Search results for: mass housing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4117

Search results for: mass housing

3487 Life Cycle Assessment of Bioethanol from Feedstocks in Thailand

Authors: Thanapat Chaireongsirikul, Apichit Svang-Ariyaskul

Abstract:

An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes.

Keywords: bioethanol production, biofuel, LCA, chemical engineering

Procedia PDF Downloads 350
3486 Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight

Authors: E. Vlachopapadopoulou, E. Dikaiakou, E. Anagnostou, I. Panagiotopoulos, E. Kaloumenou, M. Kafetzi, A. Fotinou, S. Michalacos

Abstract:

Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance.

Keywords: body fat weight, body mass index, insulin resistance, obese children, waist circumference

Procedia PDF Downloads 297
3485 The Association of Vitamin B12 with Body Weight-and Fat-Based Indices in Childhood Obesity

Authors: Mustafa Metin Donma, Orkide Donma

Abstract:

Vitamin deficiencies are common in obese individuals. Particularly, the status of vitamin B12 and its association with vitamin B9 (folate) and vitamin D is under investigation in recent time. Vitamin B12 is closely related to many vital processes in the body. In clinical studies, its involvement in fat metabolism draws attention from the obesity point of view. Obesity, in its advanced stages and in combination with metabolic syndrome (MetS) findings, may be a life-threatening health problem. Pediatric obesity is particularly important because it may be a predictor of severe chronic diseases during the adulthood period of the child. Due to its role in fat metabolism, vitamin B12 deficiency may disrupt metabolic pathways of the lipid and energy metabolisms in the body. The association of low B12 levels with obesity degree may be an interesting topic to be investigated. Obesity indices may be helpful at this point. Weight- and fat-based indices are available. Of them, body mass index (BMI) is in the first group. Fat mass index (FMI), fat-free mass index (FFMI) and diagnostic obesity notation model assessment-II (D2I) index lie in the latter group. The aim of this study is to clarify possible associations between vitamin B12 status and obesity indices in the pediatric population. The study comprises a total of one hundred and twenty-two children. Thirty-two children were included in the normal body mass index (N-BMI) group. Forty-six and forty-four children constitute groups with morbid obese children without MetS and with MetS, respectively. Informed consent forms and the approval of the institutional ethics committee were obtained. Tables prepared for obesity classification by World Health Organization were used. Metabolic syndrome criteria were defined. Anthropometric and blood pressure measurements were taken. Body mass index, FMI, FFMI, D2I were calculated. Routine laboratory tests were performed. Vitamin B9, B12, D concentrations were determined. Statistical evaluation of the study data was performed. Vitamin B9 and vitamin D levels were reduced in MetS group compared to children with N-BMI (p>0.05). Significantly lower values were observed in vitamin B12 concentrations of MetS group (p<0.01). Upon evaluation of blood pressure as well as triglyceride levels, there exist significant increases in morbid obese children. Significantly decreased concentrations of high density lipoprotein cholesterol were observed. All of the obesity indices and insulin resistance index exhibit increasing tendency with the severity of obesity. Inverse correlations were calculated between vitamin D and insulin resistance index as well as vitamin B12 and D2I in morbid obese groups. In conclusion, a fat-based index, D2I, was the most prominent body index, which shows a strong correlation with vitamin B12 concentrations in the late stage of obesity in children. A negative correlation between these two parameters was a confirmative finding related to the association between vitamin B12 and obesity degree.

Keywords: body mass index, children, D2I index, fat mass index, obesity

Procedia PDF Downloads 183
3484 Poverty Reduction in European Cities: Local Governments’ Strategies and Programmes to Reduce Poverty; Interview Results from Austria

Authors: Melanie Schinnerl, Dorothea Greiling

Abstract:

In the context of the 2020 strategy, poverty and its fight returned to the center of national political efforts. This served as motivation for an Austrian research grant-funded project to focus on the under-researched local government level with the aim to identify municipal best-practice cases and to derive policy implications for Austria. Designing effective poverty reduction strategies is a complex challenge which calls for an integrated multi-actor in approach. Cities are increasingly confronted to combat poverty, even in rich EU-member states. By doing so cities face substantial demographic, cultural, economic and social challenges as well as changing welfare state regimes. Furthermore, there is a low willingness of (right-wing) governments to support the poor. Against this background, the research questions are: 1. How do local governments define poverty? 2. Who are the main risk groups and what are the most pressing problems when fighting urban poverty? 3. What is regarded as successful anti-poverty initiatives? 4. What is the underlying welfare state concept? To address the research questions a multi-method approach was chosen, consisting of a systematic literature analysis, a comprehensive document analysis, and expert interviews. For interpreting the data the project follows the qualitative-interpretive paradigm. Municipal approaches for reducing poverty are compared based on deductive, as well as inductive identified criteria. In addition to an intensive literature analysis, interviews (40) were conducted in Austria since the project started in March 2018. From the other countries, 14 responses have been collected, providing a first insight. Regarding the definition of poverty the EU SILC-definition as well as counting the persons who receive need-based minimum social benefits, the Austrian form of social welfare, are the predominant approaches in Austria. In addition to homeless people, single-parent families, un-skilled persons, long-term unemployed persons, migrants (first and second generation), refugees and families with at least 3 children were frequently mentioned. The most pressing challenges for Austrian cities are: expected reductions of social budgets, a great insecurity of the central government's social policy reform plans, the growing number of homeless people and a lack of affordable housing. Together with affordable housing, old-age poverty will gain more importance in the future. The Austrian best practice examples, suggested by interviewees, focused primarily on homeless, children and young people (till 25). Central government’s policy changes have already negative effects on programs for refugees and elderly unemployed. Social Housing in Vienna was frequently mentioned as an international best practice case, other growing cities can learn from. The results from Austria indicate a change towards the social investment state, which primarily focuses on children and labour market integration. The first insights from the other countries indicate that affordable housing and labor market integration are cross-cutting issues. Inherited poverty and old-age poverty seems to be more pressing outside Austria.

Keywords: anti-poverty policies, European cities, empirical study, social investment

Procedia PDF Downloads 108
3483 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 246
3482 Empirical Modeling and Spatial Analysis of Heat-Related Morbidity in Maricopa County, Arizona

Authors: Chuyuan Wang, Nayan Khare, Lily Villa, Patricia Solis, Elizabeth A. Wentz

Abstract:

Maricopa County, Arizona, has a semi-arid hot desert climate that is one of the hottest regions in the United States. The exacerbated urban heat island (UHI) effect caused by rapid urbanization has made the urban area even hotter than the rural surroundings. The Phoenix metropolitan area experiences extremely high temperatures in the summer from June to September that can reach the daily highest of 120 °F (48.9 °C). Morbidity and mortality due to the environmental heat is, therefore, a significant public health issue in Maricopa County, especially because it is largely preventable. Public records from the Maricopa County Department of Public Health (MCDPH) revealed that between 2012 and 2016, there were 10,825 incidents of heat-related morbidity incidents, 267 outdoor environmental heat deaths, and 173 indoor heat-related deaths. A lot of research has examined heat-related death and its contributing factors around the world, but little has been done regarding heat-related morbidity issues, especially for regions that are naturally hot in the summer. The objective of this study is to examine the demographic, socio-economic, housing, and environmental factors that contribute to heat-related morbidity in Maricopa County. We obtained heat-related morbidity data between 2012 and 2016 at census tract level from MCDPH. Demographic, socio-economic, and housing variables were derived using 2012-2016 American Community Survey 5-year estimate from the U.S. Census. Remotely sensed Landsat 7 ETM+ and Landsat 8 OLI satellite images and Level-1 products were acquired for all the summer months (June to September) from 2012 and 2016. The National Land Cover Database (NLCD) 2016 percent tree canopy and percent developed imperviousness data were obtained from the U.S. Geological Survey (USGS). We used ordinary least squares (OLS) regression analysis to examine the empirical relationship between all the independent variables and heat-related morbidity rate. Results showed that higher morbidity rates are found in census tracts with higher values in population aged 65 and older, population under poverty, disability, no vehicle ownership, white non-Hispanic, population with less than high school degree, land surface temperature, and surface reflectance, but lower values in normalized difference vegetation index (NDVI) and housing occupancy. The regression model can be used to explain up to 59.4% of total variation of heat-related morbidity in Maricopa County. The multiscale geographically weighted regression (MGWR) technique was then used to examine the spatially varying relationships between heat-related morbidity rate and all the significant independent variables. The R-squared value of the MGWR model increased to 0.691, that shows a significant improvement in goodness-of-fit than the global OLS model, which means that spatial heterogeneity of some independent variables is another important factor that influences the relationship with heat-related morbidity in Maricopa County. Among these variables, population aged 65 and older, the Hispanic population, disability, vehicle ownership, and housing occupancy have much stronger local effects than other variables.

