Search results for: logit estimation
1377 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management
Authors: Jules Selles
Abstract:
The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna
Procedia PDF Downloads 2531376 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health
Procedia PDF Downloads 2421375 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes
Authors: V. Churkin, M. Lopatin
Abstract:
The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States
Procedia PDF Downloads 3481374 Generalized Additive Model for Estimating Propensity Score
Authors: Tahmidul Islam
Abstract:
Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching
Procedia PDF Downloads 3671373 An Assessment into the Drift in Direction of International Migration of Labor: Changing Aspirations for Religiosity and Cultural Assimilation
Authors: Syed Toqueer Akhter, Rabia Zulfiqar
Abstract:
This paper attempts to trace the determining factor- as far as individual preferences and expectations are concerned- of what causes the direction of international migration to drift in certain ways owing to factors such as Religiosity and Cultural Assimilation. The narrative on migration has graduated from the age long ‘push/pull’ debate to that of complex factors that may vary across each individual. We explore the longstanding factor of religiosity widely acknowledged in mentioned literature as a key variable in the assessment of migration, wherein the impact of religiosity in the form of a drift into the intent of migration has been analyzed. A more conventional factor cultural assimilation is used in a contemporary way to estimate how it plays a role in affecting the drift in direction. In particular what our research aims at achieving is to isolate the effect our key variables: Cultural Assimilation and Religiosity have on direction of migration, and to explore how they interplay as a composite unit- and how we may be able to justify the change in behavior displayed by these key variables. In order to establish a true sense of what drives individual choices we employ the method of survey research and use a questionnaire to conduct primary research. The questionnaire was divided into six sections covering subjects including household characteristics, perceptions and inclinations of the respondents relevant to our study. Religiosity was quantified using a proxy of Migration Network that utilized secondary data to estimate religious hubs in recipient countries. To estimate the relationship between Intent of Migration and its variants three competing econometric models namely: the Ordered Probit Model, the Ordered Logit Model and the Tobit Model were employed. For every model that included our key variables, a highly significant relationship with the intent of migration was estimated.Keywords: international migration, drift in direction, cultural assimilation, religiosity, ordered probit model
Procedia PDF Downloads 3071372 Estimation of Soil Erosion Potential in Herat Province, Afghanistan
Authors: M. E. Razipoor, T. Masunaga, K. Sato, M. S. Saboory
Abstract:
Estimation of soil erosion is economically and environmentally important in Herat, Afghanistan. Degradation of soil has negative impact (decreased soil fertility, destroyed soil structure, and consequently soil sealing and crusting) on life of Herat residents. Water and wind are the main erosive factors causing soil erosion in Herat. Furthermore, scarce vegetation cover, exacerbated by socioeconomic constraint, and steep slopes accelerate soil erosion. To sustain soil productivity and reduce soil erosion impact on human life, due to sustaining agricultural production and auditing the environment, it is needed to quantify the magnitude and extent of soil erosion in a spatial domain. Thus, this study aims to estimate soil loss potential and its spatial distribution in Herat, Afghanistan by applying RUSLE in GIS environment. The rainfall erosivity factor ranged between values of 125 and 612 (MJ mm ha-1 h-1 year-1). Soil erodibility factor varied from 0.036 to 0.073 (Mg h MJ-1 mm-1). Slope length and steepness factor (LS) values were between 0.03 and 31.4. The vegetation cover factor (C), derived from NDVI analysis of Landsat-8 OLI scenes, resulting in range of 0.03 to 1. Support practice factor (P) were assigned to a value of 1, since there is not significant mitigation practices in the study area. Soil erosion potential map was the product of these factors. Mean soil erosion rate of Herat Province was 29 Mg ha-1 year-1 that ranged from 0.024 Mg ha-1 year-1 in flat areas with dense vegetation cover to 778 Mg ha-1 year-1 in sharp slopes with high rainfall but least vegetation cover. Based on land cover map of Afghanistan, areas with soil loss rate higher than soil loss tolerance (8 Mg ha-1 year-1) occupies 98% of Forests, 81% rangelands, 64% barren lands, 60% rainfed lands, 28% urban area and 18% irrigated Lands.Keywords: Afghanistan, erosion, GIS, Herat, RUSLE
Procedia PDF Downloads 4341371 Institutional and Economic Determinants of Foreign Direct Investment: Comparative Analysis of Three Clusters of Countries
