Search results for: nepodin enrich plant extract
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5179

Search results for: nepodin enrich plant extract

4549 Effect of Ginger (Zingiber Officinal) Root Extract on Blood Glucose Level and Lipid Profile in Normal and Alloxan-Diabetic Rabbits

Authors: Khalil Abdullah Ahmed Khalil, Elsadig Mohamed Ahmed

Abstract:

Ginger is one of the most important medicinal plants, which is widely used in folk medicine. This study was designed to go further step and evaluate the hypoglycemic and hypolipidaemic effects of the aqueous ginger root extract in normal and alloxan diabetic rabbits. Results revealed that the aqueous ginger has a significant hypoglycemic effect (P<0.05) in diabetic rabbits but a non-significant hypoglycemic effect (P>0.05) in normal rabbits. There were also significant decreases in the concentrations (P<0.05) in serum cholesterol, triglycerides and LDL – cholesterol in both normal and diabetic rabbits. Although there was an elevation in serum HDL- cholesterol in both normal and diabetic rabbits, these elevations were non-significant (P>0.05). Our data suggest the aqueous ginger has a hypoglycemic effect in diabetic rabbits and lipid-lowering properties in both normal and diabetic rabbits.

Keywords: aqueous extract of ginger root (AEGR), hypoglycemic, cholesterol, triglyceride

Procedia PDF Downloads 266
4548 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula

Authors: Pragnyashree Mishra, Shradhanjali Mohapatra

Abstract:

The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .

Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid

Procedia PDF Downloads 445
4547 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content

Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen

Abstract:

Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.

Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture

Procedia PDF Downloads 88
4546 Investigation of Corrosion Inhibition Potential of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

Corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor was investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, langmuir isotherm, mild steel

Procedia PDF Downloads 332
4545 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique

Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido

Abstract:

The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.

Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant

Procedia PDF Downloads 106
4544 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks

Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle

Abstract:

Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.

Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3

Procedia PDF Downloads 36
4543 Effect of Gum Extracts on the Textural and Bread-Making Properties of a Composite Flour Based on Sour Cassava Starch (Manihot esculenta), Peanut (Arachis hypogaea) and Cowpea Flour (Vigna unguiculata)

Authors: Marie Madeleine Nanga Ndjang, Julie Mathilde Klang, Edwin M. Mmutlane, Derek Tantoh Ndinteh, Eugenie Kayitesi, Francois Ngoufack Zambou

Abstract:

Gluten intolerance and the unavailability of wheat flour in some parts of the world have led to the development of gluten-free bread. However, gluten-free bread generally results in a low specific volume, and to remedy this, the use of hydrocolloids and bases has proved to be very successful. Thus, the present study aims to determine the optimal proportions of gum extract of Triumffetapentendraand sodium bicarbonate in breadmaking of a composite flour based on sour cassava starch, peanut, and cowpea flour. To achieve this, a BoxBenkhendesign was used, the variable being the amount of extract gums, the amount of bicarbonate, and the amount of water. The responses evaluated were the specific volume and texture properties (Hardness, Cohesiveness, Consistency, Elasticity, and Masticability). The specific volume was done according to standard methods of AACC and the textural properties by a texture analyzer. It appears from this analysis that the specific volume is positively influenced by the incorporation of extract gums, bicarbonate, and water. The hardness, consistency, and plasticity increased with the incorporation rate of extract gums but reduced with the incorporation rate of bicarbonate and water. On the other hand, Cohesion and elasticity increased with the incorporation rate of bicarbonate and water but reduced with the incorporation of extract gum. The optimate proportions of extract gum, bicarbonate, and water are 0.28;1.99, and 112.5, respectively. This results in a specific volume of 1.51; a hardness of 38.51; a cohesiveness of 0.88; a consistency of 32.86; an elasticity of 5.57, and amasticability of 162.35. Thus, this analysis suggests that gum extracts and sodium bicarbonate can be used to improve the quality of gluten-free bread.

