Search results for: recovery reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6375

Search results for: recovery reduction

5745 Tangible Losses, Intangible Traumas: Re-envisioning Recovery Following the Lytton Creek Fire 2021 through Place Attachment Lens

Authors: Tugba Altin

Abstract:

In an era marked by pronounced climate change consequences, communities are observed to confront traumatic events that yield both tangible and intangible repercussions. Such events not only cause discernible damage to the landscape but also deeply affect the intangible aspects, including emotional distress and disruptions to cultural landscapes. The Lytton Creek Fire of 2021 serves as a case in point. Beyond the visible destruction, the less overt but profoundly impactful disturbance to place attachment (PA) is scrutinized. PA, representing the emotional and cognitive bonds individuals establish with their environments, is crucial for understanding how such events impact cultural identity and connection to the land. The study underscores the significance of addressing both tangible and intangible traumas for holistic community recovery. As communities renegotiate their affiliations with altered environments, the cultural landscape emerges as instrumental in shaping place-based identities. This renewed understanding is pivotal for reshaping adaptation planning. The research advocates for adaptation strategies rooted in the lived experiences and testimonies of the affected populations. By incorporating both the tangible and intangible facets of trauma, planning efforts are suggested to be more culturally attuned and emotionally insightful, fostering true resonance with the affected communities. Through such a comprehensive lens, this study contributes enriching the climate change discourse, emphasizing the intertwined nature of tangible recovery and the imperative of emotional and cultural healing after environmental disasters. Following the pronounced aftermath of the Lytton Creek Fire in 2021, research aims to deeply understand its impact on place attachment (PA), encompassing the emotional and cognitive bonds individuals form with their environments. The interpretive phenomenological approach, enriched by a hermeneutic framework, is adopted, emphasizing the experiences of the Lytton community and co-researchers. Phenomenology informed the understanding of 'place' as the focal point of attachment, providing insights into its formation and evolution after traumatic events. Data collection departs from conventional methods. Instead of traditional interviews, walking audio sessions and photo elicitation methods are utilized. These allow co-researchers to immerse themselves in the environment, re-experience, and articulate memories and feelings in real-time. Walking audio facilitates reflections on spatial narratives post-trauma, while photo voices captured intangible emotions, enabling the visualization of place-based experiences. The analysis is collaborative, ensuring the co-researchers' experiences and interpretations are central. Emphasizing their agency in knowledge production, the process is rigorous, facilitated by the harmonious blend of interpretive phenomenology and hermeneutic insights. The findings underscore the need for adaptation and recovery efforts to address emotional traumas alongside tangible damages. By exploring PA post-disaster, the research not only fills a significant gap but advocates for an inclusive approach to community recovery. Furthermore, the participatory methodologies employed challenge traditional research paradigms, heralding potential shifts in qualitative research norms.

Keywords: wildfire recovery, place attachment, trauma recovery, cultural landscape, visual methodologies

Procedia PDF Downloads 74
5744 Optimized Simultaneous Determination of Theobromine and Caffeine in Fermented and Unfermented Cacao Beans and in Cocoa Products Using Step Gradient Solvent System in Reverse Phase HPLC

Authors: Ian Marc G. Cabugsa, Kim Ryan A. Won

Abstract:

Fast, reliable and simultaneous HPLC analysis of theobromine and caffeine in cacao and cocoa products was optimized in this study. The samples tested were raw, fermented, and roasted cacao beans as well as commercially available cocoa products. The HPLC analysis was carried out using step gradient solvent system with acetonitrile and water buffered with H3PO4 as the mobile phase. The HPLC system was optimized using 273 nm wavelength at 35 °C for the column temperature with a flow rate of 1.0 mL/min. Using this method, the theobromine percent recovery mean, Limit of Detection (LOD) and Limit of Quantification (LOQ) is 118.68(±3.38)%, 0.727 and 1.05 respectively. The percent recovery mean, LOD and LOQ for caffeine is 105.53(±3.25)%, 2.42 and 3.50 respectively. The inter-day and intra-day precision for theobromine is 4.31% and 4.48% respectively, while 7.02% and 7.03% was for caffeine respectively. Compared to the standard method in AOAC using methanol in isocratic solvent system, the results of the study produced lesser chromatogram noise with emphasis on theobromine and caffeine. The method is readily usable for cacao and cocoa substances analyses using HPLC with step gradient capability.

Keywords: cacao, caffeine, HPLC, step gradient solvent system, theobromine

Procedia PDF Downloads 276
5743 Energy Efficiency Measures in Canada’s Iron and Steel Industry

Authors: A. Talaei, M. Ahiduzzaman, A. Kumar

Abstract:

In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.

Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation

Procedia PDF Downloads 391
5742 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 113
5741 HCl-Based Hydrometallurgical Recycling Route for Metal Recovery from Li-Ion Battery Wastes

Authors: Claudia Schier, Arvid Biallas, Bernd Friedrich

Abstract:

The demand for Li-ion-batteries owing to their benefits, such as; fast charging time, high energy density, low weight, large temperature range, and a long service life performance is increasing compared to other battery systems. These characteristics are substantial not only for battery-operated portable devices but also in the growing field of electromobility where high-performance energy storage systems in the form of batteries are highly requested. Due to the sharp rising production, there is a tremendous interest to recycle spent Li-Ion batteries in a closed-loop manner owed to the high content of valuable metals such as cobalt, manganese, and lithium as well as regarding the increasing demand for those scarce applied metals. Currently, there are just a few industrial processes using hydrometallurgical methods to recover valuable metals from Li-ion-battery waste. In this study, the extraction of valuable metals from spent Li-ion-batteries is investigated by pretreated and subsequently leached battery wastes using different precipitation methods in a comparative manner. For the extraction of lithium, cobalt, and other valuable metals, pelletized battery wastes with an initial Li content of 2.24 wt. % and cobalt of 22 wt. % is used. Hydrochloric acid with 4 mol/L is applied with 1:50 solid to liquid (s/l) ratio to generate pregnant leach solution for subsequent precipitation steps. In order to obtain pure precipitates, two different pathways (pathway 1 and pathway 2) are investigated, which differ from each other with regard to the precipitation steps carried out. While lithium carbonate recovery is the final process step in pathway 1, pathway 2 requires a preliminary removal of lithium from the process. The aim is to evaluate both processes in terms of purity and yield of the products obtained. ICP-OES is used to determine the chemical content of leach liquor as well as of the solid residue.

Keywords: hydrochloric acid, hydrometallurgy, Li-ion-batteries, metal recovery

Procedia PDF Downloads 163
5740 Supply Chain Decarbonisation – A Cost-Based Decision Support Model in Slow Steaming Maritime Operations

Authors: Eugene Y. C. Wong, Henry Y. K. Lau, Mardjuki Raman

Abstract:

CO2 emissions from maritime transport operations represent a substantial part of the total greenhouse gas emission. Vessels are designed with better energy efficiency. Minimizing CO2 emission in maritime operations plays an important role in supply chain decarbonisation. This paper reviews the initiatives on slow steaming operations towards the reduction of carbon emission. It investigates the relationship and impact among slow steaming cost reduction, carbon emission reduction, and shipment delay. A scenario-based cost-driven decision support model is developed to facilitate the selection of the optimal slow steaming options, considering the cost on bunker fuel consumption, available speed, carbon emission, and shipment delay. The incorporation of the social cost of cargo is reviewed and suggested. Additional measures on the effect of vessels sizes, routing, and type of fuels towards decarbonisation are discussed.

Keywords: slow steaming, carbon emission, maritime logistics, sustainability, green supply chain

Procedia PDF Downloads 450
5739 Feasibility of Iron Scrap Recycling with Considering Demand-Supply Balance

Authors: Reina Kawase, Yuzuru Matsuoka

Abstract:

To mitigate climate change, to reduce CO2 emission from steel sector, energy intensive sector, is essential. One of the effective countermeasure is recycling of iron scrap and shifting to electric arc furnace. This research analyzes the feasibility of iron scrap recycling with considering demand-supply balance and quantifies the effective by CO2 emission reduction. Generally, the quality of steel made from iron scrap is lower than the quality of steel made from basic oxygen furnace. So, the constraint of demand side is goods-wise steel demand and that of supply side is generation of iron scap. Material Stock and Flow Model (MSFM_demand) was developed to estimate goods-wise steel demand and generation of iron scrap and was applied to 35 regions which aggregated countries in the world for 2005-2050. The crude steel production was estimated under two case; BaU case (No countermeasures) and CM case (With countermeasures). For all the estimation periods, crude steel production is greater than generation of iron scrap. This makes it impossible to substitute electric arc furnaces for all the basic oxygen furnaces. Even though 100% recycling rate of iron scrap, under BaU case, CO2 emission in 2050 increases by 12% compared to that in 2005. With same condition, 32% of CO2 emission reduction is achieved in CM case. With a constraint from demand side, the reduction potential is 6% (CM case).

Keywords: iron scrap recycling, CO2 emission reduction, steel demand, MSFM demand

Procedia PDF Downloads 546
5738 Anaerobic Co-Digestion of Sewage Sludge and Bagasse for Biogas Recovery

Authors: Raouf Ahmed Mohamed Hassan

Abstract:

In Egypt, the excess sewage sludge from wastewater Treatment Plants (WWTPs) is rapidly increasing due to the continuous increase of population, urban planning and industrial developments. Also, cane bagasses constitute an important component of Urban Solid Waste (USW), especially at the south of Egypt, which are difficult to degrade under normal composting conditions. These wastes need to be environmentally managed to reduce the negative impacts of its application or disposal. In term of biogas recovery, the anaerobic digestion of sewage sludge or bagasse separately is inefficient, due to the presence of nutrients and minerals. Also, the Carbone-Nitrogen Ratio (C/N) play an important role, sewage sludge has a ratio varies from 6-16, where cane bagasse has a ratio around 150, whereas the suggested optimum C/N ratio for anaerobic digestion is in the range of 20 to 30. The anaerobic co-digestion is presented as a successful methodology that combines several biodegradable organic substrates able to decrease the amount of output wastes by biodegradation, sharing processing facilities, reducing operating costs, while enabling recovery of biogas. This paper presents the study of co-digestion of sewage sludge from wastewater treatment plants as a type of organic wastes and bagasse as agriculture wastes. Laboratory-scale mesophilic and thermophilic digesters were operated with varied hydraulic retention times. Different percentage of sludge and bagasse are investigated based on the total solids (TS). Before digestion, the bagasse was subjected to grinding pretreatment and soaked in distilled water (water pretreatment). The effect of operating parameters (mixing, temperature) is investigated in order to optimize the process in the biogas production. The yield and the composition of biogas from the different experiments were evaluated and the cumulative curves were estimated. The conducted tests did show that there is a good potential to using the co-digestion of wastewater sludge and bagasse for biogas production.

