Search results for: emulsifying agent (surfactant)
1153 Berberine Ameliorates Glucocorticoid-Induced Hyperglycemia: An In-Vitro and In-Vivo Study
Authors: Mrinal Gupta, Mohammad Rumman, Babita Singh Abbas Ali Mahdi, Shivani Pandey
Abstract:
Introduction: Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities, including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds, including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric, can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have fewer side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. Methods: HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and the effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed to evaluate the development of the diabetic model. An echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis were analyzed. Results: In vitro BBR had no impact on cell viability up to a concentration of 50μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice, as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. Conclusion: BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.Keywords: glucocorticoid, hyperglycemia, berberine, HepG2 cells, insulin resistance, glucose
Procedia PDF Downloads 641152 Development of 90y-Chitosan Complex for Radiosynovectomy
Authors: A. Mirzaei, S. Zolghadri, M. Athari-Allaf, H. Yousefnia, A. R. Jalilian
Abstract:
Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively.Keywords: chitosan, Y-90, radiosynovectomy, biodistribution
Procedia PDF Downloads 4831151 Kinetic Aspect Investigation of Chitosan / Nanohydroxyapatite / Na ₂CO₃ Gel System
Authors: P. S. D. Perera, S. U. Adikary
Abstract:
The gelation behavior of Chitosan/nanohydroxyapatite sol in the presence of a crosslinking agent Na ₂CO₃ was investigated experimentally. In this case, the gelation time(tgel) was determined by the rheological measurements of the final mixture. The tgel has been determined from dynamic viscosity slope experiments. We found that chitosan/nHA sol with 1% nano-hydroxyapatite and 1.6% Na2CO3 required coagulant performance. Hence Na ₂CO₃ and nanohydroxyapatite concentrations remain constant over the experiment. The order of reaction was first order with respect to chitosan and rate constant of the gel system was 9.0 x 10-4 s-1, respectively, depending on the temperature of the system. The gelation temperature was carried out at 37 ⁰C.Keywords: kinetics, gelation, sol-gel system, chitosan/ nHA/ Na ₂CO₃ composite
Procedia PDF Downloads 1661150 Rheological and Computational Analysis of Crude Oil Transportation
Authors: Praveen Kumar, Satish Kumar, Jashanpreet Singh
Abstract:
Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 °C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future.Keywords: surfactant, natural, crude oil, rheology, CFD, viscosity
Procedia PDF Downloads 4541149 Isolation and Synthesis of 1’-S-1’-Acetoxycavicol Acetate as Potent Antidandruff Agent
Authors: M. Vijaya Bhaskar Reddy
Abstract:
The air-dried and powdered methanol solvent extraction of the rhizomes of Alpinia galangal is subjected to bio-assay guided fractionation and isolation yielded a known compound namely, 1'-S-1'-Acetoxychavicol acetate (1). The isolated known compound has been identified based on the physical, spectral data (IR, ¹H, ¹³C, NMR and mass spectroscopy) and comparison with an authentic sample. Finally isolated 1'-S-1'-Acetoxychavicol acetate (1) was confirmed by synthesis. The crude methanol extract and identified known compound (1) were tested for antidandruff property against Malassezia furfur showed with MIC 1000 µg/mL and 7.81 µg/mL, respectively.Keywords: Alpinia galanga, isolation, 1'-S-1'-Acetoxychavicol acetate, antidandruff activity, Malassezia furfur
Procedia PDF Downloads 1711148 Characterization of an Almond Shell Composite Based on PHBH
Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart
Abstract:
The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.Keywords: almond shell, PHBH, composites, compatibilization
Procedia PDF Downloads 1021147 Role of ICT and Wage Inequality in Organization
Authors: Shoji Katagiri
Abstract:
This study deals with wage inequality in organization and shows the relationship between ICT and wage in organization. To do so, we incorporate ICT’s factors in organization into our model. ICT’s factors are efficiencies of Enterprise Resource Planning (ERP), Computer Assisted Design/Computer Assisted Manufacturing (CAD/CAM), and NETWORK. The improvement of ICT’s factors decrease the learning cost to solve problem pertaining to the hierarchy in organization. The improvement of NETWORK increases the wage inequality within workers and decreases within managers and entrepreneurs. The improvements of CAD/CAM and ERP increases the wage inequality within all agent, and partially increase it between the agents in hierarchy.Keywords: endogenous economic growth, ICT, inequality, capital accumulation