Keywords: box benkhen design, bread-making, gums, textures properties, specific volume

Procedia PDF Downloads 75
4542 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria

Authors: Hamisu Jibril

Abstract:

The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.

Keywords: species diversity, urban kano, dryland environment, vegetation sampling

Procedia PDF Downloads 33
4541 Evaluation of Genetic Fidelity and Phytochemical Profiling of Micropropagated Plants of Cephalantheropsis obcordata: An Endangered Medicinal Orchid

Authors: Gargi Prasad, Ashiho A. Mao, Deepu Vijayan, S. Mandal

Abstract:

The main objective of the present study was to optimize and develop an efficient protocol for in vitro propagation of a medicinally important orchid Cephalantheropsis obcordata (Lindl.) Ormerod along with genetic stability analysis of regenerated plants. This plant has been traditionally used in Chinese folk medicine and the decoction of whole plant is known to possess anticancer activity. Nodal segments used as explants were inoculated on Murashige and Skoog (MS) medium supplemented with various concentrations of isopentenyl adenine (2iP). The rooted plants were successfully acclimatized in the greenhouse with 100% survival rate. Inter-simple sequence repeats (ISSR) markers were used to assess the genetic fidelity of in vitro raised plants and the mother plant. It was revealed that monomorphic bands showing the absence of polymorphism in all in vitro raised plantlets analyzed, confirming the genetic uniformity among the regenerants. Phytochemical analysis was done to compare the antioxidant activities and HPLC fingerprinting assay of 80% aqueous ethanol extract of the leaves and stem of in vitro and in vivo grown C. obcordata. The extracts of the plants were examined for their antioxidant activities by using free radical 1, 1-diphenyl-2-picryl hydrazyl (DPPH) scavenging method, 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, reducing power capacity, estimation of total phenolic content, flavonoid content and flavonol content. A simplified method for the detection of ascorbic acid, phenolic acids and flavonoids content was also developed by using reversed phase high-performance liquid chromatography (HPLC). This is the first report on the micropropagation, genetic integrity study and quantitative phytochemical analysis of in vitro regenerated plants of C. obcordata.

Keywords: Cephalantheropsis obcordata, genetic fidelity, ISSR markers, HPLC

Procedia PDF Downloads 137
4540 Reclamation of Fly Ash Dykes Using Naturally Growing Plant Species

Authors: Neelima Meravi, Santosh Prajapati

Abstract:

The present study was conducted over a period of three years on fly ash dyke. The physicochemical analysis of fly ash (pH, WHC, BD, porosity, EC% OC & available P, heavy metal content etc.) was performed before and after the growth of plant species. Fly ash was analyzed after concentrated nitric acid digestion by atomic absorption spectrophotometer AAS-7000b(Shimadzu) for heavy metals. The dyke was colonized by the propagules of native species over a period of time, and it was observed that fly ash was contaminated by heavy metals and plants were able to ameliorate the metal concentration of dyke. The growth of plant species also improved the condition of fly ash so that it can be used for agricultural purposes. Phytosociological studies of the fly ash dyke were performed so that these plants may be used for reclamation of fly ash for subsequent use in agriculture.

Keywords: fly ash, heavy metals, IVI, phytosociology, reclamation

Procedia PDF Downloads 203
4539 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.

Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis

Abstract:

Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.

Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress

Procedia PDF Downloads 228
4538 Anatomical and Histological Characters of Cymbopogon nardus Roots and Its Mutagenic Properties

Authors: Pravaree Phuneerub, Chanida Palanuvej, Nijsiri Ruangrungsi

Abstract:

Cymbopogon nardus Rendel (Family Gramineae) is commonly known as citronella grass. The dried root of C. nardus is used for antipyretic, anti-inflammation, anti-analgesic and anticancer in traditional Thai medicine. Transverse sectional and pulverized C. nardus root were illustrated. The volatile oil was extracted from oil gland by hydrodistillation and analysed by GC/MS. Cymbopogon nardus root was exhaustively extracted by continuously maceration in ethanol and water respectively. The mutagenic and antimutagenic properties of the ethanol extract and fractionated water extract of C. nardus root were evaluated by Ames assay using the S. typhimurium strains TA98 and TA100 as the models. The result indicated that the anatomical character of root transverse section displayed epidermis, parenchyma, oil gland, phloem, xylem vessel, endodermis and pith. Histological characters of root powder showed parenchyma containing oleoresin, parenchyma in longitudinal view, reticulate vessel, annular vessel, starch granules and fragment of fiber. The root volatile oil was rich in sesquiterpenes dominated by elemol (22.87%) and alpha-eudesmol (16.09%). For mutagenic activity, the both extracts of C. nardus were no mutagenic toward S. typhimurium strains TA98 and TA100. Furthermore, the ethanol extract and fractionated water extract of C. nardus root demonstrated strong antimutagenic effect against of nitrite treated 1-aminopyrene to S. typhimurium strains TA98 and TA100. This present investigation suggested that the dried root extract of C. nardus can be further developed as promising antimutagenic agent.

Keywords: Cymbopogon nardus, volatile oil analysis, mutagenic, antimutagenic effect, Ames Salmonella assay

Procedia PDF Downloads 323
4537 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 78
4536 Common Caper (Capparis Spinosa L.) From Oblivion and Neglect to the Interface of Medicinal Plants

Authors: Ahmad Alsheikh Kaddour

Abstract:

Herbal medicine has been a long-standing phenomenon in Arab countries since ancient times because of its breadth and moderate temperament. Therefore, it possesses a vast natural and economic wealth of medicinal and aromatic herbs. This prompted ancient Egyptians and Arabs to discover and exploit them. The economic importance of the plant is not only from medicinal uses; it is a plant of high economic value for its various uses, especially in food, cosmetic and aromatic industries. It is also an ornamental plant and soil stabilization. The main objective of this research is to study the chemical changes that occur in the plant during the growth period, as well as the production of plant buds, which were previously considered unwanted plants. The research was carried out in the period 2021-2022 in the valley of Al-Shaflah (common caper), located in Qumhana village, 7 km north of Hama Governorate, Syria. The results of the research showed a change in the percentage of chemical components in the plant parts. The ratio of protein content and the percentage of fatty substances in fruits and the ratio of oil in the seeds until the period of harvesting of these plant parts improved, but the percentage of essential oils decreased with the progress of the plant growth, while the Glycosides content where improved with the plant aging. The production of buds is small, with dimensions as 0.5×0.5 cm, which is preferred for commercial markets, harvested every 2-3 days in quantities ranging from 0.4 to 0.5 kg in one cut/shrubs with 3 years’ age as average for the years 2021-2022. The monthly production of a shrub is between 4-5 kg per month. The productive period is 4 months approximately. This means that the seasonal production of one plant is 16-20 kg and the production of 16-20 tons per year with a plant density of 1,000 shrubs per hectare, which is the optimum rate of cultivation in the unit of mass, given the price of a kg of these buds is equivalent to 1 US $; however, this means that the annual output value of the locally produced hectare ranges from 16,000 US $ to 20,000 US $ for farmers. The results showed that it is possible to transform the cultivation of this plant from traditional random to typical areas cultivation, with a plant density of 1,000-1,100 plants per hectare according to the type of soil to obtain production of medicinal and nutritious buds, as well as, the need to pay attention to this national wealth and invest in the optimal manner, which leads to the acquisition of hard currency through export to support the national income.