Keywords: co-digestion, sewage sludge, bagasse, mixing, mesophilic, thermophilic

Procedia PDF Downloads 505
5737 Experimental and FEA Study for Reduction of Damage in Sheet Metal Forming

Authors: Amitkumar R. Shelar, B. P. Ronge, Sridevi Seshabhattar, R. M. Wabale

Abstract:

This paper gives knowledge about the behavior of cold rolled steel IS 513_2008 CR2_D having grade D for the reduction of ductile damage. CR specifies Cold Rolled and D for Drawing grade. Problems encountered during sheet metal forming operations are dent, wrinkles, thinning, spring back, insufficient stretching etc. In this paper, wrinkle defect was studied experimentally and by using FE software on one of the auto components due to which its functionality was decreased. Experimental result and simulation result were found to be in agreement.

Keywords: deep drawing, FE software-LS DYNA, friction, wrinkling

Procedia PDF Downloads 484
5736 Micro Plasma an Emerging Technology to Eradicate Pesticides from Food Surface

Authors: Muhammad Saiful Islam Khan, Yun Ji Kim

Abstract:

Organophosphorus pesticides (OPPs) have been widely used to replace more persistent organochlorine pesticides because OPPs are more soluble in water and decompose rapidly in aquatic systems. Extensive uses of OPPs in modern agriculture are the major cause of the contamination of surface water. Regardless of the advantages gained by the application of pesticides in modern agriculture, they are a threat to the public health environment. With the aim of reducing possible health threats, several physical and chemical treatment processes have been studied to eliminate biological and chemical poisons from food stuff. In the present study, a micro-plasma device was used to reduce pesticides from the surface of food stuff. Pesticide free food items chosen in this study were perilla leaf, tomato, broccoli and blueberry. To evaluate the removal efficiency of pesticides, different washing methods were followed such as soaking with water, washing with bubbling water, washing with plasma-treated water and washing with chlorine water. 2 mL of 2000 ppm pesticide samples, namely, diazinone and chlorpyrifos were individuality inoculated on food surface and was air dried for 2 hours before treated with plasma. Plasma treated water was used in two different manners one is plasma treated water with bubbling the other one is aerosolized plasma treated water. The removal efficiency of pesticides from food surface was studied using HPLC. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows minimum 72% to maximum 87 % reduction for 4 min treatment irrespective to the types of food items and the types of pesticides sample, in case of soaking and bubbling the reduction is 8% to 48%. Washing with plasma treated water, aerosolized plasma treated water and chlorine water shows somewhat similar reduction ability which is significantly higher comparing to the soaking and bubbling washing system. The temperature effect of the washing systems was also evaluated; three different temperatures were set for the experiment, such as 22°C, 10°C and 4°C. Decreasing temperature from 22°C to 10°C shows a higher reduction in the case of washing with plasma and aerosolized plasma treated water, whereas an opposite trend was observed for the washing with chlorine water. Further temperature reduction from 10°C to 4°C does not show any significant reduction of pesticides, except for the washing with chlorine water. Chlorine water treatment shows lesser pesticide reduction with the decrease in temperature. The color changes of the treated sample were measured immediately and after one week to evaluate if there is any effect of washing with plasma treated water and with chlorine water. No significant color changes were observed for either of the washing systems, except for broccoli washing with chlorine water.

Keywords: chlorpyrifos, diazinone, pesticides, micro plasma

Procedia PDF Downloads 181
5735 Effective Work Roll Cooling toward Stand Reduction in Hot Strip Process

Authors: Temsiri Sapsaman, Anocha Bhocarattanahkul

Abstract:

The maintenance of work rolls in hot strip processing has been lengthy and difficult tasks for hot strip manufacturer because heavy work rolls have to be taken out of the production line, which could take hours. One way to increase the time between maintenance is to improve the effectiveness of the work roll cooling system such that the wear and tear more slowly occurs, while the operation cost is kept low. Therefore, this study aims to improve the work roll cooling system by providing the manufacturer the relationship between the work-roll temperature reduced by cooling and the water flow that can help manufacturer determining the more effective water flow of the cooling system. The relationship is found using simulation with a systematic process adjustment so that the satisfying quality of product is achieved. Results suggest that the manufacturer could reduce the water flow by 9% with roughly the same performance. With the same process adjustment, the feasibility of finishing-mill-stand reduction is also investigated. Results suggest its possibility.

