Search results for: multi-objective particle swarm optimization
4123 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials
Authors: hassan gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium
Procedia PDF Downloads 744122 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy
Authors: Hassan Gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium
Procedia PDF Downloads 3094121 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm
Authors: Muhammad Umar Kiani, Muhammad Shahbaz
Abstract:
Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process
Procedia PDF Downloads 4064120 Optimization of the Structural Design for an Irregular Building in High Seismicity Zone
Authors: Arias Fernando, Juan Bojórquez, Edén Bojórquez, Alfredo Reyes-Salazar, Fernando de J. Velarde, Robespierre Chávez, J. Martin Leal, Victor Baca
Abstract:
The present study focuses on the optimization of different structural systems employed in tall steel buildings, with a specific focus on the city of Acapulco, Guerrero, a region known for its high seismic activity. Using the spectral modal method, analyses were conducted to assess the ability of these buildings to withstand seismic forces and other external loads. After performing a detailed analysis of various models, the results were compared based on various engineering parameters, including maximum interstory drift, base shear, displacements, and the total weight of the structures, the latter being considered as an estimate of the cost of the proposed systems. The findings of this study indicate that steel frames stand out as a viable option for tall buildings in question. However, areas of potential improvement were identified, suggesting opportunities for further optimization of the design and seismic resistance of these structures. This study provides a deep and insightful perspective on the optimization of structural systems in tall steel buildings, offering valuable information for engineers and professionals in the field involved in similar projects.Keywords: high seismic zone, irregular buildings, optimization design, steel buildings
Procedia PDF Downloads 294119 Reliability Based Topology Optimization: An Efficient Method for Material Uncertainty
Authors: Mehdi Jalalpour, Mazdak Tootkaboni
Abstract:
We present a computationally efficient method for reliability-based topology optimization under material properties uncertainty, which is assumed to be lognormally distributed and correlated within the domain. Computational efficiency is achieved through estimating the response statistics with stochastic perturbation of second order, using these statistics to fit an appropriate distribution that follows the empirical distribution of the response, and employing an efficient gradient-based optimizer. The proposed algorithm is utilized for design of new structures and the changes in the optimized topology is discussed for various levels of target reliability and correlation strength. Predictions were verified thorough comparison with results obtained using Monte Carlo simulation.Keywords: material uncertainty, stochastic perturbation, structural reliability, topology optimization
Procedia PDF Downloads 6064118 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying
Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit
Abstract:
Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.Keywords: dairy powders, spray-drying, powders functionalities, design of experiment
Procedia PDF Downloads 654117 Resveratrol Incorporated Liposomes Prepared from Pegylated Phospholipids and Cholesterol
Authors: Mont Kumpugdee-Vollrath, Khaled Abdallah
Abstract:
Liposomes and pegylated liposomes were widely used as drug delivery system in pharmaceutical field since a long time. However, in the former time, polyethylene glycol (PEG) was connected into phospholipid after the liposomes were already prepared. In this paper, we intend to study the possibility of applying phospholipids which already connected with PEG and then they were used to prepare liposomes. The model drug resveratrol was used because it can be applied against different diseases. Cholesterol was applied to stabilize the membrane of liposomes. The thin film technique in a laboratory scale was a preparation method. The liposomes were then characterized by nanoparticle tracking analysis (NTA), photon correlation spectroscopy (PCS) and light microscopic techniques. The stable liposomes can be produced and the particle sizes after filtration were in nanometers. The 2- and 3-chains-PEG-phospholipid (PL) caused in smaller particle size than the 4-chains-PEG-PL. Liposomes from PL 90G and cholesterol were stable during storage at 8 °C of 56 days because the particle sizes measured by PCS were almost not changed. There was almost no leakage of resveratrol from liposomes PL 90G with cholesterol after diffusion test in dialysis tube for 28 days. All liposomes showed the sustained release during measuring time of 270 min. The maximum release amount of 16-20% was detected with liposomes from 2- and 3-chains-PEG-PL. The other liposomes gave max. release amount of resveratrol only of 10%. The release kinetic can be explained by Korsmeyer-Peppas equation.Keywords: liposome, NTA, resveratrol, pegylation, cholesterol