Procedia PDF Downloads 2601146 Sustainable and Efficient Recovery of Polyhydroxyalkanoate Polymer from Cupriavidus necator Using Environment Friendly Solvents
Authors: Geeta Gahlawat, Sanjeev Kumar Soni
Abstract:
An imprudent use of environmentally hazardous petrochemical-based plastics and limited availability of fossil fuels have provoked research interests towards production of biodegradable plastics - polyhydroxyalkanoate (PHAs). However, the industrial application of PHAs based products is primarily restricted by their high cost of recovery and extraction protocols. Moreover, solvents used for the extraction and purification are toxic and volatile which causes adverse environmental hazards. Development of efficient downstream recovery strategies along with utilization of non-toxic solvents will accelerate their commercialization. In this study, various extraction strategies were designed for sustainable and cost-effective recovery of PHAs from Cupriavidus necator using non-toxic environment friendly solvents viz. 1,2-propylene carbonate, ethyl acetate, isoamyl alcohol, butyl acetate. The effect of incubation time i.e. 10, 30 and 50 min and temperature i.e. 60, 80, 100, 120°C was tested to identify the most suitable solvent. PHAs extraction using a recyclable solvent, 1,2 propylene carbonate, showed the highest recovery yield (90%) and purity (93%) at 120°C and 30 min incubation. Ethyl acetate showed the better capacity to recover PHAs from cells than butyl acetate. Extraction with ethyl acetate exhibited high recovery yield and purity of 96% and 92%, respectively at 100°C. Effect of non-toxic surfactant such as linear alkylbenzene sulfonic acid (LAS) was also studied at 40, 60 and 80°C, and detergent pH range of 3.0, 5.0, 7.0 and 9.0 for the extraction of PHAs from the cells. LAS gave highest yield of 86% and purity of 88% at temperature 80°C and 5.0 pH.Keywords: polyhydroxyalkanoates, Cupriavidus necator, extraction, recovery yield
Procedia PDF Downloads 5091145 Luminescent Enhancement with Morphology Controlled Gd2O3:Eu Phosphors
Authors: Ruby Priya, Om Parkash Pandey
Abstract:
Eu doped Gd₂O₃ phosphors are synthesized via co-precipitation method using ammonia as a precipitating agent. The concentration of the Eu was set as 4 mol% for all the samples. The effect of the surfactants (CTAB, PEG, and SDS) on the structural, morphological and luminescent properties has been studied in details. The as-synthesized phosphors were characterized by X-ray diffraction technique, Field emission scanning electron microscopy, Fourier transformed infrared spectroscopy and photoluminescence technique. It was observed that the surfactants have not changed the crystal structure, but influenced the morphology of as-synthesized phosphors to a great extent. The as-synthesized phosphors are expected to be promising candidates for optoelectronic devices, biosensors, MRI contrast agents and various biomedical applications.Keywords: co-precipitation, Europium, photoluminescence, surfactants
Procedia PDF Downloads 1851144 Investigation on the Structure of Temperature-Responsive N-isopropylacrylamide Microgels Containing a New Hydrophobic Crosslinker
Authors: G. Roshan Deen, J. S. Pedersen
Abstract:
Temperature-responsive poly(N-isopropyl acrylamide) PNIPAM microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS). The radius of gyration (Rg) and the hydrodynamic radius (Rh) of the microgels decreased with increase in temperature due to the volume phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data was analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible cross-linkers.Keywords: microgels, SAXS, hydrophobic crosslinker, light scattering
Procedia PDF Downloads 4271143 Development of Biosurfactant-Based Adjuvant for Enhancing Biocontrol Efficiency
Authors: Kanyarat Sikhao, Nichakorn Khondee
Abstract:
Adjuvant is commonly mixed with agricultural spray solution during foliar application to improve the performance of microbial-based biological control, including better spreading, absorption, and penetration on a plant leaf. This research aims to replace chemical surfactants in adjuvant by biosurfactants for reducing a negative impact on antagonistic microorganisms and crops. Biosurfactant was produced from Brevibacterium casei NK8 and used as a cell-free broth solution containing a biosurfactant concentration of 3.7 g/L. The studies of microemulsion formation and phase behavior were applied to obtain the suitable composition of biosurfactant-based adjuvant, consisting of cell-free broth (70-80%), coconut oil-based fatty alcohol C12-14 (3) ethoxylate (1-7%), and sodium chloride (8-30%). The suitable formula, achieving Winsor Type III microemulsion (bicontinuous), was 80% of cell-free broth, 7% of fatty alcohol C12-14 (3) ethoxylate, and 8% sodium chloride. This formula reduced the contact angle of water on parafilm from 70 to 31 degrees. The non-phytotoxicity against plant seed of Oryza sativa and Brassica rapa subsp. pekinensis were obtained from biosurfactant-based adjuvant (germination index equal and above 80%), while sodium dodecyl sulfate and tween80 showed phytotoxic effects to these plant seeds. The survival of Bacillus subtilis in biosurfactant-based adjuvant was higher than sodium dodecyl sulfate and tween80. The mixing of biosurfactant and plant-based surfactant could be considered as a viable, safer, and acceptable alternative to chemical adjuvant for sustainable organic farming.Keywords: biosurfactant, microemulsion, bio-adjuvant, antagonistic microorganisms
