time to their studies. Student learning is directly influenced by the type of assessment involved in the programme. Summative Assessment aims at providing measurement of student understanding. In fact, it is argued that summative assessment is used for reporting and reviewing, besides providing an overall judgement of achievement. While summative assessment is a well defined process for learning that takes place in the classroom environment, its application within the practice environment is still being researched. This paper discusses findings from a mixed-method study for exploring the effectiveness of summative assessment in practice learning. A survey questionnaire was designed for exploring the perceptions of mentors and students about summative assessment in practice learning. The questionnaire was administered to the University of Mauritius students and mentors who supervised students for their Work-Based Learning (WBL) practice at the respective placement settings. Some students, having undertaken their WBL practice, were interviewed, for capturing their views and experiences about the application of summative assessment in practice learning. Semi-structured interviews were also conducted with three experienced mentors who have assessed students on practice learning. The findings reveal that though learning in the workplace is entirely different from learning at the University, most students had positive experiences about their summative assessments in practice learning. They felt comfortable and confident to be assessed by their mentors in their placement settings and wished that the effort and time that they devoted to their learning be recognised and valued. Mentors on their side confirmed that the summative assessment is valid and reliable, enabling them to better monitor and coach students to achieve the expected learning outcomes.Keywords: practice learning, judgement, summative assessment, knowledge, skills, workplace
Procedia PDF Downloads 34114050 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher
Authors: Ebtisam Alqahtani
Abstract:
The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practiceKeywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR
Procedia PDF Downloads 12714049 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies
Authors: Kanika Sood, Sijie Shang
Abstract:
A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy
Procedia PDF Downloads 7714048 Forging A Distinct Understanding of Implicit Bias
Authors: Benjamin D Reese Jr
Abstract:
Implicit bias is understood as unconscious attitudes, stereotypes, or associations that can influence the cognitions, actions, decisions, and interactions of an individual without intentional control. These unconscious attitudes or stereotypes are often targeted toward specific groups of people based on their gender, race, age, perceived sexual orientation or other social categories. Since the late 1980s, there has been a proliferation of research that hypothesizes that the operation of implicit bias is the result of the brain needing to process millions of bits of information every second. Hence, one’s prior individual learning history provides ‘shortcuts’. As soon as one see someone of a certain race, one have immediate associations based on their past learning, and one might make assumptions about their competence, skill, or danger. These assumptions are outside of conscious awareness. In recent years, an alternative conceptualization has been proposed. The ‘bias of crowds’ theory hypothesizes that a given context or situation influences the degree of accessibility of particular biases. For example, in certain geographic communities in the United States, there is a long-standing and deeply ingrained history of structures, policies, and practices that contribute to racial inequities and bias toward African Americans. Hence, negative biases among groups of people towards African Americans are more accessible in such contexts or communities. This theory does not focus on individual brain functioning or cognitive ‘shortcuts.’ Therefore, attempts to modify individual perceptions or learning might have negligible impact on those embedded environmental systems or policies that are within certain contexts or communities. From the ‘bias of crowds’ perspective, high levels of racial bias in a community can be reduced by making fundamental changes in structures, policies, and practices to create a more equitable context or community rather than focusing on training or education aimed at reducing an individual’s biases. The current paper acknowledges and supports the foundational role of long-standing structures, policies, and practices that maintain racial inequities, as well as inequities related to other social categories, and highlights the critical need to continue organizational, community, and national efforts to eliminate those inequities. It also makes a case for providing individual leaders with a deep understanding of the dynamics of how implicit biases impact cognitions, actions, decisions, and interactions so that those leaders might more effectively develop structural changes in the processes and systems under their purview. This approach incorporates both the importance of an individual’s learning history as well as the important variables within the ‘bias of crowds’ theory. The paper also offers a model for leadership education, as well as examples of structural changes leaders might consider.Keywords: implicit bias, unconscious bias, bias, inequities
Procedia PDF Downloads 514047 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference
Authors: Daniel Asiamah Ameyaw
Abstract:
This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes
Procedia PDF Downloads 14314046 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University
Authors: Islam Elsayed Hussein
Abstract:
The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt
Procedia PDF Downloads 52314045 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 27314044 Impact of Instagram Food Bloggers on Consumer (Generation Z) Decision Making Process in Islamabad. Pakistan
Authors: Tabinda Sadiq, Tehmina Ashfaq Qazi, Hoor Shumail
Abstract:
Recently, the advent of emerging technology has created an emerging generation of restaurant marketing. It explores the aspects that influence customers’ decision-making process in selecting a restaurant after reading food bloggers' reviews online. The motivation behind this research is to investigate the correlation between the credibility of the source and their attitude toward restaurant visits. The researcher collected the data by distributing a survey questionnaire through google forms by employing the Source credibility theory. Non- probability purposive sampling technique was used to collect data. The questionnaire used a predeveloped and validated scale by Ohanian to measure the relationship. Also, the researcher collected data from 250 respondents in order to investigate the influence of food bloggers on Gen Z's decision-making process. SPSS statistical version 26 was used for statistical testing and analyzing the data. The findings of the survey revealed that there is a moderate positive correlation between the variables. So, it can be analyzed that food bloggers do have an impact on Generation Z's decision making process.Keywords: credibility, decision making, food bloggers, generation z, e-wom
Procedia PDF Downloads 7314043 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias
Authors: Cory A. Logston
Abstract:
It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.Keywords: empathy, implicit bias, transformative learning, virtual reality
Procedia PDF Downloads 19414042 Dynamic Control Theory: A Behavioral Modeling Approach to Demand Forecasting amongst Office Workers Engaged in a Competition on Energy Shifting
Authors: Akaash Tawade, Manan Khattar, Lucas Spangher, Costas J. Spanos
Abstract:
Many grids are increasing the share of renewable energy in their generation mix, which is causing the energy generation to become less controllable. Buildings, which consume nearly 33% of all energy, are a key target for demand response: i.e., mechanisms for demand to meet supply. Understanding the behavior of office workers is a start towards developing demand response for one sector of building technology. The literature notes that dynamic computational modeling can be predictive of individual action, especially given that occupant behavior is traditionally abstracted from demand forecasting. Recent work founded on Social Cognitive Theory (SCT) has provided a promising conceptual basis for modeling behavior, personal states, and environment using control theoretic principles. Here, an adapted linear dynamical system of latent states and exogenous inputs is proposed to simulate energy demand amongst office workers engaged in a social energy shifting game. The energy shifting competition is implemented in an office in Singapore that is connected to a minigrid of buildings with a consistent 'price signal.' This signal is translated into a 'points signal' by a reinforcement learning (RL) algorithm to influence participant energy use. The dynamic model functions at the intersection of the points signals, baseline energy consumption trends, and SCT behavioral inputs to simulate future outcomes. This study endeavors to analyze how the dynamic model trains an RL agent and, subsequently, the degree of accuracy to which load deferability can be simulated. The results offer a generalizable behavioral model for energy competitions that provides the framework for further research on transfer learning for RL, and more broadly— transactive control.Keywords: energy demand forecasting, social cognitive behavioral modeling, social game, transfer learning
Procedia PDF Downloads 107