Procedia PDF Downloads 1854116 A Comparison of the Adsorption Mechanism of Arsenic on Iron-Modified Nanoclays
Authors: Michael Leo L. Dela Cruz, Khryslyn G. Arano, Eden May B. Dela Pena, Leslie Joy Diaz
Abstract:
Arsenic adsorbents were continuously being researched to ease the detrimental impact of arsenic to human health. A comparative study on the adsorption mechanism of arsenic on iron modified nanoclays was undertaken. Iron intercalated montmorillonite (Fe-MMT) and montmorillonite supported zero-valent iron (ZVI-MMT) were the adsorbents investigated in this study. Fe-MMT was produced through ion-exchange by replacing the sodium intercalated ions in montmorillonite with iron (III) ions. The iron (III) in Fe-MMT was later reduced to zero valent iron producing ZVI-MMT. Adsorption study was performed by batch technique. Obtained data were fitted to intra-particle diffusion, pseudo-first order, and pseudo-second-order models and the Elovich equation to determine the kinetics of adsorption. The adsorption of arsenic on Fe-MMT followed the intra-particle diffusion model with intra-particle rate constant of 0.27 mg/g-min0.5. Arsenic was found to be chemically bound on ZVI-MMT as suggested by the pseudo-second order and Elovich equation. The derived pseudo-second order rate constant was 0.0027 g/mg-min with initial adsorption rate computed from the Elovich equation was 113 mg/g-min.Keywords: adsorption mechanism, arsenic, montmorillonite, zero valent iron
Procedia PDF Downloads 4154115 Transformer Design Optimization Using Artificial Intelligence Techniques
Authors: Zakir Husain
Abstract:
Main objective of a power transformer design optimization problem requires minimizing the total overall cost and/or mass of the winding and core material by satisfying all possible constraints obligatory by the standards and transformer user requirement. The constraints include appropriate limits on winding fill factor, temperature rise, efficiency, no-load current and voltage regulation. The design optimizations tasks are a constrained minimum cost and/or mass solution by optimally setting the parameters, geometry and require magnetic properties of the transformer. In this paper, present the above design problems have been formulated by using genetic algorithm (GA) and simulated annealing (SA) on the MATLAB platform. The importance of the presented approach is stems for two main features. First, proposed technique provides reliable and efficient solution for the problem of design optimization with several variables. Second, it guaranteed to obtained solution is global optimum. This paper includes a demonstration of the application of the genetic programming GP technique to transformer design.Keywords: optimization, power transformer, genetic algorithm (GA), simulated annealing technique (SA)
Procedia PDF Downloads 5844114 Optimization of Structures Subjected to Earthquake
Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei
Abstract:
To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.Keywords: optimization, genetic algorithm, neural networks, self-organizing map
Procedia PDF Downloads 3144113 A Reinforcement Learning Based Method for Heating, Ventilation, and Air Conditioning Demand Response Optimization Considering Few-Shot Personalized Thermal Comfort
Authors: Xiaohua Zou, Yongxin Su
Abstract:
The reasonable operation of heating, ventilation, and air conditioning (HVAC) is of great significance in improving the security, stability, and economy of power system operation. However, the uncertainty of the operating environment, thermal comfort varies by users and rapid decision-making pose challenges for HVAC demand response optimization. In this regard, this paper proposes a reinforcement learning-based method for HVAC demand response optimization considering few-shot personalized thermal comfort (PTC). First, an HVAC DR optimization framework based on few-shot PTC model and DRL is designed, in which the output of few-shot PTC model is regarded as the input of DRL. Then, a few-shot PTC model that distinguishes between awake and asleep states is established, which has excellent engineering usability. Next, based on soft actor criticism, an HVAC DR optimization algorithm considering the user’s PTC is designed to deal with uncertainty and make decisions rapidly. Experiment results show that the proposed method can efficiently obtain use’s PTC temperature, reduce energy cost while ensuring user’s PTC, and achieve rapid decision-making under uncertainty.Keywords: HVAC, few-shot personalized thermal comfort, deep reinforcement learning, demand response
Procedia PDF Downloads 874112 Logistics Optimization: A Literature Review of Techniques for Streamlining Land Transportation in Supply Chain Operations
Authors: Danica Terese Valda, Segundo Villa III, Michiko Yasuda, Jomel Tagaro
Abstract:
This study conducts a thorough literature review of logistics optimization techniques that aimed at improving the efficiency of supply chain operations. Logistics optimization encompasses key areas such as transportation management, inventory control, and distribution network design, each of which plays a critical role in streamlining supply chain performance. The review identifies mixed-integer linear programming (MILP) as a dominant method, widely used for its flexibility in handling complex logistics problems. Other methods like heuristic algorithms and combinatorial optimization also prove effective in solving large-scale logistics challenges. Furthermore, real-time data integration and advancements in simulation techniques are transforming the decision-making processes within supply chains, leading to more dynamic and responsive operations. The inclusion of sustainability goals, particularly in minimizing carbon emissions, has emerged as a growing trend in logistics optimization. This research highlights the need for integrated, holistic approaches that consider the interconnectedness of logistical components. The findings provide valuable insights to guide future research and practical applications, fostering more resilient and efficient supply chains.Keywords: logistics, techniques, supply chain, land transportation
Procedia PDF Downloads 104111 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS
Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong
Abstract:
With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition
Procedia PDF Downloads 3704110 A Study on Computational Fluid Dynamics (CFD)-Based Design Optimization Techniques Using Multi-Objective Evolutionary Algorithms (MOEA)
Authors: Ahmed E. Hodaib, Mohamed A. Hashem
Abstract:
In engineering applications, a design has to be as fully perfect as possible in some defined case. The designer has to overcome many challenges in order to reach the optimal solution to a specific problem. This process is called optimization. Generally, there is always a function called “objective function” that is required to be maximized or minimized by choosing input parameters called “degrees of freedom” within an allowed domain called “search space” and computing the values of the objective function for these input values. It becomes more complex when we have more than one objective for our design. As an example for Multi-Objective Optimization Problem (MOP): A structural design that aims to minimize weight and maximize strength. In such case, the Pareto Optimal Frontier (POF) is used, which is a curve plotting two objective functions for the best cases. At this point, a designer should make a decision to choose the point on the curve. Engineers use algorithms or iterative methods for optimization. In this paper, we will discuss the Evolutionary Algorithms (EA) which are widely used with Multi-objective Optimization Problems due to their robustness, simplicity, suitability to be coupled and to be parallelized. Evolutionary algorithms are developed to guarantee the convergence to an optimal solution. An EA uses mechanisms inspired by Darwinian evolution principles. Technically, they belong to the family of trial and error problem solvers and can be considered global optimization methods with a stochastic optimization character. The optimization is initialized by picking random solutions from the search space and then the solution progresses towards the optimal point by using operators such as Selection, Combination, Cross-over and/or Mutation. These operators are applied to the old solutions “parents” so that new sets of design variables called “children” appear. The process is repeated until the optimal solution to the problem is reached. Reliable and robust computational fluid dynamics solvers are nowadays commonly utilized in the design and analyses of various engineering systems, such as aircraft, turbo-machinery, and auto-motives. Coupling of Computational Fluid Dynamics “CFD” and Multi-Objective Evolutionary Algorithms “MOEA” has become substantial in aerospace engineering applications, such as in aerodynamic shape optimization and advanced turbo-machinery design.Keywords: mathematical optimization, multi-objective evolutionary algorithms "MOEA", computational fluid dynamics "CFD", aerodynamic shape optimization
Procedia PDF Downloads 2574109 Optimization of the Dam Management to Satisfy the Irrigation Demand: A Case Study in Algeria
Authors: Merouane Boudjerda, Bénina Touaibia, Mustapha K Mihoubi
Abstract:
In Algeria, water resources play a crucial role in economic development. But over the last decades, they are relatively limited and gradually decreasing to the detriment of agriculture. The agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Boukerdane dam’s reservoir system in North of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 34% to 60%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, Boukerdane dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1324108 Aerodynamic Design an UAV and Stability Analysis with Method of Genetic Algorithm Optimization
Authors: Saul A. Torres Z., Eduardo Liceaga C., Alfredo Arias M.