Keywords: work-roll cooling system, hot strip process adjustment, feasibility study, stand reduction

Procedia PDF Downloads 364
5734 Spray Characteristics of a Urea Injector Chamber to Improve NOx Conversion Efficiency for Diesel Engines Fueled with Biodiesels

Authors: Kazem Bashirnezhad, Seyed Ahmad Kebriyaee, saeed hoseyngholizadeh moghadam

Abstract:

The urea–SCR catalyst system has the advantages of high NOx conversion efficiency and a wide range of operating conditions. The key factors for successful implementation of urea–SCR technology is good mixing of urea (ammonia) and gas to reduce ammonia slip. Urea mixer components are required to facilitate evaporation and mixing, because it is difficult to evaporate urea in the liquid state; the injection parameters are the most critical factors affecting mixer performance. In this study, The effect of urea injection on NOx emissions in a six-cylinder, four-stroke internal combustion engine fueled with B80 biodiesel has been experimentally investigated. The results reveal that urea injection leads to a reduction of NOx emissions of B80 biodiesel fuel. Moreover, the influence of injection parameters on NOx reductions has been studied. The findings show that by increasing the injection temperature, more reduction in NOx emissions has been occurred. Also, urea mass flow rate increment leads to more NOx reduction. The same result has been obtained by an increase in spray angle.

Keywords: urea, NOx emissions, diesel engines, biodiesels

Procedia PDF Downloads 486
5733 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 271
5732 Changing Left Ventricular Hypertrophy After Kidney Transplantation

Authors: Zohreh Rostami, Arezoo Khosravi, Mohammad Nikpoor Aghdam, Mahmood Salesi

Abstract:

Background: Cardiovascular mortality in chronic kidney disease (CKD) and end stage renal disease (ESRD) patients have a strong relationship with baseline or progressive left ventricular hypertrophy (LVH) meanwhile in hemodialysis patients 10% decrement in left ventricular mass was associated with 28% reduction in cardiovascular mortality risk. In consonance with these arguments, we designed a study to measure morphological and functional echocardiographic variations early after transplantation. Method: The patients with normal renal function underwent two advanced echocardiographic studies to examine the structural and functional changes in left ventricular mass before and 3-month after transplantation. Results: From a total of 23 participants 21(91.3%) presented with left ventricular hypertrophy, 60.9% in eccentric and 30.4% in concentric group. Diastolic dysfunction improved in concentric group after transplantation. Both in pre and post transplantation global longitudinal strain (GLS)- average in eccentric group was more than concentric (-17.45 ± 2.75 vs -14.3 ± 3.38 p=0.03) and (-18.08 ± 2.6 vs -16.1 ± 2.7 p= 0.04) respectively. Conclusion: Improvement and recovery of left ventricular function in concentric group was better and sooner than eccentric after kidney transplantation. Although fractional shortening and diastolic function and GLS-4C in pre-transplantation in concentric group was worse than eccentric, but therapeutic response to kidney transplantation in concentric was more and earlier than eccentric group.

Keywords: chronic kidney disease, end stage renal disease, left ventricular hypertrophy, global longitudinal strain

Procedia PDF Downloads 52
5731 Influence of Carbon Addition on the Activity of Silica Supported Copper and Cobalt Catalysts in NO Reduction with CO

Authors: N. Stoeva, I. Spassova, R. Nickolov, M. Khristova

Abstract:

Exhaust gases from stationary and mobile combustion sources contain nitrogen oxides that cause a variety of environmentally harmful effects. The most common approach of their elimination is the catalytic reaction in the exhaust using various reduction agents such as NH3, CO and hydrocarbons. Transition metals (Co, Ni, Cu, etc.) are the most widely used as active components for deposition on various supports. However, since the interaction between different catalyst components have been extensively studied in different types of reaction systems, the possible cooperation between active components and the support material and the underlying mechanisms have not been thoroughly investigated. The support structure may affect how these materials maintain an active phase. The objective is to investigate the addition of carbonaceous materials with different nature and texture characteristics on the properties of the resulting silica-carbon support and how it influences of the catalytic properties of the supported copper and cobalt catalysts for reduction of NO with CO. The versatility of the physico-chemical properties of the composites and the supported copper and cobalt catalysts are discussed with an emphasis on the relationship of the properties with the catalytic performance. The catalysts were prepared by sol-gel process and were characterized by XRD, XPS, AAS and BET analysis. The catalytic experiments were carried out in catalytic flow apparatus with isothermal flow reactor in the temperature range 20–300оС. After the catalytic test temperature-programmed desorption (TPD) was carried out. The transient response method was used to study the interaction of the gas phase with the catalyst surface. The role of the interaction between the support and the active phase on the catalyst’s activity in the studied reaction was discussed. We suppose the carbon particles with small sizes to participate in the formation of the active sites for the reduction of NO with CO along with their effect on the kind of deposited metal oxide phase. The existence of micropore texture for some of composites also influences by mass-transfer limitations.