Authors: Ismatilla Mardanov
Abstract:
There are three types of countries, the first of which is willing to attract foreign direct investment (FDI) in enormous amounts and do whatever it takes to make this happen. Therefore, FDI pours into such countries. In the second cluster of countries, even if the country is suffering tremendously from the shortage of investments, the governments are hesitant to attract investments because they are at the hands of local oligarchs/cartels. Therefore, FDI inflows are moderate to low in such countries. The third type is countries whose companies prefer investing in the most efficient locations globally and are hesitant to invest in the homeland. Sorting countries into such clusters, the present study examines the essential institutions and economic factors that make these countries different. Past literature has discussed various determinants of FDI in all kinds of countries. However, it did not classify countries based on government motivation, institutional setup, and economic factors. A specific approach to each target country is vital for corporate foreign direct investment risk analysis and decisions. The research questions are 1. What specific institutional and economic factors paint the pictures of the three clusters; 2. What specific institutional and economic factors are determinants of FDI; 3. Which of the determinants are endogenous and exogenous variables? 4. How can institutions and economic and political variables impact corporate investment decisions Hypothesis 1: In the first type, country institutions and economic factors will be favorable for FDI. Hypothesis 2: In the second type, even if country economic factors favor FDI, institutions will not. Hypothesis 3: In the third type, even if country institutions favorFDI, economic factors will not favor domestic investments. Therefore, FDI outflows occur in large amounts. Methods: Data come from open sources of the World Bank, the Fraser Institute, the Heritage Foundation, and other reliable sources. The dependent variable is FDI inflows. The independent variables are institutions (economic and political freedom indices) and economic factors (natural, material, and labor resources, government consumption, infrastructure, minimum wage, education, unemployment, tax rates, consumer price index, inflation, and others), the endogeneity or exogeneity of which are tested in the instrumental variable estimation. Political rights and civil liberties are used as instrumental variables. Results indicate that in the first type, both country institutions and economic factors, specifically labor and logistics/infrastructure/energy intensity, are favorable for potential investors. In the second category of countries, the risk of loss of assets is very high due to governmentshijacked by local oligarchs/cartels/special interest groups. In the third category of countries, the local economic factors are unfavorable for domestic investment even if the institutions are well acceptable. Cluster analysis and instrumental variable estimation were used to reveal cause-effect patterns in each of the clusters.Keywords: foreign direct investment, economy, institutions, instrumental variable estimation
Procedia PDF Downloads 1591370 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City
Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse
Abstract:
Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters
Procedia PDF Downloads 1301369 Weight Estimation Using the K-Means Method in Steelmaking’s Overhead Cranes in Order to Reduce Swing Error
Authors: Seyedamir Makinejadsanij
Abstract:
One of the most important factors in the production of quality steel is to know the exact weight of steel in the steelmaking area. In this study, a calculation method is presented to estimate the exact weight of the melt as well as the objects transported by the overhead crane. Iran Alloy Steel Company's steelmaking area has three 90-ton cranes, which are responsible for transferring the ladles and ladle caps between 34 areas in the melt shop. Each crane is equipped with a Disomat Tersus weighing system that calculates and displays real-time weight. The moving object has a variable weight due to swinging, and the weighing system has an error of about +-5%. This means that when the object is moving by a crane, which weighs about 80 tons, the device (Disomat Tersus system) calculates about 4 tons more or 4 tons less, and this is the biggest problem in calculating a real weight. The k-means algorithm is an unsupervised clustering method that was used here. The best result was obtained by considering 3 centers. Compared to the normal average(one) or two, four, five, and six centers, the best answer is with 3 centers, which is logically due to the elimination of noise above and below the real weight. Every day, the standard weight is moved with working cranes to test and calibrate cranes. The results are shown that the accuracy is about 40 kilos per 60 tons (standard weight). As a result, with this method, the accuracy of moving weight is calculated as 99.95%. K-means is used to calculate the exact mean of objects. The stopping criterion of the algorithm is also the number of 1000 repetitions or not moving the points between the clusters. As a result of the implementation of this system, the crane operator does not stop while moving objects and continues his activity regardless of weight calculations. Also, production speed increased, and human error decreased.Keywords: k-means, overhead crane, melt weight, weight estimation, swing problem