Abstract:
We seek to develop a UAV for agricultural spraying at a maximum altitude of 5000 meters above sea level, with a payload of 100 liters of fumigant. For the developing the aerodynamic design of the aircraft is using computational tools such as the "Vortex Lattice Athena" software, "MATLAB", "ANSYS FLUENT", "XFoil" package among others. Also methods are being used structured programming, exhaustive analysis of optimization methods and search. The results have a very low margin of error, and the multi-objective problems can be helpful for future developments. Also we developed method for Stability Analysis (Lateral-Directional and Longitudinal).Keywords: aerodynamics design, optimization, algorithm genetic, multi-objective problem, longitudinal stability, lateral-directional stability
Procedia PDF Downloads 5944107 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0
Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang
Abstract:
This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.Keywords: drift, electrical, and cooling calculation, integrated field, magnetic field gradient, multipole errors, quadrupole
Procedia PDF Downloads 1464106 Direct Torque Control of Induction Motor Employing Teaching Learning Based Optimization
Authors: Anam Gopi
Abstract:
The undesired torque and flux ripple may occur in conventional direct torque control (DTC) induction motor drive. DTC can improve the system performance at low speeds by continuously tuning the regulator by adjusting the Kp, Ki values. In this Teaching Learning Based Optimization (TLBO) is proposed to adjust the parameters (Kp, Ki) of the speed controller in order to minimize torque ripple, flux ripple, and stator current distortion. The TLBO based PI controller has resulted is maintaining a constant speed of the motor irrespective of the load torque fluctuations.Keywords: teaching learning based optimization, direct torque control, PI controller
Procedia PDF Downloads 5854105 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function
Procedia PDF Downloads 1484104 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles
Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic
Abstract:
Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D
Procedia PDF Downloads 1414103 Developing Model for Fuel Consumption Optimization in Aviation Industry
Authors: Somesh Kumar Sharma, Sunanad Gupta
Abstract:
The contribution of aviation to society and economy is undisputedly significant. The aviation industry drives economic and social progress by contributing prominently to tourism, commerce and improved quality of life. Identifying the amount of fuel consumed by an aircraft while moving in both airspace and ground networks is critical to air transport economics. Aviation fuel is a major operating cost parameter of the aviation industry and at the same time it is prone to various constraints. This article aims to develop a model for fuel consumption of aviation product. The paper tailors the information for the fuel consumption optimization in terms of information development, information evaluation and information refinement. The information is evaluated and refined using statistical package R and Factor Analysis which is further validated with neural networking. The study explores three primary dimensions which are finally summarized into 23 influencing variables in contrast to 96 variables available in literature. The 23 variables explored in this study should be considered as highly influencing variables for fuel consumption which will contribute significantly towards fuel optimization.Keywords: fuel consumption, civil aviation industry, neural networking, optimization
Procedia PDF Downloads 3414102 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants
Authors: Balgaisha Mukanova, Natalya Glazyrina, Sergey Glazyrin
Abstract:
The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.Keywords: direct problem, multiparametric optimization, optimization parameters, water treatment
Procedia PDF Downloads 3874101 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 2564100 Science behind Quantum Teleportation
Authors: Ananya G., B. Varshitha, Shwetha S., Kavitha S. N., Praveen Kumar Gupta
Abstract:
Teleportation is the ability to travel by just reappearing at some other spot. Though teleportation has never been achieved, quantum teleportation is possible. Quantum teleportation is a process of transferring the quantum state of a particle onto another particle, under the circumstance that one does not get to know any information about the state in the process of transformation. This paper presents a brief overview of quantum teleportation, discussing the topics like Entanglement, EPR Paradox, Bell's Theorem, Qubits, elements for a successful teleport, some examples of advanced teleportation systems (also covers few ongoing experiments), applications (that includes quantum cryptography), and the current hurdles for future scientists interested in this field. Finally, major advantages and limitations to the existing teleportation theory are discussed.Keywords: teleportation, quantum teleportation, quantum entanglement, qubits, EPR paradox, bell states, quantum particles, spooky action at a distance
Procedia PDF Downloads 1204099 Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems
Authors: Zahra Yadollahi, Marjan Motiei, Natalia Kazantseva, Petr Saha
Abstract:
Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated.Keywords: whey protein isolated, chitosan, nanoparticles, delivery system
Procedia PDF Downloads 944098 Uncertain Time-Cost Trade off Problems of Construction Projects Using Fuzzy Set Theory
Authors: V. S. S. Kumar, B. Vikram
Abstract:
The development of effective decision support tools that adopted in the construction industry is vital in the world we live in today, since it can lead to substantial cost reduction and efficient resource consumption. Solving the time-cost trade off problems and its related variants is at the heart of scientific research for optimizing construction planning problems. In general, the classical optimization techniques have difficulties in dealing with TCT problems. One of the main reasons of their failure is that they can easily be entrapped in local minima. This paper presents an investigation on the application of meta-heuristic techniques to two particular variants of the time-cost trade of analysis, the time-cost trade off problem (TCT), and time-cost trade off optimization problem (TCO). In first problem, the total project cost should be minimized, and in the second problem, the total project cost and total project duration should be minimized simultaneously. Finally it is expected that, the optimization models developed in this paper will contribute significantly for efficient planning and management of construction project.Keywords: fuzzy sets, uncertainty, optimization, time cost trade off problems
Procedia PDF Downloads 3574097 FPGA Implementation of a Marginalized Particle Filter for Delineation of P and T Waves of ECG Signal
Authors: Jugal Bhandari, K. Hari Priya
Abstract:
The ECG signal provides important clinical information which could be used to pretend the diseases related to heart. Accordingly, delineation of ECG signal is an important task. Whereas delineation of P and T waves is a complex task. This paper deals with the Study of ECG signal and analysis of signal by means of Verilog Design of efficient filters and MATLAB tool effectively. It includes generation and simulation of ECG signal, by means of real time ECG data, ECG signal filtering and processing by analysis of different algorithms and techniques. In this paper, we design a basic particle filter which generates a dynamic model depending on the present and past input samples and then produces the desired output. Afterwards, the output will be processed by MATLAB to get the actual shape and accurate values of the ranges of P-wave and T-wave of ECG signal. In this paper, Questasim is a tool of mentor graphics which is being used for simulation and functional verification. The same design is again verified using Xilinx ISE which will be also used for synthesis, mapping and bit file generation. Xilinx FPGA board will be used for implementation of system. The final results of FPGA shall be verified with ChipScope Pro where the output data can be observed.Keywords: ECG, MATLAB, Bayesian filtering, particle filter, Verilog hardware descriptive language
Procedia PDF Downloads 3674096 Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example
Authors: Yue Huang, Yiheng Feng
Abstract:
Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning.Keywords: electric vehicle, charging station, allocation optimization, urban mobility, urban infrastructure, nanjing
Procedia PDF Downloads 934095 Route Planning for Optimization Approach PSO_GA Sharing System (Scooter Sharing-Public Transportation) with Hybrid Optimization Approach PSO_GA
Authors: Mohammad Ali Farrokhpour
Abstract:
In the current decade and sustainable transportation systems, scooter sharing has attracted widespread attention as an environmentally-friendly means of public transportation which can help develop public transportation. The combination of scooters and subway in the area of sustainable transportation systems can provide a great many opportunities for developing access to public transportation. Of the challenges which have arisen and initiated discussions of interest about the implementation of a scooter-subway system to replace personal vehicles is the issue of routing in the aforementioned system. This has been chosen as the main subject of the present paper. Thus, the present paper provides an account for routing in this system. Because the issue of routing includes multiple factors such as time, costs, traffic, green spaces, etc., the above-mentioned problem is considered to be a multi-objective NP-hard optimization problem. For this purpose, the hybrid optimization approach of PSO-GA has been put forward in the present paper for the provided answers to be of higher accuracy and validity than those of normal optimization methods. The results obtained from modeling and problem solving for the case study in the MATLAB software are indicative of the efficiency and desirability of the model and the proposed approach for solving the modelKeywords: route planning, scooter sharing, public transportation, sharing system
Procedia PDF Downloads 864094 Transmit Power Optimization for Cooperative Beamforming in Reverse-Link MIMO Ad-Hoc Networks
Authors: Younghyun Jeon, Seungjoo Maeng
Abstract:
In the Ad-hoc network, the great interests regarding MIMO scheme leads to their combination, which is also utilized into its applicable network. We manage the field of the problem into Reverse-link MIMO Ad-hoc Network (RMAN) and propose the methodology to maximize the data rate with its power consumption using Node-Cooperative beamforming technique. Based on the result of mathematical optimization formulation, we design the algorithm to construct optimal orthogonal weight vector according to channel feedback and control its transmission power according to QoS-pricing value level. In simulation results, we show the validity of the proposed mathematical optimization result and algorithm which mean that the sum-rate of each link is converged into some point.Keywords: ad-hoc network, MIMO, cooperative beamforming, transmit power
Procedia PDF Downloads 399