Procedia PDF Downloads 1411142 Synthesis, Characterization and Applications of Hydrogels Based on Chitosan Derivatives
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Firstly, synthesis of N-Quaternized Chitosan (NQC), then it was proven by FTIR and 1H-NMR analysis. The degree of quaternization(DQ 35% ) was determined by equation. Secondly, synthesis of cross-linked hydrogels composed of NQC and poly (vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde (GA) as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, SEM, XRD,and TGA. Swellability in simulated body fluid (SBF) solutions applied on NQC / PVA hydrogels and swelling rate(Wt%) and metal ions uptake was done on it.Keywords: hydrogel, metal ions uptake, N-quaternized chitosan, poly (vinyl alcohol), swellability
Procedia PDF Downloads 4301141 Information Extraction Based on Search Engine Results
Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk
Abstract:
The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.Keywords: search engines, information extraction, agent system
Procedia PDF Downloads 4301140 A Radiofrequency Based Navigation Method for Cooperative Robotic Communities in Surface Exploration Missions
Authors: Francisco J. García-de-Quirós, Gianmarco Radice
Abstract:
When considering small robots working in a cooperative community for Moon surface exploration, navigation and inter-nodes communication aspects become a critical issue for the mission success. For this approach to succeed, it is necessary however to deploy the required infrastructure for the robotic community to achieve efficient self-localization as well as relative positioning and communications between nodes. In this paper, an exploration mission concept in which two cooperative robotic systems co-exist is presented. This paradigm hinges on a community of reference agents that provide support in terms of communication and navigation to a second agent community tasked with exploration goals. The work focuses on the role of the agent community in charge of the overall support and, more specifically, will focus on the positioning and navigation methods implemented in RF microwave bands, which are combined with the communication services. An analysis of the different methods for range and position calculation are presented, as well as the main limiting factors for precision and resolution, such as phase and frequency noise in RF reference carriers and drift mechanisms such as thermal drift and random walk. The effects of carrier frequency instability due to phase noise are categorized in different contributing bands, and the impact of these spectrum regions are considered both in terms of the absolute position and the relative speed. A mission scenario is finally proposed, and key metrics in terms of mass and power consumption for the required payload hardware are also assessed. For this purpose, an application case involving an RF communication network in UHF Band is described, in coexistence with a communications network used for the single agents to communicate within the both the exploring agents as well as the community and with the mission support agents. The proposed approach implements a substantial improvement in planetary navigation since it provides self-localization capabilities for robotic agents characterized by very low mass, volume and power budgets, thus enabling precise navigation capabilities to agents of reduced dimensions. Furthermore, a common and shared localization radiofrequency infrastructure enables new interaction mechanisms such as spatial arrangement of agents over the area of interest for distributed sensing.Keywords: cooperative robotics, localization, robot navigation, surface exploration
Procedia PDF Downloads 2941139 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application
Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue
Abstract:
Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation
Procedia PDF Downloads 701138 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins
Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova
Abstract:
Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins
Procedia PDF Downloads 1681137 Reduction Study of As(III)-Cysteine Complex through Linear Sweep Voltammetry
Authors: Sunil Mittal, Sukhpreet Singh, Hardeep Kaur
Abstract:
A simple voltammetric technique for on-line analysis of arsenite [As (III)] is reported. Owing to the affinity of As (III) with thiol group of proteins and enzymes, cysteine has been employed as reducing agent. The reduction study of As(III)-cysteine complex on indium tin oxide (ITO) electrode has been explored. The experimental parameters such as scan rate, cysteine concentration, pH etc. were optimized to achieve As (III) determination. The developed method provided dynamic linear range of detection from 0.1 to 1 mM with a detection limit of 0.1 mM. The method is applicable to environmental monitoring of As (III) from highly contaminated sources such as industrial effluents, wastewater sludge etc.Keywords: arsenite, cysteine, linear sweep voltammetry, reduction
Procedia PDF Downloads 2401136 Self-Assembled ZnFeAl Layered Double Hydroxides as Highly Efficient Fenton-Like Catalysts
Authors: Marius Sebastian Secula, Mihaela Darie, Gabriela Carja
Abstract:
Ibuprofen is a non-steroidal anti-inflammatory drug (NSAIDs) and is among the most frequently detected pharmaceuticals in environmental samples and among the most widespread drug in the world. Its concentration in the environment is reported to be between 10 and 160 ng L-1. In order to improve the abatement efficiency of this compound for water source prevention and reclamation, the development of innovative technologies is mandatory. AOPs (advanced oxidation processes) are known as highly efficient towards the oxidation of organic pollutants. Among the promising combined treatments, photo-Fenton processes using layered double hydroxides (LDHs) attracted significant consideration especially due to their composition flexibility, high surface area and tailored redox features. This work presents the self-supported Fe, Mn or Ti on ZnFeAl LDHs obtained by co-precipitation followed by reconstruction method as novel efficient photo-catalysts for Fenton-like catalysis. Fe, Mn or Ti/ZnFeAl LDHs nano-hybrids were tested for the degradation of a model pharmaceutical agent, the anti-inflammatory agent ibuprofen, by photocatalysis and photo-Fenton catalysis, respectively, by means of a lab-scale system consisting of a batch reactor equipped with an UV lamp (17 W). The present study presents comparatively the degradation of Ibuprofen in aqueous solution UV light irradiation using four different types of LDHs. The newly prepared Ti/ZnFeAl 4:1 catalyst results in the best degradation performance. After 60 minutes of light irradiation, the Ibuprofen removal efficiency reaches 95%. The slowest degradation of Ibuprofen solution occurs in case of Fe/ZnFeAl 4:1 LDH, (67% removal efficiency after 60 minutes of process). Evolution of Ibuprofen degradation during the photo Fenton process is also studied using Ti/ZnFeAl 2:1 and 4:1 LDHs in the presence and absence of H2O2. It is found that after 60 min the use of Ti/ZnFeAl 4:1 LDH in presence of 100 mg/L H2O2 leads to the fastest degradation of Ibuprofen molecule. After 120 min, both catalysts Ti/ZnFeAl 4:1 and 2:1 result in the same value of removal efficiency (98%). In the absence of H2O2, Ibuprofen degradation reaches only 73% removal efficiency after 120 min of degradation process. Acknowledgements: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI, project number PN-II-RU-TE-2014-4-0405.Keywords: layered double hydroxide, advanced oxidation process, micropollutant, heterogeneous Fenton
Procedia PDF Downloads 2291135 Electrochemical Synthesis of Copper Nanoparticles
Authors: Juan Patricio Ibáñez, Exequiel López
Abstract:
A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer
Procedia PDF Downloads 631134 Isolation and Characterization of Bio-surfactant Producing Alcaligenes sp YLA1 and Its Diesel Degradation Potentials
Authors: Abdulrahman Abdulhamid Arabo, Raji Arabi Bamanga, Mujiburrahman Fadilu, Musa Abubakar, Fatima Abdullahi Shehu, Hafeez Muhammad Yakasai, Nasiru Abdullahi
Abstract:
The aim of this study was to isolate and identify biosurfactant-producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel-contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using the conventional enrichment culture technique, where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as the sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that showed positive signs for drop collapse, foaming, hemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on the biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolate B11, and the optimum PH was confirmed as 8.0 for the isolate; similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favorable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% of individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA. Sequencing.Keywords: diesel oil, biosurfactant, Alcaligenes sp, biodegradation
Procedia PDF Downloads 1111133 The Investigation of Effectiveness of Different Concentrations of the Mycotoxin Detoxification Agent Added to Broiler Feed, in the Presence of T-2 Toxin, on Performance, Organ Mass and the Residues T-2 Toxin and His Metabolites in the Broiler Tissues