Keywords: census, empirical modeling, heat-related morbidity, spatial analysis

Procedia PDF Downloads 109
3481 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets

Authors: Sajjad Seifoori

Abstract:

Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).

Keywords: impact, molecular dynamic, graphene, spring mass

Procedia PDF Downloads 312
3480 Study of the Efficiency of a Synthetic Wax for Corrosion Protection of Steel in Aggressive Environments

Authors: Laidi Babouri

Abstract:

The remarkable properties of steel, such as hardness and impact resistance, motivate their use in the automotive manufacturing industry. However, due to the very vulnerable environmental conditions of use, the steel that makes up the car body can corrode. This situation is motivating more and more automobile manufacturers to develop research to develop processes minimizing the rate of degradation of the physicomechanical properties of these materials. The present work falls within this perspective; it presents the results of a research study focused on the use of synthetic wax for the protection of steel, type XES (DC04), against corrosion in aggressive environments. The media used in this study are an acid medium with a pH=5.6, a 3% chloride medium, and a dry medium. Evaluation of the protective power of synthetic wax in different environments was carried out using mass loss techniques (immersion), completed by electrochemical techniques (stationary and transient). The results of the immersion of the steel samples, with a surface area of (1.44 cm²), in the various media, for a period of 30 days, using the immersion technique, showed high protective efficiency of synthetic wax in acidic and saline environments, with a lesser degree in a dry environment. Moreover, the study of the protective power, using electrochemical techniques, confirmed the results obtained in static mode (loss of mass), the protective efficiency of synthetic wax, against the corrosion of steel, in different environments, which reaches a maximum rate of 99.87% in a saline environment.

Keywords: corrosion, steel, industrial wax, environment, mass loss, electrochemical techniques

Procedia PDF Downloads 59
3479 Yield and Composition of Bio-Oil from Co-Pyrolysis of Corn Cobs and Plastic Waste of HDPE in a Fixed Bed Reactor

Authors: Dijan Supramono, Eny Kusrini, Haisya Yuana

Abstract:

Pyrolysis, a thermal cracking process in inert environment, may be used to produce bio-oil from biomass and plastic waste thus accommodating the use of renewable energy. Abundant amount of biomass waste in Indonesia are not utilised and plastic wastes are not well processed for clean environment. The aim of present work was to evaluate effect of mass ratio of plastic material to biomass in the feed blend of corn cobs and high density polyethylene (HDPE) of co-pyrolysis on bio-oil yield and chemical composition of bio-oil products. The heating rate of the co-pyrolysis was kept low and residence time was in the order of seconds to accommodate high yield of oil originating from plastic pyrolysis. Corn cobs have high cellulose and hemicellulose content (84%) which is potential to produce bio-oil. The pyrolysis was conducted in a laboratory-scale using a fixed bed reactor with final temperature of 500°C, heating rate 5 °C/min, flow rate N2 750 mL/min, total weight of biomass and plastic material of 20 g, and hold time after peak temperature of 30 min. Set up of conditions of co-pyrolysis should lead to accommodating the production of oil originating from HDPE due to constraint of HDPE pyrolysis residence time. Mass ratio of plastics to biomass in the feed blend was varied 0:100, 25:75, 50:50, 75:25 and 100:0. It was found that by increasing HDPE content up to 100% in the feed blend, the yield of bio-oil at different mass ratios prescribed above were 28.05, 21.55, 14.55, 9.5, and 6.3wt%, respectively. Therefore, in the fixed bed reactor, producing bio-oil is constrained by low contribution of plastic feedstock to the pyrolysis liquid yield. Furthermore, for the same variation of the mass ratio, yields of the mixture of paraffins, olefins and cycloalkanes contained in bio-oil were of 0, 28.35, 40.75, 47.17, and 67.05wt%, respectively. Olefins and cycloalkanes are easily hydrogenised to produce paraffins, suitable to be used as bio-fuel. By increasing composition of HDPE in the feed blend, viscosity and pH of bio-oil change approaching to those of commercial diesel oil.

Keywords: co-pyrolysis, corn cobs, fixed bed reactor, HDPE

Procedia PDF Downloads 336
3478 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia

Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa

Abstract:

Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.

Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling

Procedia PDF Downloads 259
3477 The Approach of New Urbanism Model to Identify the Sustainability of 'Kampung Kota'

Authors: Nadhia Maharany Siara, Muammal, Ilham Nurhakim, Rofifah Yusadi, M. Adie Putra Tanggara, I. Nyoman Suluh Wijaya

Abstract:

Urbanization in urban areas has impact to the demand of land use for housing, and it began to occur development in the high-density area called Kampung Kota. Kampung Kota grows and develops without planning or organically. The existence of Kampung Kota, becoming identity of the city development in Indonesia, gives self-identity to the city planning in Indonesia, but the existence of Kampung Kota in the development of the city in Indonesia is often considered as a source of environment, health, and social problems. This cause negative perception about the sustainability of Kampung Kota. This research aims to identify morphology and sustainability level of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City. So far, there have not been many studies that define sustainability of Kampung Kota especially from the perspective of Kampung Kota morphology as a part of urban housing areas. This research took place in in Polehan Sub-District, Blimbing District, Malang City which is one of the oldest Kampung Kota in Malang City. Identification of the sustainability level in this research is done by defining the morphology of Kampung Kota in Polehan Sub-District, Blimbing District, Malang City with a descriptive approach to the observation case (Kampung Kota Polehan Sub-District). After that, definition of sustainability level is defined by quantifying the spatial structure by using the criteria from the new urbanism model which consist of buildings and populations density, compactness, diversity and mix land uses and sustainable transportation. In this case, the use of new urbanism model approach is very appropriate. New Urbanism is a design-driven strategy that is based on traditional forms to minimize urban sprawl in the suburbs. The result obtained from this study is the hometown of the level of sustainability in Polehan Sub-District, Blimbing District, Malang City of 3.2 and can be considered to have a good sustainability.

Keywords: Kampung Kota, new urbanism model, sustainability, urban morphology

Procedia PDF Downloads 272
3476 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation

Authors: Kyoung Hoon Kim

Abstract:

A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.

Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance

Procedia PDF Downloads 288
3475 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 350
3474 Effect of Dietary Fortification with Hibiscus Sabdariffa Calyces Meal on Egg Production and Egg Qualiy of Japanese Quail

Authors: Nomagugu Ndlovu, Kennedy H. Erlwanger, Eliton Chivandi

Abstract:

In order to enhance egg production and egg quality from layer poultry, producers use synthetic feed additives that enhance nutrient digestion and absorption in the gut. Synthetic feed additives have negative effects on consumer health hence the need to replace them with natural alternatives which are deemed safer for consumer health. Hibiscus sabdariffa calyces meal has hypolipidemic, probiotic and antioxidant activities; hence we investigated the effect of fortifying Japanese quail pullet diets with its calyces meal on egg production and egg quality. A standard Japanese quail layer diet was supplemented with H. sabdariffa calyces meal at 0%, 5% and 10% in diets 1, 2 and 3, respectively. Ninety, 5-week old Japanese quail hens were randomly allocated to and fed the layer diets for 56 days. Body mass, feed intake and egg mass, width, length, shell mass and thickness, yolk mass, height and diameter, albumen mass, length, width and height, and the proximate content and fatty acid profile of the egg albumen and yolk were determined. Supplemental fortification of the Japanese quail layer diet with H. sabdariffa calyces meal had no effect on growth performance and feed intake and conversion rate of the quail (P>0.05). The meal delayed the onset of laying and reduced (P < 0.0001) the number of eggs laid. It did not affect the external and internal egg quality parameters of Japanese quail (P > 0.05). Dietary fortification with H. sabdariffa calyces meal at 10% significantly increased the dry matter and reduced the fat content of the yolk and albumin of Japanese quail eggs (P < 0.05). Dietary H. sabdariffa calyces meal reduced the total omega 3 fatty acids in the yolk and significantly increased arachidonic acid (P = 0.0019), an omega 6 fatty acid. Inclusion of Hibiscus sabdariffa meal depressed egg production, suppressed omega 3 fatty acids and increased arachidonic acid thus, using it as a dietary supplement may result in losses to producers of Japanese quail eggs and may result in eggs whose fatty acid profile can compromise consumer health.