Procedia PDF Downloads 901368 Discrimination and Classification of Vestibular Neuritis Using Combined Fisher and Support Vector Machine Model
Authors: Amine Ben Slama, Aymen Mouelhi, Sondes Manoubi, Chiraz Mbarek, Hedi Trabelsi, Mounir Sayadi, Farhat Fnaiech
Abstract:
Vertigo is a sensation of feeling off balance; the cause of this symptom is very difficult to interpret and needs a complementary exam. Generally, vertigo is caused by an ear problem. Some of the most common causes include: benign paroxysmal positional vertigo (BPPV), Meniere's disease and vestibular neuritis (VN). In clinical practice, different tests of videonystagmographic (VNG) technique are used to detect the presence of vestibular neuritis (VN). The topographical diagnosis of this disease presents a large diversity in its characteristics that confirm a mixture of problems for usual etiological analysis methods. In this study, a vestibular neuritis analysis method is proposed with videonystagmography (VNG) applications using an estimation of pupil movements in the case of an uncontrolled motion to obtain an efficient and reliable diagnosis results. First, an estimation of the pupil displacement vectors using with Hough Transform (HT) is performed to approximate the location of pupil region. Then, temporal and frequency features are computed from the rotation angle variation of the pupil motion. Finally, optimized features are selected using Fisher criterion evaluation for discrimination and classification of the VN disease.Experimental results are analyzed using two categories: normal and pathologic. By classifying the reduced features using the Support Vector Machine (SVM), 94% is achieved as classification accuracy. Compared to recent studies, the proposed expert system is extremely helpful and highly effective to resolve the problem of VNG analysis and provide an accurate diagnostic for medical devices.Keywords: nystagmus, vestibular neuritis, videonystagmographic system, VNG, Fisher criterion, support vector machine, SVM
Procedia PDF Downloads 1361367 Energy Consumption Estimation for Hybrid Marine Power Systems: Comparing Modeling Methodologies
Authors: Kamyar Maleki Bagherabadi, Torstein Aarseth Bø, Truls Flatberg, Olve Mo
Abstract:
Hydrogen fuel cells and batteries are one of the promising solutions aligned with carbon emission reduction goals for the marine sector. However, the higher installation and operation costs of hydrogen-based systems compared to conventional diesel gensets raise questions about the appropriate hydrogen tank size, energy, and fuel consumption estimations. Ship designers need methodologies and tools to calculate energy and fuel consumption for different component sizes to facilitate decision-making regarding feasibility and performance for retrofits and design cases. The aim of this work is to compare three alternative modeling approaches for the estimation of energy and fuel consumption with various hydrogen tank sizes, battery capacities, and load-sharing strategies. A fishery vessel is selected as an example, using logged load demand data over a year of operations. The modeled power system consists of a PEM fuel cell, a diesel genset, and a battery. The methodologies used are: first, an energy-based model; second, considering load variations during the time domain with a rule-based Power Management System (PMS); and third, a load variations model and dynamic PMS strategy based on optimization with perfect foresight. The errors and potentials of the methods are discussed, and design sensitivity studies for this case are conducted. The results show that the energy-based method can estimate fuel and energy consumption with acceptable accuracy. However, models that consider time variation of the load provide more realistic estimations of energy and fuel consumption regarding hydrogen tank and battery size, still within low computational time.Keywords: fuel cell, battery, hydrogen, hybrid power system, power management system
Procedia PDF Downloads 361366 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis
Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate
Abstract:
This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull
Procedia PDF Downloads 731365 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining
Authors: Abubakar Sadiq Mensah
Abstract:
The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.Keywords: eigenvalues, eigenvectors, population, growth/stability
Procedia PDF Downloads 5211364 Biosensor: An Approach towards Sustainable Environment
Authors: Purnima Dhall, Rita Kumar
Abstract:
Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna
Procedia PDF Downloads 2781363 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: damage level monitoring, drift ratio, fragility curve, smart grid, transmission tower
Procedia PDF Downloads 2991362 Nature of Body Image Distortion in Eating Disorders
Authors: Katri K. Cornelissen, Lise Gulli Brokjob, Kristofor McCarty, Jiri Gumancik, Martin J. Tovee, Piers L. Cornelissen
Abstract:
Recent research has shown that body size estimation of healthy women is driven by independent attitudinal and perceptual components. The attitudinal component represents psychological concerns about body, coupled to low self-esteem and a tendency towards depressive symptomatology, leading to over-estimation of body size, independent of the Body Mass Index (BMI) someone actually has. The perceptual component is a normal bias known as contraction bias, which, for bodies is dependent on actual BMI. Women with a BMI less than the population norm tend to overestimate their size, while women with a BMI greater than the population norm tend to underestimate their size. Women whose BMI is close to the population mean are most accurate. This is indexed by a regression of estimated BMI on actual BMI with a slope less than one. It is well established that body dissatisfaction, i.e. an attitudinal distortion, leads to body size overestimation in eating disordered individuals. However, debate persists as to whether women with eating disorders may also suffer a perceptual body distortion. Therefore, the current study was set to ask whether women with eating disorders exhibit the normal contraction bias when they estimate their own body size. If they do not, this would suggest differences in the way that women with eating disorders process the perceptual aspects of body shape and size in comparison to healthy controls. 100 healthy controls and 33 women with a history of eating disorders were recruited. Critically, it was ensured that both groups of participants represented comparable and adequate ranges of actual BMI (e.g. ~18 to ~40). Of those with eating disorders, 19 had a history of anorexia nervosa, 6 bulimia nervosa, and 8 OSFED. 87.5% of the women with a history of eating disorders self-reported that they were either recovered or recovering, and 89.7% of them self-reported that they had had one or more instances of relapse. The mean time lapsed since first diagnosis was 5 years and on average participants had experienced two relapses. Participants were asked to fill number of psychometric measures (EDE-Q, BSQ, RSE, BDI) to establish the attitudinal component of their body image as well as their tendency to internalize socio-cultural body ideals. Additionally, participants completed a method of adjustment psychophysical task, using photorealistic avatars calibrated for BMI, in order to provide an estimate of their own body size and shape. The data from the healthy controls replicate previous findings, revealing independent contributions to body size estimation from both attitudinal and perceptual (i.e. contraction bias) body image components, as described above. For the eating disorder group, once the adequacy of their actual BMI ranges was established, a regression of estimated BMI on actual BMI had a slope greater than 1, significantly different to that from controls. This suggests that (some) eating disordered individuals process the perceptual aspects of body image differently from healthy controls. It therefore is necessary to develop interventions which are specific to the perceptual processing of body shape and size for the management of (some) individuals with eating disorders.Keywords: body image distortion, perception, recovery, relapse, BMI, eating disorders
Procedia PDF Downloads 671361 Bayesian Approach for Moving Extremes Ranked Set Sampling
Authors: Said Ali Al-Hadhrami, Amer Ibrahim Al-Omari
Abstract:
In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS.Keywords: Bayesian, efficiency, moving extreme ranked set sampling, ranked set sampling
Procedia PDF Downloads 5131360 Willingness to Pay for Environmental Conservation and Management of Nogas Island and Its Surrounding Waters Among the Residents of Anini-Y, Antique
Authors: Nichole Patricia Pedrina, Karl Jasper Sumande, Alice Joan Ferrer
Abstract:
Nogas Island situated in the municipality of Anini-y in the province of Antique is endowed with natural resources especially a thriving marine ecosystem that attracts tourists all year round. But despite its beauty and emerging popularity, the island and its surrounding waters remain vulnerable to degradation brought about by anthropocentric activities. An emphasis on the protection and conservation is paramount in order to ensure environmental sustainability over time. This study was conducted in order to determine the willingness-to-pay (WTP) of the local residents of Anini-y, Antique for the conservation of Nogas Island and its surrounding waters. The Contingent Valuation Method (CVM) was used to determine the WTP of the study participants. In addition, the study also described the socio-demographic and economic characteristics, the level of awareness, knowledge and attitude towards the conservation and the