Keywords: catalysts, no reduction, composites, bet analysis

Procedia PDF Downloads 415
5730 Recovery of Iodide Ion from TFT-LCD Wastewater by Forward Osmosis

Authors: Yu-Ting Chen, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is a crucial technology with low operating pressure and cost for water reuse and reclamation. In Taiwan, with the advance of science and technology, thin film transistor liquid crystal displays (TFT-LCD) based industries are growing exponentially. In the optoelectronic industry wastewater, the iodide is one of the valuable element; it is also used in the medical industry. In this study, it was intended to concentrate iodide by utilizing FO system and can be reused for TFT-LCD production. Cellulose triacetate (CTA) membranes were used for all these FO experiments, and potassium iodide solution was used as the feed solution. It has been found that EDTA-2Na as draw solution at pH 8 produced high water flux and minimized salt leakage. The result also demonstrated that EDTA-2Na of concentration 0.6M could achieve the highest water flux (6.69L/m2 h). Additionally, from the recovered iodide ion from pH 3-8, the I- species was found to be more than 99%, whereas I2 was measured to be less than 1%. When potassium iodide solution was used from low to high concentration (1000 ppm to 10000 ppm), the iodide rejection was found to be than more 90%. Since, CTA membrane is negatively charged and I- is anionic in nature, so it will from electrostatic repulsion and hence there will be higher rejection. The overall performance demonstrates that recovery of concentrated iodide using FO system is a promising technology.

Keywords: draw solution, EDTA-2Na, forward osmosis, potassium iodide

Procedia PDF Downloads 361
5729 Xen45 Gel Implant in Open Angle Glaucoma: Efficacy, Safety and Predictors of Outcome

Authors: Fossarello Maurizio, Mattana Giorgio, Tatti Filippo.

Abstract:

The most widely performed surgical procedure in Open-Angle Glaucoma (OAG) is trabeculectomy. Although this filtering procedure is extremely effective, surgical failure and postoperative complications are reported. Due to the its invasive nature and possible complications, trabeculectomy is usually reserved, in practice, for patients who are refractory to medical and laser therapy. Recently, a number of micro-invasive surgical techniques (MIGS: Micro-Invasive Glaucoma Surgery), have been introduced in clinical practice. They meet the criteria of micro-incisional approach, minimal tissue damage, short surgical time, reliable IOP reduction, extremely high safety profile and rapid post-operative recovery. Xen45 Gel Implant (Allergan, Dublin, Ireland) is one of the MIGS alternatives, and consists in a porcine gelatin tube designed to create an aqueous flow from the anterior chamber to the subconjunctival space, bypassing the resistance of the trabecular meshwork. In this study we report the results of this technique as a favorable option in the treatment of OAG for its benefits in term of efficacy and safety, either alone or in combination with cataract surgery. This is a retrospective, single-center study conducted in consecutive OAG patients, who underwent Xen45 Gel Stent implantation alone or in combination with phacoemulsification, from October 2018 to June 2019. The primary endpoint of the study was to evaluate the reduction of both IOP and number of antiglaucoma medications at 12 months. The secondary endpoint was to correlate filtering bleb morphology evaluated by means of anterior segment OCT with efficacy in IOP lowering and eventual further procedures requirement. Data were recorded on Microsoft Excel and study analysis was performed using Microsoft Excel and SPSS (IBM). Mean values with standard deviations were calculated for IOPs and number of antiglaucoma medications at all points. Kolmogorov-Smirnov test showed that IOP followed a normal distribution at all time, therefore the paired Student’s T test was used to compare baseline and postoperative mean IOP. Correlation between postoperative Day 1 IOP and Month 12 IOP was evaluated using Pearson coefficient. Thirty-six eyes of 36 patients were evaluated. As compared to baseline, mean IOP and the mean number of antiglaucoma medications significantly decreased from 27,33 ± 7,67 mmHg to 16,3 ± 2,89 mmHg (38,8% reduction) and from 2,64 ± 1,39 to 0,42 ± 0,8 (84% reduction), respectively, at 12 months after surgery (both p < 0,001). According to bleb morphology, eyes were divided in uniform group (n=8, 22,2%), subconjunctival separation group (n=5, 13,9%), microcystic multiform group (n=9, 25%) and multiple internal layer group (n=14, 38,9%). Comparing to baseline, there was no significative difference in IOP between the 4 groups at month 12 follow-up visit. Adverse events included bleb function decrease (n=14, 38,9%), hypotony (n=8, 22,2%) and choroidal detachment (n=2, 5,6%). All eyes presenting bleb flattening underwent needling and MMC injection. The higher percentage of patients that required secondary needling was in the uniform group (75%), with a significant difference between the groups (p=0,03). Xen45 gel stent, either alone or in combination with phacoemulsification, provided a significant lowering in both IOP and medical antiglaucoma treatment and an elevated safety profile.

Keywords: anterior segment OCT, bleb morphology, micro-invasive glaucoma surgery, open angle glaucoma, Xen45 gel implant

Procedia PDF Downloads 137
5728 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 119
5727 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 281
5726 Internal Power Recovery in Cryogenic Cooling Plants Part I: Expander Development

Authors: Ambra Giovannelli, Erika Maria Archilei

Abstract:

The amount of the electrical power required by refrigeration systems is relevant worldwide. It is evaluated in the order of 15% of the total electricity production taking refrigeration and air-conditioning into consideration. For this reason, in the last years several energy saving techniques have been proposed to reduce the power demand of such plants. The paper deals with the development of an innovative internal recovery system for cryogenic cooling plants. Such a system consists in a Compressor-Expander Group (CEG) designed on the basis of the automotive turbocharging technology. In particular, the paper is focused on the design of the expander, the critical component of the CEG system. Due to the low volumetric flow entering the expander and the high expansion ratio, a commercial turbocharger expander wheel was strongly modified. It was equipped with a transonic nozzle, designed to have a radially inflow full admission. To verify the performance of such a machine and suggest improvements, two different set of nozzles have been designed and modelled by means of the commercial Ansys-CFX software. steady-state 3D CFD simulations of the second-generation prototype are presented and compared with the initial ones.