Authors: Jelena Nedeljković Trailović, Marko Vasiljević, Jog Raj, Hunor Farkaš, Branko Petrujkić, Stamen Radulović, Gorana Popvić
Abstract:
The experiment was performed on a total of 99 one-day-old broilers of Cob 500 provenance, which were divided into IX equal groups. Broilers of the E-I group were fed 0.25 mg T-2 toxin/kg feed, E-II and E-III groups 0.25 mg T-2 toxin/kg feed with the addition of 1 kg/t and 3 kg/t of the mycotoxin detoxification agent MDA, respectively. The E-IV group received 1 mg of T-2 toxin/kg of feed, and the broilers of E-V and E-VI groups received 1 mg of T-2 toxin/kg of feed with the addition of 1 kg/t and 3 kg/t of the MDA detoxification preparation, respectively. The E-VII group received commercial feed without toxins and additives, the E-VIII and E-IX groups received feed with 1kg/t and 3kg/t of the MDA detoxification preparation. The trial lasted 42 days. Observing the results obtained on the 42nd day of the experiment, we can conclude that the change in the absolute mass of the spleen occurred in the broilers of the E-IV group (1.66±0.14)g, which was statistically significantly lower compared to the broilers of the E-V and E-VI groups (2.58±0.15 and 2.68±0.23)g. Heart mass was significantly statistically lower in broilers of group E-IV (9.1±0.38)g compared to broilers of group E-V and E-VI (12.23±0.5 and 11.43±0.51)g. It can be concluded that the broilers that received 1 kg/t and 3 kg/t of the detoxification preparation had an absolute mass of organs within physiological limits. Broilers of the E-IV group achieved the lowest BM during the experiment (on the 42nd day of the experiment 1879±52.73)g, they were significantly statistically lower than the BW of broilers of all experimental groups. This trend is observed from the beginning to the end of the experiment. The protective effect of the detoxification preparation can be seen in broilers of the E-V group, that had a significantly statistically higher BM on the 42nd day of the experiment (2225±58.81)g compared to broilers of group E-IV. Broilers of E-VIII group (2452±46.71) g, which received commercial feed with the addition of 1 kg/t MDA preparation, had the highest BMI at the end of the experiment. At the end of the trial on the 42nd day, blood samples were collected from broilers of the experimental groups that received T-2 toxin and MR detoxification preparations in different concentrations. Also, liver and breast musculature samples were collected for testing for the presence and content of T-2 toxin, HT-2 toxin, T-2 tetraol and T-2 triol. Due to very rapid elimination from the blood, no remains of T-2 toxin and its metabolites were detected in the blood of broilers of groups E-I to E-VI. In the breast muscles, T-2 toxin residues below LoQ < 0.2 (μg/kg) were detected in all groups that received T-2 toxin in food, the highest value was recorded in the E-IV group (0.122 μg/kg and the lowest in E -VI group 0.096 μg/kg). No T-2 toxin residues were detected in the liver. Remains of HT-2 were detected in the breast muscles and livers of broilers from E-IV, E-V and E-VI groups, LoQ < 1 (μg/kg); for the breast muscles: 0.054, 0.044 and 0.041 μg/kg, and for the liver: 0.473, 0.231 and 0.185 μg/kg. Summing up all the results, a partial protective effect of the detoxification preparation, added to food in the amount of 1kg/t, can be seen.Keywords: T-2 toxin, bloiler, MDA, mycotoxuns
Procedia PDF Downloads 851132 Children’s Perception of Conversational Agents and Their Attention When Learning from Dialogic TV
Authors: Katherine Karayianis
Abstract:
Children with Attention Deficit Hyperactivity Disorder (ADHD) have trouble learning in traditional classrooms. These children miss out on important developmental opportunities in school, which leads to challenges starting in early childhood, and these problems persist throughout their adult lives. Despite receiving supplemental support in school, children with ADHD still perform below their non-ADHD peers. Thus, there is a great need to find better ways of facilitating learning in children with ADHD. Evidence has shown that children with ADHD learn best through interactive engagement, but this is not always possible in schools, given classroom restraints and the large student-to-teacher ratio. Redesigning classrooms may not be feasible, so informal learning opportunities provide a possible alternative. One popular informal learning opportunity is educational TV shows like Sesame Street. These types of educational shows can teach children foundational skills taught in pre-K and early elementary school. One downside to these shows is the lack of interactive dialogue between the TV characters and the child viewers. Pseudo-interaction is often deployed, but the benefits are limited if the characters can neither understand nor