Keywords: common caper, medicinal plants, propagation, medical, economic importance

Procedia PDF Downloads 51
4535 Organic Farming for Sustainable Production of Some Promising Halophytic Species in Saline Environment

Authors: Medhat Tawfik, Ezzat Abd El Lateef, Bahr Amany, Mohamed Magda

Abstract:

Applying organic farming systems in biosaline agriculture is unconventional approach for sustainable use of marginal soil and desert land for planting non-traditional halophytic crops such as Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens. These plants are highly salt tolerant C4 halophytic forage plants grown well in coastal salt marsh. These halophytic plant will take important place in the farming system, especially in the coastal areas and salt-affected land. We can call it environmentally smart crops because they ensure food security, contribute to energy security, guarantee environmental sustainability, and mitigate the negative impacts of climate change. Organic Agriculture is the most important and widely practiced agro-ecological farming system. It is claimed to be the most sustainable approach and long term adaptation strategy. It promotes soil fertility and diversity at all levels and makes soils less susceptible to erosion. It is also reported to be climate change resilience farming systems as it promotes the proper management of soil, water, biodiversity and local knowledge and provides producers with ecologically sound management decisions. A field experiment was carried out at the Model Farm of National Research Centre, El Tour, South Sinai to study the impact of (Mycorrhiza 1kg/fed., charcoal 4 tons/fed., chicken manure 5 tons/fed., in addition to control treatment) on some growth characters, photosynthetic pigments content, and some physiological aspects i.e. prolind and soluble carbohydrates content, succulence and osmotic pressure values, as well as nutritive values i.e. Crude fat (CF), Acid detergent fiber (ADF), Neutral detergent fiber (NDF), Ether extract (EE) and Nitrogen-free extract (NFE) of five halophytic plant species (Leptochloa fusca, Kochia indica, Sporobolus virginicus and Spartina patens). Our results showed that organic fertilizer treatment enhanced all the previous character as compared with control with superiority to chicken manure over the other treatments.

Keywords: organic agriculture, halophytic plants, saline environment, water security

Procedia PDF Downloads 207
4534 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 23
4533 Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans

Authors: Zhazira Shemsheyeva, Zhanara Suleimenova, Olga Shemshura, Gulnaz Mombekova, Zhanar Rakhmetova

Abstract:

Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans.

Keywords: PGPR, pseudomonas putida, kindey beans, antifungal activity

Procedia PDF Downloads 138
4532 Studies on Mechanisms of Corrosion Inhibition of Acalypha chamaedrifolia Leaves Extract towards Mild Steel in Acid Medium

Authors: Stephen Eyije Abechi, Casimir Emmanuel Gimba, Zaharaddeen Nasiru Garba, Sani Shamsudeen, David Ebuka Authur

Abstract:

The mechanisms of corrosion inhibition of mild steel in acid medium using Acalypha chamaedrifolia leaves extract as potential green inhibitor were investigated. Gravimetric (weight loss) technique was used for the corrosion studies. Mild steel coupons of 2cm × 1cm × 0.27 cm dimensions were exposed for varying durations of between 24 to 120 hours, in 1M HCl medium containing a varying concentrations of the leaves extract (0.25g/L, - 1.25g/L). The results show that corrosion rates dropped from a value of 0.49 mgcm-2hr-1 for the uninhibited medium to a value of 0.15 mgcm-2hr-1 for the inhibited medium of 1M HCl in 0.25 g/l of the extract. Values of corrosion inhibition efficiencies of 70.38-85.11% were observed as the concentration of the inhibitor were increased from 0.25g/L, - 1.25g/L. Corrosion Inhibition was found to increase with increase in immersion time and temperature. The magnitude of the Ea indicates that the interaction between the metal surface and the inhibitor was chemisorptions. The Adsorption process fit into the Langmuir isotherm model with a correlation coefficient of 0.97. Evidence from molecular dynamics model shows that Methyl stearate (Line 5) and (3Z, 13Z)-2-methyloctadeca-3,13-dien-1-ol (line 11) were found to have the highest binding energy of -197.69 ± 3.12 and-194.56 ± 10.04 in kcal/mol respectively. The binding energy of these compounds indicates that they would be a very good corrosion inhibitor for mild steel and other Fe related materials.

