Search results for: deep vibro techniques
7876 Data Mining and Knowledge Management Application to Enhance Business Operations: An Exploratory Study
Authors: Zeba Mahmood
Abstract:
The modern business organizations are adopting technological advancement to achieve competitive edge and satisfy their consumer. The development in the field of Information technology systems has changed the way of conducting business today. Business operations today rely more on the data they obtained and this data is continuously increasing in volume. The data stored in different locations is difficult to find and use without the effective implementation of Data mining and Knowledge management techniques. Organizations who smartly identify, obtain and then convert data in useful formats for their decision making and operational improvements create additional value for their customers and enhance their operational capabilities. Marketers and Customer relationship departments of firm use Data mining techniques to make relevant decisions, this paper emphasizes on the identification of different data mining and Knowledge management techniques that are applied to different business industries. The challenges and issues of execution of these techniques are also discussed and critically analyzed in this paper.Keywords: knowledge, knowledge management, knowledge discovery in databases, business, operational, information, data mining
Procedia PDF Downloads 5387875 A U-Net Based Architecture for Fast and Accurate Diagram Extraction
Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal
Abstract:
In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO
Procedia PDF Downloads 1377874 In Vitro Anthelmintic Effects of Citrullus colocynthis Fruit Extract on Fasciola gigantica of Domestic Buffalo (Bubalus bubalis) in Udaipur, India
Authors: Rajnarayan Damor, Gayatri Swarnakar
Abstract:
Fasciola gigantica are present in the biliary ducts of liver and gall bladder of domestic buffaloes. They are very harmful and causes significant lose to live stock owners, on account of poor growth and lower productivity of domestic buffaloes. Synthetic veterinary drugs have been used to eliminate parasites from cattle but these drugs are unaffordable and inaccessible for poor cattle farmers. The in vitro anthelmintic effect of Citrullus colocynthis fruit extract against Fasciola gigantica parasites were observed by light and scanning electron microscopy. Fruit extracts of C. colocynthis exhibit highest mortality 100% at 50 mg/ml in 15th hour of exposure. The oral and ventral sucker appeared to be slightly more swollen than control and synthetic drug albendazole. The tegument showed submerged spines by the swollen tegument around them. The tegument of the middle region showed deep furrows, folding and submerged spines which either lied very flat against the surface or had become submerged in the tegument by the swollen tegument around them leaving deep furrows. Posterior region showed with deep folding in the tegument, completely disappearance of spines and swelling of the tegument led to completely submerged spines leaving spine socket. The present study revealed that fruit extracts of Citrullus colocynthis found to be potential sources for novel anthelmintic and justify their ethno-veterinary use.Keywords: anthelmintic, buffalo, Citrullus colocynthis, Fasciola gigantica, mortality, tegument
Procedia PDF Downloads 2327873 Predicting Shortage of Hospital Beds during COVID-19 Pandemic in United States
Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi
Abstract:
World-wide spread of coronavirus grows the concern about planning for the excess demand of hospital services in response to COVID-19 pandemic. The surge in the hospital services demand beyond the current capacity leads to shortage of ICU beds and ventilators in some parts of US. In this study, we forecast the required number of hospital beds and possible shortage of beds in US during COVID-19 pandemic to be used in the planning and hospitalization of new cases. In this paper, we used a data on COVID-19 deaths and patients’ hospitalization besides the data on hospital capacities and utilization in US from publicly available sources and national government websites. we used a novel ensemble modelling of deep learning networks, based on stacking different linear and non-linear layers to predict the shortage in hospital beds. The results showed that our proposed approach can predict the excess hospital beds demand very well and this can be helpful in developing strategies and plans to mitigate this gap.Keywords: COVID-19, deep learning, ensembled models, hospital capacity planning
Procedia PDF Downloads 1567872 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings
Authors: Kyoungrean Kim
Abstract:
Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives
Procedia PDF Downloads 1557871 Evaluating the Use of Manned and Unmanned Aerial Vehicles in Strategic Offensive Tasks
Authors: Yildiray Korkmaz, Mehmet Aksoy
Abstract:
In today's operations, countries want to reach their aims in the shortest way due to economical, political and humanitarian aspects. The most effective way of achieving this goal is to be able to penetrate strategic targets. Strategic targets are generally located deep inside of the countries and are defended by modern and efficient surface to air missiles (SAM) platforms which are operated as integrated with Intelligence, Surveillance and Reconnaissance (ISR) systems. On the other hand, these high valued targets are buried deep underground and hardened with strong materials against attacks. Therefore, to penetrate these targets requires very detailed intelligence. This intelligence process should include a wide range that is from weaponry to threat assessment. Accordingly, the framework of the attack package will be determined. This mission package has to execute missions in a high threat environment. The way to minimize the risk which depends on loss of life is to use packages which are formed by UAVs. However, some limitations arising from the characteristics of UAVs restricts the performance of the mission package consisted of UAVs. So, the mission package should be formed with UAVs under the leadership of a fifth generation manned aircraft. Thus, we can minimize the limitations, easily penetrate in the deep inside of the enemy territory with minimum risk, make a decision according to ever-changing conditions and finally destroy the strategic targets. In this article, the strengthens and weakness aspects of UAVs are examined by SWOT analysis. And also, it revealed features of a mission package and presented as an example what kind of a mission package we should form in order to get marginal benefit and penetrate into strategic targets with the development of autonomous mission execution capability in the near future.Keywords: UAV, autonomy, mission package, strategic attack, mission planning
Procedia PDF Downloads 5507870 Revealing the Manufacturing Techniques of the Leather Scale Armour of Tutankhamun by the Assist of Conservation Procedures
Authors: Safwat Mohamed, Rasha Metawi, Hadeel Khalil, Hussein Kamal
Abstract:
This paper discusses and reveals the manufacturing techniques of the leather scale armour of Tutankhamun. This armour was in critical condition and went under many conservation procedures as it suffered from some serious deterioration aspects including fragmentation. In addition, its original shape was lost, the leather scales were found scattered in the box and separated from the linen basis, and hence its outlines were blurred and incomprehensible. In view of this, the leather scale armour of Tutankhamun was desperate for urgent conservation and reconstruction interventions. Documentation measures were done before conservation. Several re-treatable conservation procedures were applied seeking for stabilizing the armour and reaching sustainable condition. The conservation treatments included many investigations and analyses that helped in revealing materials and techniques of making the armour. The leather scale armour of Tutankhamun consisted of leather scales attached to a linen support. This linen support consisted of several layers. Howard Carter assumed that the linen support consisted of 6 layers. The undertaken conservation treatments helped in revealing the actual number of layers of the linen support as well as in reaching the most sustainable condition. This paper views the importance of the conservation procedures, which were recently carried out on Tutankhamun’s leather scale armour, in identifying and revealing all materials and techniques used in its manufacturing. The collected data about manufacturing techniques were used in making a replica of the leather scale armour with the same methods and materials.Keywords: leather scales armours, conservation, manufacturing techniques, Tutankhamun, producing a replica
Procedia PDF Downloads 1007869 Emotional Labor Strategies and Intentions to Quit among Nurses in Pakistan
Authors: Maham Malik, Amjad Ali, Muhammad Asif
Abstract:
Current study aims to examine the relationship of emotional labor strategies - deep acting and surface acting - with employees' job satisfaction, organizational commitment and intentions to quit. The study also examines the mediating role of job satisfaction and organizational commitment for relationship of emotional labor strategies with intentions to quit. Data were conveniently collected from 307 nurses by using self-administered questionnaire. Linear regression test was applied to find the relationship between the variables. Mediation was checked through Baron and Kenny Model and Sobel test. Results prove the existence of partial mediation of job satisfaction between the emotional labor strategies and quitting intentions. The study recommends that deep acting should be promoted because it is positively associated with quality of work life, work engagement and organizational citizenship behavior of employees.Keywords: emotional labor strategies, intentions to quit, job satisfaction, organizational commitment, nursing
Procedia PDF Downloads 1477868 Uncertainty Estimation in Neural Networks through Transfer Learning
Authors: Ashish James, Anusha James
Abstract:
The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.Keywords: uncertainty estimation, neural networks, transfer learning, regression
Procedia PDF Downloads 1357867 Discovering User Behaviour Patterns from Web Log Analysis to Enhance the Accessibility and Usability of Website
Authors: Harpreet Singh
Abstract:
Finding relevant information on the World Wide Web is becoming highly challenging day by day. Web usage mining is used for the extraction of relevant and useful knowledge, such as user behaviour patterns, from web access log records. Web access log records all the requests for individual files that the users have requested from the website. Web usage mining is important for Customer Relationship Management (CRM), as it can ensure customer satisfaction as far as the interaction between the customer and the organization is concerned. Web usage mining is helpful in improving website structure or design as per the user’s requirement by analyzing the access log file of a website through a log analyzer tool. The focus of this paper is to enhance the accessibility and usability of a guitar selling web site by analyzing their access log through Deep Log Analyzer tool. The results show that the maximum number of users is from the United States and that they use Opera 9.8 web browser and the Windows XP operating system.Keywords: web usage mining, web mining, log file, data mining, deep log analyzer
Procedia PDF Downloads 2487866 The Role of Questioning Techniques in a Literature Classroom
Authors: Barbara Magallona
Abstract:
Given the observations between students who were active participants in a dialogue with their teacher and students who simply answered the teacher’s questions, the researcher will investigate the relationship between student-teacher dialogue in the classroom and the development of higher level thinking skills with an emphasis on the questioning techniques used by the teacher. The study posits the main question: What is the relationship between teachers’ questioning techniques and the development of students’ higher level thinking skills in a literature class (or in literature classes) in Xavier? The following are the study’s sub-questions: a) What types of questions do literature teachers at Xavier School ask? b) What types of responses do literature students at Xavier School give to teachers' questions? c) To what extent is the development of students' higher level thinking skills shown in teacher-student classroom dialogues in Xavier School's literature classroom? Since questioning techniques and student responses in the literature classroom form the core of this paper and in order to evaluate them, the study uses Andersen and Krathwohl’s revision of Harold Bloom’s Taxonomy of Educational Objectives. Teun van Dijk’s discourse-cognition-society triangle will be used as a theoretical framework to design and to guide the classroom interaction.Keywords: discourse analysis, literature classroom, questioning techniques, secondary education
Procedia PDF Downloads 5277865 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation
Authors: Hugo Sampaio Libero, Max de Castro Magalhaes
Abstract:
The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests
Procedia PDF Downloads 937864 Vital Pulp Therapy: A Paradigm Shift in Treating Irreversible Pulpitis
Authors: Fadwa Chtioui
Abstract:
Vital Pulp Therapy (VPT) is nowadays challenging the deep-rooted dogma of root canal treatment, being the only therapeutic option for permanent teeth diagnosed with irreversible pulpitis or carious pulp exposure. Histologic and clinical research has shown that compromised dental pulp can be treated without the full removal or excavation of all healthy pulp, and the outcome of the partial or full pulpotomy followed by a Tricalcium-Silicate-based dressing seems to show promising results in maintaining pulp vitality and preserving affected teeth in the long term. By reviewing recent advances in the techniques of VPT and their clinical effectiveness and safety in permanent teeth with irreversible Pulpitis, this work provides a new understanding of pulp pathophysiology and defense mechanisms and will reform dental practitioners' decision-making in treating irreversible pulpits from root canal therapy to vital pulp therapy by taking advantage of the biological effects of Tricalcium Silicate materials.Keywords: irreversible pulpitis, vital pulp therapy, pulpotomy, Tricalcium Silicate
Procedia PDF Downloads 607863 Assisting Dating of Greek Papyri Images with Deep Learning
Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou
Abstract:
Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.Keywords: image classification, papyri images, dating
Procedia PDF Downloads 787862 Coping with the Stress and Negative Emotions of Care-Giving by Using Techniques from Seneca, Epictetus, and Marcus Aurelius
Authors: Arsalan Memon
Abstract:
There are many challenges that a caregiver faces in average everyday life. One such challenge is coping with the stress and negative emotions of caregiving. The Stoics (i.e. Lucius Annaeus Seneca [4 B.C.E. - 65 C.E.], Epictetus [50-135 C.E.], and Marcus Aurelius [121-180 C.E.]) have provided coping techniques that are useful for dealing with stress and negative emotions. This paper lists and explains some of the fundamental coping techniques provided by the Stoics. For instance, some Stoic coping techniques thus follow (the list is far from exhaustive): a) mindfulness: to the best of your ability, constantly being aware of your thoughts, habits, desires, norms, memories, likes/dislikes, beliefs, values, and of everything outside of you in the world (b) constantly adjusting one’s expectations in accordance with reality, c) memento mori: constantly reminding oneself that death is inevitable and that death is not to be seen as evil, and d) praemeditatio malorum: constantly detaching oneself from everything that is so dear to one so that the least amount of suffering follows from the loss, damage, or ceasing to be of such entities. All coping techniques will be extracted from the following original texts by the Stoics: Seneca’s Letters to Lucilius, Epictetus’ Discourses and the Encheiridion, and Marcus Aurelius’ Meditations. One major finding is that the usefulness of each Stoic coping technique can be empirically tested by anyone in the sense of applying it one’s own life especially when one is facing real-life challenges. Another major finding is that all of the Stoic coping techniques are predicated upon, and follow from, one fundamental principle: constantly differentiate what is and what is not in one’s control. After differentiating it, one should constantly habituate oneself in not controlling things that are beyond one’s control. For example, the following things are beyond one’s control (all things being equal): death, certain illnesses, being born in a particular socio-economic family, etc. The conclusion is that if one habituates oneself by practicing to the best of one’s ability both the fundamental Stoic principle and the Stoic coping techniques, then such a habitual practice can eventually decrease the stress and negative emotions that one experiences by being a caregiver.Keywords: care-giving, coping techniques, negative emotions, stoicism, stress
Procedia PDF Downloads 1397861 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 1537860 Income and Factor Analysis of Small Scale Broiler Production in Imo State, Nigeria
Authors: Ubon Asuquo Essien, Okwudili Bismark Ibeagwa, Daberechi Peace Ubabuko
Abstract:
The Broiler Poultry subsector is dominated by small scale production with low aggregate output. The high cost of inputs currently experienced in Nigeria tends to aggravate the situation; hence many broiler farmers struggle to break-even. This study was designed to examine income and input factors in small scale deep liter broiler production in Imo state, Nigeria. Specifically, the study examined; socio-economic characteristics of small scale deep liter broiler producing Poultry farmers; estimate cost and returns of broiler production in the area; analyze input factors in broiler production in the area and examined marketability, age and profitability of the enterprise. A multi-stage sampling technique was adopted in selecting 60 small scale broiler farmers who use deep liter system from 6 communities through the use of structured questionnaire. The socioeconomic characteristics of the broiler farmers and the profitability/ marketability age of the birds were described using descriptive statistical tools such as frequencies, means and percentages. Gross margin analysis was used to analyze the cost and returns to broiler production, while Cobb Douglas production function was employed to analyze input factors in broiler production. The result of the study revealed that the cost of feed (P<0.1), deep liter material (P<0.05) and medication (P<0.05) had a significant positive relationship with the gross return of broiler farmers in the study area, while cost of labour, fuel and day old chicks were not significant. Furthermore, Gross profit margin of the farmers who market their broiler at the 8th week of rearing was 80.7%; and 78.7% and 60.8% for farmers who market at the 10th week and 12th week of rearing, respectively. The business is, therefore, profitable but at varying degree. Government and Development partners should make deliberate efforts to curb the current rise in the prices of poultry feeds, drugs and timber materials used as bedding so as to widen the profit margin and encourage more farmers to go into the business. The farmers equally need more technical assistance from extension agents with regards to timely and profitable marketing.Keywords: broilers, factor analysis, income, small scale
Procedia PDF Downloads 807859 On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing
Authors: Agarana Michael C., Akinlabi Esther T., Pule Kholopane
Abstract:
Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques.Keywords: mathematical modelling, optimization, emerging trends, advanced manufacturing
Procedia PDF Downloads 2977858 FMR1 Gene Carrier Screening for Premature Ovarian Insufficiency in Females: An Indian Scenario
Authors: Sarita Agarwal, Deepika Delsa Dean
Abstract:
Like the task of transferring photo images to artistic images, image-to-image translation aims to translate the data to the imitated data which belongs to the target domain. Neural Style Transfer and CycleGAN are two well-known deep learning architectures used for photo image-to-art image transfer. However, studies involving these two models concentrate on one-to-one domain translation, not one-to-multi domains translation. Our study tries to investigate deep learning architectures, which can be controlled to yield multiple artistic style translation only by adding a conditional vector. We have expanded CycleGAN and constructed Conditional CycleGAN for 5 kinds of categories translation. Our study found that the architecture inserting conditional vector into the middle layer of the Generator could output multiple artistic images.Keywords: genetic counseling, FMR1 gene, fragile x-associated primary ovarian insufficiency, premutation
Procedia PDF Downloads 1307857 Long-Term Conservation Tillage Impact on Soil Properties and Crop Productivity
Authors: Danute Karcauskiene, Dalia Ambrazaitiene, Regina Skuodiene, Monika Vilkiene, Regina Repsiene, Ieva Jokubauskaite
Abstract:
The main ambition for nowadays agriculture is to get the economically effective yield and to secure the soil ecological sustainability. According to the effect on the main soil quality indexes, tillage systems may be separated into two types, conventional and conservation tillage. The goal of this study was to determine the impact of conservation and conventional primary soil tillage methods and soil fertility improvement measures on soil properties and crop productivity. Methods: The soil of the experimental site is Dystric Glossic Retisol (WRB 2014) with texture of sandy loam. The trial was established in 2003 in the experimental field of crop rotation of Vėžaičiai Branch of Lithuanian Research Centre for Agriculture and Forestry. Trial factors and treatments: factor A- primary soil tillage in (autumn): deep ploughing (20-25cm), shallow ploughing (10-12cm), shallow ploughless tillage (8-10cm); factor B – soil fertility improvement measures: plant residues, plant residues + straw, green manure 1st cut + straw, farmyard manure 40tha-1 + straw. The four - course crop rotation consisted of red clover, winter wheat, spring rape and spring barley with undersown. Results: The tillage had no statistically significant effect on topsoil (0-10 cm) pHKCl level, it was 5.5 - 5.7. During all experiment period, the highest soil pHKCl level (5.65) was in the shallow ploughless tillage. The organic fertilizers particularly the biomass of grass and farmyard manure had tendency to increase the soil pHKCl. The content of plant - available phosphorus and potassium significantly increase in the shallow ploughing compared with others tillage systems. The farmyard manure increases those elements in whole arable layer. The dissolved organic carbon concentration was significantly higher in the 0 - 10 cm soil layer in the shallow ploughless tillage compared with deep ploughing. After the incorporation of clover biomass and farmyard manure the concentration of dissolved organic carbon increased in the top soil layer. During all experiment period the largest amount of water stable aggregates was determined in the soil where the shallow ploughless tillage was applied. It was by 12% higher compared with deep ploughing. During all experiment time, the soil moisture was higher in the shallow ploughing and shallow ploughless tillage (9-27%) compared to deep ploughing. The lowest emission of CO2 was determined in the deep ploughing soil. The highest rate of CO2 emission was in shallow ploughless tillage. The addition of organic fertilisers had a tendency to increase the CO2 emission, but there was no statistically significant effect between the different types of organic fertilisers. The crop yield was larger in the deep ploughing soil compared to the shallow and shallow ploughless tillage.Keywords: reduced tillage, soil structure, soil pH, biological activity, crop productivity
Procedia PDF Downloads 2677856 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 2667855 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 367854 Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies
Authors: Prakash Kumar Nayak, Avinash Kumar, Uma Dash, Kalpana Rayaguru
Abstract:
Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model.Keywords: bentonite, Langmuir isotherm, peroxide value, RSM, soybean oil
Procedia PDF Downloads 3757853 Review of Dielectric Permittivity Measurement Techniques
Authors: Ahmad H. Abdelgwad, Galal E. Nadim, Tarek M. Said, Amr M. Gody
Abstract:
The prime objective of this manuscript is to provide intensive review of the techniques used for permittivity measurements. The measurement techniques, relevant for any desired application, rely on the nature of the measured dielectric material, both electrically and physically, the degree of accuracy required, and the frequency of interest. Regardless of the way that distinctive sorts of instruments can be utilized, measuring devices that provide reliable determinations of the required electrical properties including the obscure material in the frequency range of interest can be considered. The challenge in making precise dielectric property or permittivity measurements is in designing of the material specimen holder for those measurements (RF and MW frequency ranges) and adequately modeling the circuit for reliable computation of the permittivity from the electrical measurements. If the RF circuit parameters such as the impedance or admittance are estimated appropriately at a certain frequency, the material’s permittivity at this frequency can be estimated by the equations which relate the way in which the dielectric properties of the material affect on the parameters of the circuit.Keywords: dielectric permittivity, free space measurement, waveguide techniques, coaxial probe, cavity resonator
Procedia PDF Downloads 3697852 Strategies for Improving Teaching and Learning in Higher Institutions: Case Study of Enugu State University of Science and Technology, Nigeria
Authors: Gertrude Nkechi Okenwa
Abstract:
Higher institutions, especially the universities that are saddled with the responsibilities of teaching, learning, research, publications and social services for the production of graduates that are worthy in learning and character, and the creation of up-to-date knowledge and innovations for the total socio-economic and even political development of a given nation. Therefore, the purpose of the study was to identify the teaching, learning techniques used in the Enugu State University of Science and Technology to ensure or ascertain students’ perception on these techniques. To guide the study, survey research method was used. The population for the study was made up of second and final year students which summed up to one hundred and twenty-six students in the faculty of education. Stratified random sampling technique was adopted. A sample size of sixty (60) students was drawn for the study. The instrument used for data collection was questionnaire. To analyze the data, mean and standard deviation were used to answers the research questions. The findings revealed that direct instruction and construction techniques are used in the university. On the whole, it was observed that the students perceived constructivist techniques to be more useful and effective than direct instruction technique. Based on the findings recommendations were made to include diversification of teaching techniques among others.Keywords: Strategies, Teaching and Learning, Constructive Technique, Direct Instructional Technique
Procedia PDF Downloads 5417851 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 5197850 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 1637849 Next-Viz: A Literature Review and Web-Based Visualization Tool Proposal
Authors: Railly Hugo, Igor Aguilar-Alonso
Abstract:
Software visualization is a powerful tool for understanding complex software systems. However, current visualization tools often lack features or are difficult to use, limiting their effectiveness. In this paper, we present next-viz, a proposed web-based visualization tool that addresses these challenges. We provide a literature review of existing software visualization techniques and tools and describe the architecture of next-viz in detail. Our proposed tool incorporates state-of-the-art visualization techniques and is designed to be user-friendly and intuitive. We believe next-viz has the potential to advance the field of software visualization significantly.Keywords: software visualization, literature review, tool proposal, next-viz, web-based, architecture, visualization techniques, user-friendly, intuitive
Procedia PDF Downloads 827848 Current Methods for Drug Property Prediction in the Real World
Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh
Abstract:
Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning
Procedia PDF Downloads 817847 Studying Relationship between Local Geometry of Decision Boundary with Network Complexity for Robustness Analysis with Adversarial Perturbations
Authors: Tushar K. Routh
Abstract:
If inputs are engineered in certain manners, they can influence deep neural networks’ (DNN) performances by facilitating misclassifications, a phenomenon well-known as adversarial attacks that question networks’ vulnerability. Recent studies have unfolded the relationship between vulnerability of such networks with their complexity. In this paper, the distinctive influence of additional convolutional layers at the decision boundaries of several DNN architectures was investigated. Here, to engineer inputs from widely known image datasets like MNIST, Fashion MNIST, and Cifar 10, we have exercised One Step Spectral Attack (OSSA) and Fast Gradient Method (FGM) techniques. The aftermaths of adding layers to the robustness of the architectures have been analyzed. For reasoning, separation width from linear class partitions and local geometry (curvature) near the decision boundary have been examined. The result reveals that model complexity has significant roles in adjusting relative distances from margins, as well as the local features of decision boundaries, which impact robustness.Keywords: DNN robustness, decision boundary, local curvature, network complexity
Procedia PDF Downloads 75