reasons for the willingness to pay off the residents for the conservation of the island and its surrounding waters. A pilot-tested interview schedule was used to collect data from 320 randomly selected study participants in 8 barangays in the municipality of Anini-y from January to December 2017. Binary logit regression was conducted in order to identify factors affecting the study participants’ WTP. The results revealed that 54.69 percent of the study participants were willing to pay (with adjustment to the level of certainty) for the conservation program. The sex, monthly household income, randomly assigned bid price and the knowledge index were the variables that affected the willingness-to-pay of the study participants for both with and without adjustment to the level of certainty. The monthly mean WTP of the study participants with and without adjustment to the level of certainty were P115 and P104.5, respectively. This study can serve as a guide for the municipality of Anini-y in creating a policy or program that aims to conserve and protect Nogas Island and its surrounding waters.Keywords: economic valuation, environmental conservation, total economic value, willingness to pay
Procedia PDF Downloads 2201359 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems
Authors: Andrey V. Timofeev
Abstract:
A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation
Procedia PDF Downloads 2561358 Estimation of Level of Pesticide in Recurrent Pregnancy Loss and Its Correlation with Paraoxanase1 Gene in North Indian Population
Authors: Apurva Singh, S. P. Jaiswar, Apala Priyadarshini, Akancha Pandey
Abstract:
Objective: The aim of this study is to find the association of PON1 gene polymorphism with pesticides In RPL subjects. Background: Recurrent pregnancy loss (RPL) is defined as three or more sequential abortions before the 20th week of gestation. Pesticides and its derivatives (organochlorine and organophosphate) are proposed to accommodate a ruler chemical for RPL in the sub-humid region of India. The paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity Methodology: This is a case-control study done in Department of Obstetrics & Gynaecology & Department of Biochemistry, K.G.M.U, Lucknow, India. The subjects were enrolled after fulfilling the inclusion & exclusion criteria. Inclusion criteria: Cases- Subject having two or more spontaneous abortions & Control- Healthy female having one or more alive child was selected. Exclusion criteria: Cases & Control- Subject having the following disease will be excluded from the study Diabetes mellitus, Hypertension, Tuberculosis, Immunocompromised patients, any endocrine disorder and genital, colon or breast cancer any other malignancies. Blood samples were collected in EDTA tubes from cases & healthy control women & genomic DNA was extracted by phenol-chloroform method. The estimation of pesticides residue from blood was done by HPLC. Biochemical estimation was also performed. Genotyping of PON1 gene polymorphism was performed by RFLP. Statistical analysis of the data was performed using the SPSS16.3 software. Results: A sum of total 14 pesticides (12 organochlorine and 2 organophosphate) selected on the basis of their persistent nature and consumption rate. The significant level of pesticide (ppb) estimated by the Mann whiney test and it was found to be significant at higher level of β-HCH (p:0.04), γ-HCH (p:0.001), δ-HCH (p: 0.002), chloropyrifos (p:0.001), pp-DDD (p:0.001) and fenvalrate (p: 0.001) in case group compare to its control. The level of antioxidant enzymes were found to be significantly decreased among the cases. Wild homozygous TT was more frequent and prevalent among control groups. However, heterozygous group (Tt) was more in cases than control groups (CI-0.3-1.3) (p=0.06). Conclusion: Higher levels of pesticides with endocrine disrupting potential in cases indicate the possible role of these compounds as one of the causes of recurrent pregnancy loss. Possibly, increased pesticide level appears to indicate increased levels of oxidative damage that has been associated with the possible cause of Recurrent Miscarriage, it may reflect indirect evidence of toxicity rather than the direct cause. Since both factors are reported to increase risk, individuals with higher levels of these 'Toxic compounds' especially in 'high-risk genotypes' might be more susceptible to recurrent pregnancy loss.Keywords: paraoxonase, pesticides, PON1, RPL
Procedia PDF Downloads 1431357 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: dynamic modeling, missing data, mobility, multiple imputation
Procedia PDF Downloads 1641356 A Technical-Economical Study of a New Solar Tray Distillator
Authors: Abderrahmane Diaf, Assia Cherfa, Lamia Karadaniz
Abstract:
Multiple tray solar distillation offers an interesting alternative for small-scale desalination and production high quality distilled water at a competitive cost using solar energy. In this work, we present indoor/outdoor trial performance data of our multiple tray solar distillation as well as the results of cost estimation analysis.Keywords: solar desalination, tray distillation, multi-étages solaire, solar distillation