Keywords: binding energy, corrosion, inhibitor, Langmuir isotherm, mild steel.

Procedia PDF Downloads 335
4531 Camel Thorn Has Hepatoprotective Activity Against Carbon Tetrachloride or Acetaminophen-Induced Hepatotoxicity but Enhances the Cardiac Toxicity of Adriamycin in Rodents

Authors: Awad G. Abdellatif, Huda M. Gargoum, Abdelkader A. Debani, Mudafara Bengleil, Salmin Alshalmani, N. El Zuki, Omran El Fitouri

Abstract:

In this study, the administration of 660 mg/kg of the ethanolic extract of the Alhgigraecorum (camel thorn) to mice, showed a significant decrease in the level of transaminases in animals treated with a combination of CTE plus carbon tetrachloride (CCl4) or acetaminophen as compared to animals receiving CCl4 or acetaminophen alone. The histopathological investigation also confirmed that camel thorn extract protects the liver against damage-induced either by carbon tetrachloride or acetaminophen. On the other hand, the cardiac toxicity produced by adriamycin was significantly increased in the presence of the ethanolic extract of camel thorn. Our study suggested that camel thorn can protect the liver against the injury produced by carbon tetrachloride or acetaminophen, with an unexpected increase in the cardiac toxicity–induced by adriamycin in rodents.

Keywords: ethanolic, alhgigraecorum, tetrachloride, acetaminophen

Procedia PDF Downloads 484
4530 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR

Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi

Abstract:

Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.

Keywords: IDPSA, human error, SBO, risk

Procedia PDF Downloads 112
4529 Determination of Morphological Characteristics of Brassica napus, Sinapis arvensis, Sinapis alba and Camelina sativa

Authors: Betül Gıdık, Fadul Önemli

Abstract:

The Brassicaceae (Cruciferae) is an important family of plants that include many economically important vegetable production, industrial oilseed, spice, fodder crop species and energy production. Canola and mustard species that are in Brassicaceae family have too high contribution to world herbal production. In this study, genotypes of two kinds of (Caravel and Excalibul) canola (Brassica napus), wild mustard (Sinapis arvensis), white mustard (Sinapis alba) and Camelina (Camelina sativa) were grown in the experimental field, and their morphological characteristics were determined. According to the results of the research; plant length was varied between 76.75 cm and 151.50 cm, and the longest plant was belonging to species of Sinapis arvensis. The number of branches varied from 3.75 piece/plant to 17.75 piece/plant and the most numerous branch was counted in species of Sinapis alba. It was determined that the number of grains in one capsule was between 3.75 piece/capsule and 35.75 piece/capsule and the largest amount of grains in the one capsule was in the Excalibul variety of species of Brassica napus. In our research, it has been determined that the plant of Sinapis arvensis is a potential plant for industrial of oil production; such as Brassica napus, Sinapis alba and Camelina (Camelina sativa).

Keywords: Brassica napus, Camelina sativa, canola, Sinapis alba, Sinapis arvensis, wild mustard

Procedia PDF Downloads 176
4528 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene

Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir

Abstract:

Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.

Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL

Procedia PDF Downloads 409
4527 Phytochemical Investigation of Berries of the Embelia schimperi Plant

Authors: Tariku Nefo Duke

Abstract:

Embelia is a genus of climbing shrubs in the family Myrsinaceae. Embelia schimperi is as important in traditional medicine as the other species in the genus. The plant has been much known as a local medicine for the treatment of tapeworms. In this project, extraction, phytochemical screening tests, isolation, and characterization of berries of the Embelia schimperi plant have been conducted. The chemical investigations of methanol and ethyl acetate (1:1) ratio extracts of the berries lead to the isolation of three new compounds. The compounds were identified to be alkaloids coded as AD, AN, and AG. Structural elucidations of the isolated compounds were accomplished using spectroscopic methods (IR, UV, ¹H NMR, ¹³C NMR, DEPT and 2D NMR, HPLC, and LC-MS). The alkaloid coded as (AN) has a wide MIC range of 6.31-25.46 mg/mL against all tested bacteria strains.