contingently respond to the child. AI technology has become extremely advanced and is now popular in many electronic devices that both children and adults have access to. AI has been successfully used to create interactive dialogue in children’s educational TV shows, and results show that this enhances children’s learning and engagement, especially when children perceive the character as a reliable teacher. It is likely that children with ADHD, whose minds may otherwise wander, may especially benefit from this type of interactive technology, possibly to a greater extent depending on their perception of the animated dialogic agent. To investigate this issue, I have begun examining the moderating role of inattention among children’s learning from an educational TV show with different types of dialogic interactions. Preliminary results have shown that when character interactions are neither immediate nor accurate, children who are more easily distracted will have greater difficulty learning from the show, but contingent interactions with a TV character seem to buffer these negative effects of distractibility by keeping the child engaged. To extend this line of work, the moderating role of the child’s perception of the dialogic agent as a reliable teacher will be examined in the association between children’s attention and the type of dialogic interaction in the TV show. As such, the current study will investigate this moderated moderation.Keywords: attention, dialogic TV, informal learning, educational TV, perception of teacher
Procedia PDF Downloads 841131 Elastomer Composites Containing Ionic Liquids
Authors: M. Maciejewska, F. Walkiewicz
Abstract:
The aim of this work was to study the activity of several novel benzalkonium and alkylammonium and alkylimidazolium ionic liquids with 2-mercaptobenzothiazolate for use as accelerators in the sulphur vulcanisation of butadiene-styrene elastomer (SBR). The application of novel ionic liquids allowed for the elimination of N-cyclohexyl-2-benzothiazolesulfenamide from SBR compounds and for the considerable reduction of the amount of 2-mercaptobenzothiazole present in rubber products, which is favourable because, it is an allergenic agent. Synthesised salts could be used alternatively to standard accelerators in the vulcanisation of SBR, without any detrimental effects on the vulcanisation process, the physical properties or the thermal stability of the obtained vulcanisates. Ionic liquids increased the crosslink density of the vulcanisates and improved their thermal stability.Keywords: ionic liquids, mechanical properties, styrene-butadiene rubber, vulcanisation
Procedia PDF Downloads 3121130 The Impact of Demographic Profile on Strategic HRM Practices and its Challenges Faced by HR Managers in IT Firm, India: An Empirical Study
Authors: P. Saravanan, A. Vasumathi
Abstract:
Strategic Human Resource Management (SHRM) plays a vital role in formulating the policies and strategies for the company, in order to fulfill the employee’s requirement and to perform the job efficiently within the organisation. Human Resource Management (HRM) functions helps in attracting and motivating the talented workforce for the organisation and by increasing the performance of an individual, will result in achieving the defined goals and objectives for the company. HRM function plays an important role in managing the workers within organisation through a formal communication channel. Since HR functions acts as a mediatory role in between the employee as well as the employers within the organisation that helps in improving the efficacy and skills of the individuals employed within the company. HR manager acts as a change agent, enabling and driving the change management program with respect to business HR functions and its future requirements of the company. Due to change in the business environment, the focus of HR manager is shifting from administrative/personal functions in to a strategic business HR function. HR managers plays a strategic role in managing various HR functions such as recruitment and selection, human resource information system, manpower planning, performance management, conflict management, employee engagement, compensation management, policy formation and retention strategies followed within the industry. Major challenges faced by HR managers at work place are managing the level of engagement for the talented resources within the organisation, reducing the conflicts at workplace, mapping the talented resources through succession planning process, building the effective appraisal process and performance management system and mapping the compensation based on the skills and experience possed by the employee within the company. The authors conducted a study for the sample size of 75 HR managers from an Indian IT company through systematic sampling method. This study identifies that the female employees are facing lesser conflict than the male employees against their managers within the organisation and also the study determines the impact of demographic profile on strategic HRM practices and its challenges faced by HR managers in IT firm, India.Keywords: strategic human resource management, change agent, employee engagement, performance management, succession planning and conflict management