Keywords: quail, eggs, hibiscus sabdariffa, quality

Procedia PDF Downloads 51
3473 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 195
3472 Architectural Approaches to a Sustainable Community with Floating Housing Units Adapting to Climate Change and Sea Level Rise in Vietnam

Authors: Nguyen Thi Thu Trang

Abstract:

Climate change and sea level rise is one of the greatest challenges facing human beings in the 21st century. Because of sea level rise, several low-lying coastal areas around the globe are at risk of being completely submerged, disappearing under water. Particularly in Viet Nam, the rise in sea level is predicted to result in more frequent and even permanently inundated coastal plains. As a result, land reserving fund of coastal cities is going to be narrowed in near future, while construction ground is becoming increasingly limited due to a rapid growth in population. Faced with this reality, the solutions are being discussed not only in tradition view such as accommodation is raised or moved to higher areas, or “living with the water”, but also forwards to “living on the water”. Therefore, the concept of a sustainable floating community with floating houses based on the precious value of long term historical tradition of water dwellings in Viet Nam would be a sustainable solution for adaptation of climate change and sea level rise in the coastal areas. The sustainable floating community is comprised of sustainability in four components: architecture, environment, socio-economic and living quality. This research paper is focused on sustainability in architectural component of floating community. Through detailed architectural analysis of current floating houses and floating communities in Viet Nam, this research not only accumulates precious values of traditional architecture that need to be preserved and developed in the proposed concept, but also illustrates its weaknesses that need to address for optimal design of the future sustainable floating communities. Based on these studies the research would provide guidelines with appropriate architectural solutions for the concept of sustainable floating community with floating housing units that are adapted to climate change and sea level rise in Viet Nam.

Keywords: guidelines, sustainable floating community, floating houses, Vietnam

Procedia PDF Downloads 496
3471 The Effect of Impact on the Knee Joint Due to the Shocks during Double Impact Phase of Gait Cycle

Authors: Jobin Varghese, V. M. Akhil, P. K. Rajendrakumar, K. S. Sivanandan

Abstract:

The major contributor to the human locomotion is the knee flexion and extension. During heel strike, a huge amount of energy is transmitted through the leg towards knee joint, which in fact is damped at heel and leg muscles. During high shocks, although it is damped to a certain extent, the balance force transmits towards knee joint which could damage the knee. Due to the vital function of the knee joint, it should be protected against damage due to additional load acting on it. This work concentrates on the development of spring mass damper system which exactly replicates the stiffness at the heel and muscles and the objective function is optimized to minimize the force acting at the knee joint. Further, the data collected using force plate are put into the model to verify its integrity and are found to be in good agreement.

Keywords: spring, mass, damper, knee joint

Procedia PDF Downloads 257
3470 A Parametric Investigation into the Free Vibration and Flutter Characteristics of High Aspect Ratio Aircraft Wings Using Polynomial Distributions of Stiffness and Mass Properties

Authors: Ranjan Banerjee, W. D. Gunawardana

Abstract:

The free vibration and flutter analysis plays a major part in aircraft design which is indeed, a mandatory requirement. In particular, high aspect ratio transport airliner wings are prone to free vibration and flutter problems that must be addressed during the design process as demanded by the airworthiness authorities. The purpose of this paper is to carry out a detailed free vibration and flutter analysis for a wide range of high aspect ratio aircraft wings and generate design curves to provide useful visions and understandings of aircraft design from an aeroelastic perspective. In the initial stage of the investigation, the bending and torsional stiffnesses of a number of transport aircraft wings are looked at and critically examined to see whether it is possible to express the stiffness distributions in polynomial form, but in a sufficiently accurate manner. A similar attempt is made for mass and mass moment of inertia distributions of the wing. Once the choice of stiffness and mass distributions in polynomial form is made, the high aspect ratio wing is idealised by a series of bending-torsion coupled beams from a structural standpoint. Then the dynamic stiffness method is applied to compute the natural frequencies and mode shape of the wing. Next the wing is idealised aerodynamically and to this end, unsteady aerodynamic of Theodorsen type is employed to represent the harmonically oscillating wing. Following this step, a normal mode method through the use of generalised coordinates is applied to formulate the flutter problem. In essence, the generalised mass, stiffness and aerodynamic matrices are combined to obtain the flutter matrix which is subsequently solved in the complex domain to determine the flutter speed and flutter frequency. In the final stage of the investigation, an exhaustive parametric study is carried out by varying significant wing parameters to generate design curves which help to predict the free vibration and flutter behaviour of high aspect ratio transport aircraft wings in a generic manner. It is in the aeroelastic context of aircraft design where the results are expected to be most useful.