Keywords: Embelia schimper, HPLC, alkaloids, 2D NMR, MIC

Procedia PDF Downloads 79
4526 Physiochemical and Antibacterial Assessment of Iranian Propolis Gathering in Qazvin Province

Authors: Nematollah Gheibi, Nader Divan Khosroshahi, Mahdi Mohammadi Ghanbarlou

Abstract:

Introduction: Nowadays, the phenomenon of bacterial resistance is one of the most important challenge of the health community in the world. Propolis is most important production of bee colonies that collected from of various plants. So far, a lot of investigations carried out about its antibacterial effects. Material and methods: Thirty gram of propolis prepared as ethanolic extract and after different process of purification, 7.5 gr of its pure form were obtained. Propolis compounds identification was performed by TLC and VLC methods. The HPLC spectrum obtaining from propolis ethanolic extract was compared with some purified standard phenolic and flavonoid substances. Antibacterial effects of ethanol extract of purified propolis were evaluated on two strains of Staphylococcus aureus and Pseudomonas aeruginosa and their MIC was determined by the microdillution assay. Results: Ethanolic propolis extraction analyzed by TLC were resulted to confirm several phenolic and flavonoid compounds in this extract and some of the confirmed by HPLC technique. Minimum inhibitory concentration (MIC) for standard Staphylococcus aureus (ATCC25923) and Pseudomonas aeruginosa (ATCC27853) strains were obtained 2.5 mg/ml and 50 mg/ml respectively. Conclusion: Bee Propolis is a mix organic compound that has a lot of beneficial effects such as anti-bacterial that emphasized in this investigation. It is proposed as a rich source of natural phenolic and flavonoids compounds in designing of new biological resources for hygienic and medical applications.

Keywords: propolis, Staphylococcus aureus, Pseudomonas aeruginosa, antibacterial

Procedia PDF Downloads 291
4525 Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts

Authors: P. Rahnemoon, M. Sarabi Jamab, M. Javanmard Dakheli, A. Bostan

Abstract:

In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. ‎Antimicrobial activity of pomegranate peel extracts were determined against some food-borne ‎microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, ‎‎Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds ‎(‎‎349.518‎‏ ‏mg gallic acid‏/‏g dried extract), ‎flavonoids (250.124 mg rutin‏/‏g dried extract), anthocyanins (252.047 ‎‏‏mg ‎cyanidin‎3‎glucoside‏/‏‎100 g dried extract), and the strongest antimicrobial activity were obtained. ‎All extracts’ antimicrobial activities were demonstrated against every tested ‎‎microorganisms.‎Staphylococcus aureus showed the highest sensitivity among the tested ‎‎‎microorganisms.

Keywords: antimicrobial agents, phenolic compounds, pomegranate peel, solvent extraction‎

Procedia PDF Downloads 240
4524 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: social networks, community detection, modularity optimization, geographically dispersed communities

Procedia PDF Downloads 219
4523 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry

Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim

Abstract:

An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.

Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant

Procedia PDF Downloads 296
4522 Antibacterial and Antioxidant Properties of Total Phenolics from Waste Orange Peels

Authors: Kanika Kalra, Harmeet Kaur, Dinesh Goyal

Abstract:

Total phenolics were extracted from waste orange peels by solvent extraction and alkali hydrolysis method. The most efficient solvents for extracting phenolic compounds from waste biomass were methanol (60%) > dimethyl sulfoxide > ethanol (60%) > distilled water. The extraction yields were significantly impacted by solvents (ethanol, methanol, and dimethyl sulfoxide) due to varying polarity and concentrations. Extraction of phenolics using 60% methanol yielded the highest phenolics (in terms of gallic acid equivalent (GAE) per gram of biomass) in orange peels. Alkali hydrolyzed extract from orange peels contained 7.58±0.33 mg GAE g⁻¹. By using the solvent extraction technique, it was observed that 60% methanol is comparatively the best-suited solvent for extracting polyphenolic compounds and gave the maximum yield of 4.68 ± 0.47 mg GAE g⁻¹ in orange peel extracts. DPPH radical scavenging activity and reducing the power of orange peel extract were checked, where 60% methanolic extract showed the highest antioxidant activity, 85.50±0.009% for DPPH, and dimethyl sulfoxide (DMSO) extract gave the highest yield of 1.75±0.01% for reducing power ability of the orange peels extract. Characterization of the polyphenolic compounds was done by using Fourier transformation infrared (FTIR) spectroscopy. Solvent and alkali hydrolysed extracts were evaluated for antibacterial activity using the agar well diffusion method against Gram-positive Bacillus subtilis MTCC441 and Gram-negative Escherichia coli MTCC729. Methanolic extract at 300µl concentration showed an inhibition zone of around 16.33±0.47 mm against Bacillus subtilis, whereas, for Escherichia coli, it was comparatively less. Broth-based turbidimetric assay revealed the antibacterial effect of different volumes of orange peel extracts against both organisms.

Keywords: orange peels, total phenolic content, antioxidant, antibacterial

Procedia PDF Downloads 52
4521 Mechanisms of Ginger Bioactive Compounds Extract Using Soxhlet and Accelerated Water Extraction

Authors: M. N. Azian, A. N. Ilia Anisa, Y. Iwai

Abstract:

The mechanism for extraction bioactive compounds from plant matrix is essential for optimizing the extraction process. As a benchmark technique, a soxhlet extraction has been utilized for discussing the mechanism and compared with an accelerated water extraction. The trends of both techniques show that the process involves extraction and degradation. The highest yields of 6-, 8-, 10-gingerols and 6-shogaol in soxhlet extraction were 13.948, 7.12, 10.312 and 2.306 mg/g, respectively. The optimum 6-, 8-, 10-gingerols and 6-shogaol extracted by the accelerated water extraction at 140oC were 68.97±3.95 mg/g at 3min, 18.98±3.04 mg/g at 5min, 5.167±2.35 mg/g at 3min and 14.57±6.27 mg/g at 3min, respectively. The effect of temperature at 3mins shows that the concentration of 6-shogaol increased rapidly as decreasing the recovery of 6-gingerol.

Keywords: mechanism, ginger bioactive compounds, soxhlet extraction, accelerated water extraction

Procedia PDF Downloads 413
4520 Device for Thermo-Magnetic Depolymerisation of Plant Biomass Prior to Methane Fermentation

Authors: Mirosław Krzemieniewski, Marcin Zieliński, Marcin Dębowski

Abstract:

This publication presents a device for depolymerisation of plant substrates applicable to agricultural biogas plants and closed-chamber sewage treatment plants where sludge fermentation is bolstered with plant mass. The device consists of a tank with a cover equipped with a heating system, an inlet for the substrate, and an outlet for the depolymerised substrate. Within the tank, a magnet shaft encased in a spiral casing is attached, equipped on its upper end with an internal magnetic disc. A motoreducer is mounted on an external magnetic disc located on the centre of the cover. Depolymerisation of the plant substrate allows for substrate destruction at much lower power levels than by conventional means. The temperature within the reactor can be lowered by 40% in comparison to existing designs. During the depolymerisation process, free radicals are generated within the magnetic field, oxidizing the conditioned substrate and promoting biodegradation. Thus, the fermentation time in the fermenters is reduced by approximately 20%.

Keywords: depolymerisation, pre-treatment, biomass, fermentation

Procedia PDF Downloads 501