Keywords: vapour cCompression systems, energy saving, refrigeration plant, organic fluids, radial turbine

Procedia PDF Downloads 203
5725 Physicochemical and Sensorial Evaluation of Astringency Reduction in Cashew Apple (Annacardium occidentale L.) Powder Processing in Cookie Elaboration

Authors: Elida Gastelum-Martinez, Neith A. Pacheco-Lopez, Juan L. Morales-Landa

Abstract:

Cashew agroindustry obtained from cashew apple crop (Anacardium occidentale L.) generates large amounts of unused waste in Campeche, Mexico. Despite having a high content of nutritional compounds such as ascorbic acid, carotenoids, fiber, carbohydrates, and minerals, it is not consumed due to its astringent sensation. The aim of this work was to develop a processing method for cashew apple waste in order to obtain a powder with reduced astringency able to be used as an additive in the food industry. The processing method consisted first in reducing astringency by inducing tannins from cashew apple peel to react and form precipitating complexes with a colloid rich in proline and histidine. Then cashew apples were processed to obtain a dry powder. Astringency reduction was determined by total phenolic content and evaluated by sensorial analysis in cashew-apple-powder based cookies. Total phenolic content in processed powders showed up to 72% lower concentration compared to control samples. The sensorial evaluation indicated that cookies baked using cashew apple powder with reduced astringency were 96.8% preferred. Sensorial characteristics like texture, color and taste were also well-accepted attributes. In conclusion, the method applied for astringency reduction is a viable tool to produce cashew apple powder with desirable sensorial properties to be used in the development of food products.

Keywords: astringency reduction, cashew apple waste, food industry, sensorial evaluation

Procedia PDF Downloads 348
5724 Tornado Disaster Impacts and Management: Learning from the 2016 Tornado Catastrophe in Jiangsu Province, China

Authors: Huicong Jia, Donghua Pan

Abstract:

As a key component of disaster reduction management, disaster emergency relief and reconstruction is an important process. Based on disaster system theory, this study analyzed the Jiangsu tornado from the formation mechanism of disasters, through to the economic losses, loss of life, and social infrastructure losses along the tornado disaster chain. The study then assessed the emergency relief and reconstruction efforts, based on an analytic hierarchy process method. The results were as follows: (1) An unstable weather system was the root cause of the tornado. The potentially hazardous local environment, acting in concert with the terrain and the river network, was able to gather energy from the unstable atmosphere. The wind belt passed through a densely populated district, with vulnerable infrastructure and other hazard-prone elements, which led to an accumulative disaster situation and the triggering of a catastrophe. (2) The tornado was accompanied by a hailstorm, which is an important triggering factor for a tornado catastrophe chain reaction. (3) The evaluation index (EI) of the emergency relief and reconstruction effect for the ‘‘6.23’’ tornado disaster in Yancheng was 91.5. Compared to other relief work in areas affected by disasters of the same magnitude, there was a more successful response than has previously been experienced. The results provide new insights for studies of disaster systems and the recovery measures in response to tornado catastrophe in China.

Keywords: China, disaster system, emergency relief, tornado catastrophe

Procedia PDF Downloads 264
5723 Applying Big Data Analysis to Efficiently Exploit the Vast Unconventional Tight Oil Reserves

Authors: Shengnan Chen, Shuhua Wang

Abstract:

Successful production of hydrocarbon from unconventional tight oil reserves has changed the energy landscape in North America. The oil contained within these reservoirs typically will not flow to the wellbore at economic rates without assistance from advanced horizontal well and multi-stage hydraulic fracturing. Efficient and economic development of these reserves is a priority of society, government, and industry, especially under the current low oil prices. Meanwhile, society needs technological and process innovations to enhance oil recovery while concurrently reducing environmental impacts. Recently, big data analysis and artificial intelligence become very popular, developing data-driven insights for better designs and decisions in various engineering disciplines. However, the application of data mining in petroleum engineering is still in its infancy. The objective of this research aims to apply intelligent data analysis and data-driven models to exploit unconventional oil reserves both efficiently and economically. More specifically, a comprehensive database including the reservoir geological data, reservoir geophysical data, well completion data and production data for thousands of wells is firstly established to discover the valuable insights and knowledge related to tight oil reserves development. Several data analysis methods are introduced to analysis such a huge dataset. For example, K-means clustering is used to partition all observations into clusters; principle component analysis is applied to emphasize the variation and bring out strong patterns in the dataset, making the big data easy to explore and visualize; exploratory factor analysis (EFA) is used to identify the complex interrelationships between well completion data and well production data. Different data mining techniques, such as artificial neural network, fuzzy logic, and machine learning technique are then summarized, and appropriate ones are selected to analyze the database based on the prediction accuracy, model robustness, and reproducibility. Advanced knowledge and patterned are finally recognized and integrated into a modified self-adaptive differential evolution optimization workflow to enhance the oil recovery and maximize the net present value (NPV) of the unconventional oil resources. This research will advance the knowledge in the development of unconventional oil reserves and bridge the gap between the big data and performance optimizations in these formations. The newly developed data-driven optimization workflow is a powerful approach to guide field operation, which leads to better designs, higher oil recovery and economic return of future wells in the unconventional oil reserves.