Procedia PDF Downloads 2981129 Curcumin Loaded Modified Chitosan Nanocarrier for Tumor Specificity
Authors: S. T. Kumbhar, M. S. Bhatia, R. C. Khairate
Abstract:
An effective nanodrug delivery system was developed by using chitosan for increased encapsulation efficiency and retarded release of curcumin. Potential ionotropic gelation method was used for the development of chitosan nanoparticles with TPP as cross-linker. The characterization was done for analysis of size, structure, surface morphology, and thermal behavior of synthesized chitosan nanoparticles. The encapsulation efficiency was more than 80%, with improved drug loading capacity. The in-vitro drug release study showed that curcumin release rate was decreased significantly. These chitosan nanoparticles could be a suitable platform for co-delivery of curcumin and anticancer agent for enhanced cytotoxic effect on tumor cells.Keywords: Curcumin, chitosan, nanoparticles, anticancer activity
Procedia PDF Downloads 1781128 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves
Authors: Phillip Ahn, Bryan Kim
Abstract:
Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.Keywords: heavy metal removal, adsorption, wastewaters, water remediation
Procedia PDF Downloads 2901127 Preparation of Nano-Sized Samarium-Doped Yttrium Aluminum Garnet
Authors: M. Tabatabaee, N. Binavayan, M. R. Nateghi
Abstract:
In this research nano-size of yttrium aluminum garnet (YAG) containing lanthanide metals was synthesized by the sol-gel method in presente citric acid as a complexing agent. Samarium (III) was used to synthesis of YAG:M3+. The prepared powders were characterized by powder X-ray diffraction (PXRD). The size distribution and morphology of the samples were analyzed by scanning electron microscopy (SEM). XRD results show that Sm, La, and ce doped YAG crystallizes in the cubic system and additional peaks compared to pure YAG can be assigned to the presence of Sm in the synthesize YAG. The SEM images show possess spherical nano-sized particle with average 50 nm in diameter.Keywords: citric acid, nano particle, samarium, yttrium aluminum garnet
Procedia PDF Downloads 3031126 Determination and Preconcentration of Chromium Ion in Environmental Samples by Clinoptilolite Zeolite
Authors: Elham Moniri, Homayon Ahmad Panahi, Mitra Hoseini
Abstract:
In this research, clinoptilolite zeolite was prepared. The zeolite was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cr(III) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cr(III) was 6 respectively. The sorption capacity of zeolite for Cr(III) were 7.9 mg g−1. A recovery of 89% was obtained for the metal ions with 0.5 M nitric acid as the eluting agent. The effects of interfering ions on Cr(III) sorption was also investigated. The profile of Cr(III) uptake on this sorbent reflects a good accessibility of the chelating sites in the clinoptilolite zeolite. The developed method was utilized for the determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.Keywords: clinoptilolite zeolite, chromium, environmental sample, determination
Procedia PDF Downloads 4441125 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops
Authors: Simon Komesker, Achim Wagner, Martin Ruskowski
Abstract:
In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.Keywords: holonic manufacturing system, modular production system, planning, and control, system structure
Procedia PDF Downloads 1691124 Synthesis, Characterization and Impedance Analysis of Polypyrrole/La0.7Ca0.3MnO3 Nanocomposites
Authors: M. G. Smitha, M. V. Murugendrappa
Abstract:
Perovskite manganite La0.7Ca0.3MnO3 was synthesized by Sol-gel method. Polymerization of pyrrole was carried by in-situ polymerization method. The composite of pyrrole (Py)/La0.7Ca0.3MnO3 composite in the presence of oxidizing agent ammonium per sulphate to synthesize polypyrrole (PPy)/La0.7Ca0.3MnO3 (LCM) composite was carried out by the same in-situ polymerization method. The PPy/LCM composites were synthesized with varying compositions like 10, 20, 30, 40, and 50 wt.% of LCM in Py. The surface morphologies of these composites were analyzed by using scanning electron microscope (SEM). The images show that LCM particles are embedded in PPy chain. The impedance measurement of PPy/LCM at different temperature ranges from 30 to 180 °C was studied using impedance analyzer. The study shows that impedance is frequency and temperature dependent and it is found to decrease with increase in frequency and temperature.Keywords: polypyrrole, sol gel, impedance, composites
Procedia PDF Downloads 375