Keywords: high-aspect ratio wing, flutter, dynamic stiffness method, free vibration, aeroelasticity

Procedia PDF Downloads 269
3469 Glacier Dynamics and Mass Fluctuations in Western Himalayas: A Comparative Analysis of Pir-Panjal and Greater Himalayan Ranges in Jhelum Basin, India

Authors: Syed Towseef Ahmad, Fatima Amin, Pritha Acharya, Anil K. Gupta, Pervez Ahmad

Abstract:

Glaciers being the sentinels of climate change, are the most visible evidence of global warming. Given the unavailability of observed field-based data, this study has focussed on the use of geospatial techniques to obtain information about the glaciers of Pir-Panjal (PPJ) and the Great Himalayan Regions of Jhelum Basin (GHR). These glaciers need to be monitored in line with the variations in climatic conditions because they significantly contribute to various sectors in the region. The main aim of this study is to map the glaciers in the two adjacent regions (PPJ and GHR) in the north-western Himalayas with different topographies and compare the changes in various glacial attributes during two different time periods (1990-2020). During the last three decades, both PPJ as well as GHR regions have observed deglaciation of around 36 and 26 percent, respectively. The mean elevation of GHR glaciers has increased from 4312 to 4390 masl, while the same for PPJ glaciers has increased from 4085 to 4124 masl during the observation period. Using accumulation area ratio (AAR) method, mean mass balance of -34.52 and -37.6 cm.w.e was recorded for the glaciers of GHR and PPJ, respectively. The difference in areal and mass loss of glaciers in these regions may be due to (i) the smaller size of PPJ glaciers which are all smaller than 1 km² and are thus more responsive to climate change (ii) Higher mean elevation of GHR glaciers (iii) local variations in climatic variables in these glaciated regions. Time series analysis of climate variables indicates that both the mean maximum and minimum temperatures of Qazigund station (Tmax= 19.2, Tmin= 6.4) are comparatively higher than the Pahalgam station (Tmax= 18.8, Tmin= 3.2). Except for precipitation in Qazigund (Slope= - 0.3 mm a⁻¹), each climatic parameter has shown an increasing trend during these three decades, and with the slope of 0.04 and 0.03°c a⁻¹, the positive trend in Tmin (pahalgam) and Tmax (qazigund) are observed to be statistically significant (p≤0.05).

Keywords: glaciers, climate change, Pir-Panjal, greater Himalayas, mass balance

Procedia PDF Downloads 63
3468 Electrospray Deposition Technique of Dye Molecules in the Vacuum

Authors: Nouf Alharbi

Abstract:

The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.

Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION

Procedia PDF Downloads 121
3467 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads

Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan

Abstract:

In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.

Keywords: elastic foundation, impact, moving load, thick plate

Procedia PDF Downloads 293
3466 Effects of Injection of eCG and Oxytocin on Semen Characteristics of Zel Rams in Nonbreeding Season

Authors: Khosro Ghazvinian, Reza Narenji Sani, Touba Khodaiean, Melika Moezifar

Abstract:

Many previous studies have reported that eCG was effective for completing spermatogenesis. In mice, eCG increased testes weight. In addition, Oxytocin (OT) was important in sperm transition and sperm motility in domestic animals. Peripheral circulation of OT also, was increased during sex incitement and ejaculation The objective of this study was to investigate the effect of IM injection of eCG and OT on semen characteristics in Zel rams in out of breeding season. Eighteen 3-year-old Zel adult rams were randomly divided into five equal groups (control and four treatment groups). 0.9% NaCl (1 ml) was injected IM into each ram in the control group, whereas eCG was administered IM at a single dose of 400 IU and 600 IU to each ram in the two eCG treatment groups and OT was administered IM at a single dose of 5 IU and 10 IU to each ram in the other two OT treatment groups. Semen samples were taken by an electroejaculator from all rams 10 min after the IM injection of 0.9% NaCl, eCG, or OT. eCG did not alter semen volume, and OT did not alter sperm motility or abnormal sperm, in comparison to the control values. Mass activity, sperm motility and total sperm number increased significantly in eCG group compared to the control group; and semen volume, mass activity, total sperm number of the OT treatment groups increased significantly compared to the control group. Exogenous 600 IU eCG and 10 IU OT increase mass activity, total sperm number, lived sperm and sperm concentration in Zel rams.