Keywords: big data, artificial intelligence, enhance oil recovery, unconventional oil reserves

Procedia PDF Downloads 280
5722 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

Keywords: CO₂ emissions, CO₂ reduction, ready-mixed concrete, environmental impact assessment

Procedia PDF Downloads 472
5721 Implementation of Enhanced Recovery after Surgery (ERAS) Protocols in Laparoscopic Sleeve Gastrectomy (LSG); A Systematic Review and Meta-analysis

Authors: Misbah Nizamani, Saira Malik

Abstract:

Introduction: Bariatric surgery is the most effective treatment for patients suffering from morbid obesity. Laparoscopic sleeve gastrectomy (LSG) accounts for over 50% of total bariatric procedures. The aim of our meta-analysis is to investigate the effectiveness and safety of Enhanced Recovery After Surgery (ERAS) protocols for patients undergoing laparoscopic sleeve gastrectomy. Method: To gather data, we searched PubMed, Google Scholar, ScienceDirect, and Cochrane Central. Eligible studies were randomized controlled trials and cohort studies involving adult patients (≥18 years) undergoing bariatric surgeries, i.e., Laparoscopic sleeve gastrectomy. Outcome measures included LOS, postoperative narcotic usage, postoperative pain score, postoperative nausea and vomiting, postoperative complications and mortality, emergency department visits and readmission rates. RevMan version 5.4 was used to analyze outcomes. Results: Three RCTs and three cohorts with 1522 patients were included in this study. ERAS group and control group were compared for eight outcomes. LOS was reduced significantly in the intervention group (p=0.00001), readmission rates had borderline differences (p=0.35) and higher postoperative complications in the control group, but the result was non-significant (p=0.68), whereas postoperative pain score was significantly reduced (p=0.005). Total MME requirements became significant after performing sensitivity analysis (p= 0.0004). Postoperative mortality could not be analyzed on account of invalid data showing 0% mortality in two cohort studies. Conclusion: This systemic review indicated the effectiveness of the application of ERAS protocols in LSG in reducing the length of stay, post-operative pain and total MME requirements postoperatively, indicating the feasibility and assurance of its application.

Keywords: eras protocol, sleeve gastrectomy, bariatric surgery, enhanced recovery after surgery

Procedia PDF Downloads 34
5720 Mechanism of pH Sensitive Flocculation for Organic Load and Colour Reduction in Landfill Leachate

Authors: Brayan Daniel Riascos Arteaga, Carlos Costa Perez

Abstract:

Landfill leachate has an important fraction of humic substances, mainly humic acids (HAs), which often represent more than half value of COD, specially in liquids proceeded from composting processes of organic fraction of solid wastes. We propose in this article a new method of pH sensitive flocculation for COD and colour reduction in landfill leachate based on the chemical properties of HAs. Landfill leachate with a high content of humic acids can be efficiently treated by pH sensitive flocculation at pH 2.0, reducing COD value in 86.1% and colour in 84.7%. Mechanism of pH sensitive flocculation is based in protonation first of phenolic groups and later of carboxylic acid groups in the HAs molecules, resulting in a reduction of Zeta potential value. For pH over neutrality, carboxylic acid and phenolic groups are ionized and Zeta potential increases in absolute value, maintaining HAs in suspension as colloids and conducting flocculation to be obstructed. Ionized anionic groups (carboxylates) can interact electrostatically with cations abundant in leachate (site binding) aiding to maintain HAs in suspension. Simulation of this situation and ideal visualization of Zeta potential behavior is described in the paper and aggregation of molecules by H-bonds is proposed as the main step in separation of HAs from leachate and reduction of COD value in this complex liquid. CHNS analysis, FT-IR spectrometry and UV–VIS spectrophotometry show chemical elements content in the range of natural and commercial HAs, clear aromaticity and carboxylic acids and phenolic groups presence in the precipitate from landfill leachate

Keywords: landfill leachate, humic acids, COD, chemical treatment, flocculation

Procedia PDF Downloads 66
5719 Preparing and Scaling up Resiliency among Female Entrepreneurs in Mountain Environments

Authors: Shadreck Muchaku, Grey Magaiza, Jerit Dube

Abstract:

The high insolvency rate of female-led emerging enterprises in the Southern African mountain region reflects the various vulnerabilities that exist. Although this is the case, there is a limited understanding of how these vulnerabilities influence entrepreneurship failure. This paper focuses on female entrepreneurs because of their role in economic development. Emerging female entrepreneurs in this region often operate in uncertain environments, which makes it difficult for them to thrive. The form and nature of entrepreneurial opportunities rural women of the Afro Montane region engage in are largely unsustainable as a lot of women struggle with confidence, and they need help with understanding their skills. However, there is still a gap in the existing literature on women entrepreneurship resilience and vulnerability reduction in the Afromontane. Furthermore, a major problem is the lack of empirical studies on this matter and limited studies indicating a general profile of emerging female entrepreneurs in this region. This systematic literature review attempts to fill in the gap of knowledge on entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in the Afromontane regions and other similar precarious environments. In this review, we focus much on highlighting the nexus between entrepreneurship resilience and vulnerability reduction of emerging female entrepreneurs in academic literature through a chronological dispersal of publications in developing countries. This review adopts an ATLAS ti.22 software-based thematic analysis to analyze results obtained from reviewed academic journal articles. As research on entrepreneurship resilience and vulnerability reduction is still developing in the Sothern African mountain region, the results of this review will contribute to the body of literature and provide recommendations and a foundation for future research. This systematic review paper provides valuable insights and methodological approaches to scholarship in a nascent area of emerging female entrepreneurs in the Afromontane.

Keywords: entrepreneurship resiliency, vulnerability reduction, female entrepreneurs, mountain regions

Procedia PDF Downloads 135
5718 The Impact of Black Rice Ash Nanoparticles on Foam Stability through Foam Scanning in Enhanced Oil Recovery

Authors: Ishaq Ahmad, Zhaomin Li, Liu Chengwen, Song Yan Li, Zihan Gu, Li Shaopeng

Abstract:

In order to manage gas mobility in the reservoir, only a small amount of surfactant or polymer is needed because nanoparticles have the potential to improve foam stability. The aim is to enhance foam formation and stability, so it was decided to investigate the foam stability and foam ability of black rice husk ash. Several characterization techniques were used to investigate the properties of black rice husk ash. The best-performing anionic foaming surfactants were combined with black rice husk ash at different concentrations (ppm). Sodium dodecyl benzene sulphonate was used as the anionic surfactant. This study demonstrates the value of black rice husk ash (BRHA), which has a high silica concentration, for foam stability and ability. For the test, black rice husk ash and raw ash were used with SDS (Sodium Dodecyl Sulfate) and SDBS (Sodium dodecyl benzenesulfonate) surfactants under different parameters. Different concentration percentages were utilized to create the foam, and the hydrophobic test and shaking method were applied. The foam scanner was used to observe the behavior of the black rice husk ash foam. The high silica content of black rice husk ash has the potential to improve foam stability, which is favorable and could possibly improve oil recovery.

Keywords: black rice husk ash nanoparticle, surfactant, foam life, foam scanning

Procedia PDF Downloads 144
5717 Reduction of the Microbial Load of Biocontaminated Bovine Milk Using Grounding with Copper Wire

Authors: Claudivan Costa de Lima, Angelo da Silva Monteiro

Abstract:

With the aim of evaluating the effects of grounding with copper wire on the reduction of the microbial load of biocontaminated milk samples and on their acidification over time, two complementary experiments were carried out. In the first, the treatments consisted of: i) raw milk sample (control), ii) slow pasteurization, iii) grounding with copper wire and, iv) contact with copper ring. Analyzes of total, thermoresistant and mesophilic coliforms were performed 30 minutes after the application of these treatments. In the second experiment, under the same conditions as the first, measurements of pH and Dornic acidity were performed at 0, 0.5, 2, 4, 8, 12, and 24 h from the installation of the experiment. Pasteurization eliminated almost all groups of bacteria present in the milk samples while grounding only allowed reductions in the population of thermotolerant coliforms and mesophiles, both greater than 95%, maintaining, however, unchanged the amounts of total coliforms. The copper ring, in turn, had no effect on the microbiological parameters studied. The reduction in the population of mesophiles in grounded milk samples, contrary to what happened with pasteurized milk, was not enough to inhibit the acidification process over the experimental period.

Keywords: pasteurization, low frequency electric current, thermotolerant coliforms, mesophiles in bovine milk

Procedia PDF Downloads 98
5716 Unlocking the Language of Dreams: Interpreting Trauma and Healing in Psychotherapy

Authors: Mehravar Javid

Abstract:

This article delves straight into the fascinating role of dream interpretation in psychotherapy, particularly in the context of trauma and healing. By applying a detailed case study of a 19-year-old Iranian woman who has been undergoing therapy, it can explore to what extent her vivid and symbolic dreams – featuring mermaids, hanging fetuses, and themes of control and domination – serve as a reflection of her innermost fears, unresolved traumas, and struggles with identity and sexuality. Another fact to be highlighted is that the dreams, rich in metaphor and symbolism, offer a unique outlook into the patient's subconscious mind, revealing layers of her psychological state that might otherwise remain obscured and vague. On the other hand, the article examines how the therapist navigates these dreamscapes by utilizing them as a tool to understand and address the patient's deep-seated emotional conflicts, traumatic experiences, and identity issues. By analyzing these dreams, we can demonstrate how such dreams can be a crucial part of the healing process, providing insights that facilitate emotional recovery and self-discovery. This discovery underscores the significance of dreams in psychotherapy, highlighting their potential as a powerful medium for unraveling the complexities of the human psyche and aiding in the journey toward mental health and recovery.

Keywords: dream, interpreting, trauma, healing

Procedia PDF Downloads 68