Procedia PDF Downloads 4251355 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 1311354 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 821353 Adequacy of Advanced Earthquake Intensity Measures for Estimation of Damage under Seismic Excitation with Arbitrary Orientation
Authors: Konstantinos G. Kostinakis, Manthos K. Papadopoulos, Asimina M. Athanatopoulou
Abstract:
An important area of research in seismic risk analysis is the evaluation of expected seismic damage of structures under a specific earthquake ground motion. Several conventional intensity measures of ground motion have been used to estimate their damage potential to structures. Yet, none of them was proved to be able to predict adequately the seismic damage of any structural system. Therefore, alternative advanced intensity measures which take into account not only ground motion characteristics but also structural information have been proposed. The adequacy of a number of advanced earthquake intensity measures in prediction of structural damage of 3D R/C buildings under seismic excitation which attacks the building with arbitrary incident angle is investigated in the present paper. To achieve this purpose, a symmetric in plan and an asymmetric 5-story R/C building are studied. The two buildings are subjected to 20 bidirectional earthquake ground motions. The two horizontal accelerograms of each ground motion are applied along horizontal orthogonal axes forming 72 different angles with the structural axes. The response is computed by non-linear time history analysis. The structural damage is expressed in terms of the maximum interstory drift as well as the overall structural damage index. The values of the aforementioned seismic damage measures determined for incident angle 0° as well as their maximum values over all seismic incident angles are correlated with 9 structure-specific ground motion intensity measures. The research identified certain intensity measures which exhibited strong correlation with the seismic damage of the two buildings. However, their adequacy for estimation of the structural damage depends on the response parameter adopted. Furthermore, it was confirmed that the widely used spectral acceleration at the fundamental period of the structure is a good indicator of the expected earthquake damage level.Keywords: damage indices, non-linear response, seismic excitation angle, structure-specific intensity measures
Procedia PDF Downloads 4931352 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha
Authors: Dibakar Sahoo, Sridevi Gummadi
Abstract:
The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.Keywords: altitude, adaptation strategies, climate change, foodgrain
Procedia PDF Downloads 2421351 Rural Community Knowledge, Attitude and Perceptions of Consuming Dried Vegetables in Central Region of Tanzania
Authors: Radegunda Kessy, Justus Ochieng, Victor Afari-Sefa, Takemore Chagomoka, Ngoni Nenguwo
Abstract:
Vegetables are excellent sources of dietary fiber, vitamins, and minerals which constitute an indispensable constituent of diets, but in Tanzania and other Sub-Saharan African countries, they are not readily available all year round due to seasonal variations in the production cycle. Drying of vegetables is one of the traditional methods for food preservation known to man. The Dodoma and Singida regions of Tanzania are characterized by semi-arid agro-climate, thereby experiencing short seasonal supply of fresh vegetables followed by long drought in which dried vegetables become an alternative to meet high household demands. A primary survey of 244 of rural consumers was carried out to understand how knowledge, attitudes, and perceptions of rural consumers affect consumption of dried vegetables. The sample respondents were all found to be aware of open sun drying of vegetables while less than 50% of them were aware of solar-dried vegetables. Consumers were highly concerned with the hygiene, nutritional values, taste, drying method, freshness, color of dried vegetables, timely availability and easiness of cooking as important factors they consider before they purchase dried vegetables. Logit model results show that gender, income, years of consuming dried vegetables, awareness of the importance of solar dried vegetables vis-à-vis sun-dried alternatives and employment status influenced rural consumer’s decision to purchase dried vegetables. Preference on dried vegetables differs across the regions which are also important considerations for any future planned interventions. The findings imply that development partners and policymakers need to design better social marketing and promotion techniques for the enhanced adoption of solar drying technology, which will greatly improve the quality and utilization of dried vegetables by target households.Keywords: dried vegetables, postharvest management, sun drying, solar drying
Procedia PDF Downloads 1981350 Electrical Investigations of Polyaniline/Graphitic Carbon Nitride Composites Using Broadband Dielectric Spectroscopy