Keywords: eCG, oxytocine, semen characteristics, Zel Ram, nonbreeding season

Procedia PDF Downloads 389
3465 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity

Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun

Abstract:

Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is site-specific. The aim of this study was to evaluate the Bone Mineral Density (BMD) and Trabecular Bone Score (TBS) in the obese Ukrainian women. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group a included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of < 30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1-L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body, and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to non-obese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50-59, 60-69, and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the non-obese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.

Keywords: obesity, trabecular bone score, bone mineral density, women

Procedia PDF Downloads 422
3464 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: finite difference method, natural convection, porous medium, scale analysis, thermal stratification

Procedia PDF Downloads 319
3463 Description of Geotechnical Properties of Jabal Omar

Authors: Ibrahim Abdel Gadir Malik, Dafalla Siddig Dafalla, Osama Abdelgadir El-Bushra

Abstract:

Geological and engineering characteristics of intact rock and the discontinuity surfaces was used to describe and classify rock mass into zones based on mechanical and physical properties. Many conditions terms that affect the rock mas; such as Rock strength, Rock Quality Designation (RQD) value, joint spacing, and condition of joint, water condition with block size, joint roughness, separation, joint hardness, friction angle and weathering were used to classify the rock mass into: Good quality (class II) (RMR values range between 75% and 56%), Good to fair quality (class II to III) (RMR values range between 70% and 55%), Fair quality (class III) (RMR values range between 60% and 50%) and Fair to poor quality (Class III to IV) (RMR values, range between (50% and 35%).

Keywords: rock strength, RQD, joints, weathering

Procedia PDF Downloads 403
3462 Non-Reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors were simulated to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6, and 1 and for air mass flow rates of 14 m/s, 28 m/s, and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: aerodynamic, computational fluid dynamics, propulsion, trapped vortex combustor

Procedia PDF Downloads 73
3461 Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions

Authors: Hector A. Tinoco, Cesar Garcia-Diaz, Olga L. Ocampo-Lopez

Abstract:

In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams.

Keywords: hard disk drive, energy harvesting, voice coil motor, energy harvester, gait motions

Procedia PDF Downloads 337
3460 Anaesthetic Management of a Huge Oropharyngeal Mass

Authors: Vasudha Govil, Suresh Singhal

Abstract:

Introduction: Patients with oropharyngeal masses pose a challenge for an anaesthetist in terms of ventilation and tracheal intubation. Thus, preoperative assessment and preparation become an integral part of managing such anticipated difficult airway cases. Case report: A 45- year old female presented with growth in the oropharynx causing dysphagia and hoarseness of voice. Clinical examination and investigations predicted a difficult airway. It was managed with fibreoptic nasotracheal intubation with a successful perioperative outcome. Tracheostomy was kept as plan B in case of the CVCI situation. Conclusion: Careful preoperative examination and assessment is required to prepare oneself for difficult airway. Fibreoptic bronchoscope-guided nasotracheal intubation in a spontaneously breathing patient is a safe and successful airway management technique in difficult airway cases.

Keywords: airway, difficult, mass, oropharyngeal

Procedia PDF Downloads 175
3459 Boko Haram Insurgence and Denial of War Crime against Civilians in the Northeast, Nigeria

Authors: Aleburu Rufus Edeki

Abstract:

The activities of Boko Haram terrorist group have become worrisome in Nigeria. Boko Haram killed innocent civilians, destroyed schools, churches, military barracks, police stations, and other government establishments. The federal government of Nigerian Military engaged in counter-insurgency to curtail the activities of Boko Haram militant. The engagement of the military led to mass killing across the Northeast region. The reported cases of mass-killing led to petition written to the International Criminal Court by the civil society organization as a result of denial by the military authorities of their involvement. The investigation carried out by the International Criminal Court awash by denial of military involvement in war crimes. As a result of this denial, the ICC called for further investigation of war crimes by the military. This study was carried out among fifty-eight participants. In-depth interviews were conducted among the following participants: civilians 41; human rights commission 5 and civil society 12. This study revealed that professional ethics is associated with denial of military involvement in mass killing in the region. This study also revealed that denial is associated with personality. It was also found that social attributes such as trauma, shame, ostracism, criticism, and punishment are found with denial. It is therefore concluded in this study that protection is needed for war actors, so that situation of denial is minimal in post-conflict truth findings.

Keywords: Boko Haram, crime, insurgence, war

Procedia PDF Downloads 119
3458 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a)synthesizing such PTMDs for particular applications and b)evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: active tuned mass damper, high-rise building, multi-frequency tuning, vibration control

Procedia PDF Downloads 83