Authors: M. A. Moussa, M. H. Abdel Rehim, G.M. Turky
Abstract:
Polyaniline composites with carbon nitride, to overcome compatibility restriction with graphene, were prepared with the solution method. FTIR and Uv-vis spectra were used for structural conformation. While XRD and XPS confirmed the structures in addition to estimation of nitrogen atom surroundings, the pore sizes and the active surface area were determined from BET adsorption isotherm. The electrical and dielectric parameters were measured and calculated with BDS .Keywords: carbon nitride, dynamic relaxation, electrical conductivity, polyaniline
Procedia PDF Downloads 1421349 Teaching the Tacit Nuances of Japanese Onomatopoeia through an E-Learning System: An Evaluation Approach of Narrative Interpretation
Authors: Xiao-Yan Li, Takashi Hashimoto, Guanhong Li, Shuo Yang
Abstract:
In Japanese, onomatopoeia is an important element in the lively expression of feelings and experiences. It is very difficult for students of Japanese to acquire onomatopoeia, especially, its nuances. In this paper, based on traditional L2 learning theories, we propose a new method to improve the efficiency of teaching the nuances – both explicit and tacit - to non-native speakers of Japanese. The method for teaching the tacit nuances of onomatopoeia consists of three elements. First is to teach the formal rules representing the explicit nuances of onomatopoeic words. Second is to have the students create new onomatopoeic words by utilizing those formal rules. The last element is to provide feedback by evaluating the onomatopoeias created. Our previous study used five-grade relative estimation. However students were confused about the five-grade system, because they could not understand the evaluation criteria only based on a figure. In this new system, then, we built an evaluation database through native speakers’ narrative interpretation. We asked Japanese native speakers to describe their awareness of the nuances of onomatopoeia in writing. Then they voted on site and defined priorities for showing to learners on the system. To verify the effectiveness of the proposed method and the learning system, we conducted a preliminary experiment involving two groups of subjects. While Group A got feedback about the appropriateness of their onomatopoeic constructions from the native speakers’ narrative interpretation, Group B got feedback just in the form of the five-grade relative estimation. A questionnaire survey administered to all of the learners clarified our learning system availability and also identified areas that should be improved. Repetitive learning of word-formation rules, creating new onomatopoeias and gaining new awareness from narrative interpretation is the total process used to teach the explicit and tacit nuances of onomatopoeia.Keywords: onomatopoeia, tacit nuance, narrative interpretation, e-learning system, second language teaching
Procedia PDF Downloads 3961348 Using Seismic and GPS Data for Hazard Estimation in Some Active Regions in Egypt
Authors: Abdel-Monem Sayed Mohamed
Abstract:
Egypt rapidly growing development is accompanied by increasing levels of standard living particular in its urban areas. However, there is a limited experience in quantifying the sources of risk management in Egypt and in designing efficient strategies to keep away serious impacts of earthquakes. From the historical point of view and recent instrumental records, there are some seismo-active regions in Egypt, where some significant earthquakes had occurred in different places. The special tectonic features in Egypt: Aswan, Greater Cairo, Red Sea and Sinai Peninsula regions are the territories of a high seismic risk, which have to be monitored by up-to date technologies. The investigations of the seismic events and interpretations led to evaluate the seismic hazard for disaster prevention and for the safety of the dense populated regions and the vital national projects as the High Dam. In addition to the monitoring of the recent crustal movements, the most powerful technique of satellite geodesy GPS are used where geodetic networks are covering such seismo-active regions. The results from the data sets are compared and combined in order to determine the main characteristics of the deformation and hazard estimation for specified regions. The final compiled output from the seismological and geodetic analysis threw lights upon the geodynamical regime of these seismo-active regions and put Aswan and Greater Cairo under the lowest class according to horizontal crustal strains classifications. This work will serve a basis for the development of so-called catastrophic models and can be further used for catastrophic risk management. Also, this work is trying to evaluate risk of large catastrophic losses within the important regions including the High Dam, strategic buildings and archeological sites. Studies on possible scenarios of earthquakes and losses are a critical issue for decision making in insurance as a part of mitigation measures.Keywords: b-value, Gumbel distribution, seismic and GPS data, strain parameters
Procedia PDF Downloads 459