Search results for: complexity measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4270

Search results for: complexity measurement

3640 Non-Pharmacological Approach to the Improvement and Maintenance of the Convergence Parameter

Authors: Andreas Aceranti, Guido Bighiani, Francesca Crotto, Marco Colorato, Stefania Zaghi, Marino Zanetti, Simonetta Vernocchi

Abstract:

The management of eye parameters such as convergence, accommodation, and miosis is very complex; in fact, both the neurovegetative system and the complex Oculocephalgiria system come into play. We have found the effectiveness of the "highvelocity low amplitude" technique directed on C7-T1 (where the cilio-spinal nucleus of the budge is located) in improving the convergence parameter through the measurement of the point of maximum convergence. With this research, we set out to investigate whether the improvement obtained through the High Velocity Low Amplitude maneuver lasts over time, carrying out a pre-manipulation measurement, one immediately after manipulation and one month after manipulation. We took a population of 30 subjects with both refractive and non-refractive problems. Of the 30 patients tested, 27 gave a positive result after the High Velocity Low Amplitude maneuver, giving an improvement in the point of maximum convergence. After a month, we retested all 27 subjects: some further improved the result, others kept, and three subjects slightly lost the gain obtained. None of the re-tested patients returned to the point of maximum convergence starting pre-manipulation. This result opens the door to a multidisciplinary approach between ophthalmologists and osteopaths with the aim of addressing oculomotricity and convergence deficits that increasingly afflict our society due to the massive use of devices and for the conduct of life in closed and restricted environments.

Keywords: point of maximum convergence, HVLA, improvement in PPC, convergence

Procedia PDF Downloads 77
3639 Hip Resurfacing Makes for Easier Surgery with Better Functional Outcomes at Time of Revision: A Case Controlled Study

Authors: O. O. Onafowokan, K. Anderson, M. R. Norton, R. G. Middleton

Abstract:

Revision total hip arthroplasty (THA) is known to be a challenging procedure with potential for poor outcomes. Due to its lack of metaphyseal encroachment, hip resurfacing arthroplasty (HRA) is classified as a bone conserving procedure. Although the literature postulates that this is an advantage at time of revision surgery, there is no evidence to either support or refute this claim. We identified 129 hips that had undergone HRA and 129 controls undergoing first revision THA. We recorded the clinical assessment and survivorship of implants in a multi-surgeon, single centre, retrospective case control series for both arms. These were matched for age and sex. Data collected included demographics, indications for surgery, Oxford Hip Score (OHS), length of surgery, length of hospital stay, blood transfusion, implant complexity and further surgical procedures. Significance was taken as p < 0.05. Mean follow up was 7.5 years (1 to 15). There was a significant 6 point difference in postoperative OHS in favour of the revision resurfacing group (p=0.0001). The revision HRA group recorded 48 minutes less length of surgery (p<0.0001), 2 days less in length of hospital stay (p=0.018), a reduced need for blood transfusion (p=0.0001), a need for less complexity in revision implants (p=0.001) and a reduced probability of further surgery being required (P=0.003). Whilst we acknowledge the limitations of this study our results suggest that, in contrast to THA, the bone conservation element of HRA may make for a less traumatic revision procedure with better functional outcomes. Use of HRA has seen a dramatic decline as a result of concerns regarding metallosis. However, this information remains of relevance when counselling young active patients about their arthroplasty options and may become pertinent in the future if the promise of ceramic hip resurfacing is ever realized.

Keywords: hip resurfacing, metallosis, revision surgery, total hip arthroplasty

Procedia PDF Downloads 88
3638 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 185
3637 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 50
3636 Unraveling the Complexity of Hyperacusis: A Metric Dimension of a Graph Concept

Authors: Hassan Ibrahim

Abstract:

The prevalence of hyperacusis, an auditory condition characterized by heightened sensitivity to sounds, continues to rise, posing challenges for effective diagnosis and intervention. It is believed that this work deepens will deepens the understanding of hyperacusis etiology by employing graph theory as a novel analytical framework. it constructed a comprehensive graph wherein nodes represent various factors associated with hyperacusis, including aging, head or neck trauma, infection/virus, depression, migraines, ear infection, anxiety, and other potential contributors. Relationships between factors are modeled as edges, allowing us to visualize and quantify the interactions within the etiological landscape of hyperacusis. it employ the concept of the metric dimension of a connected graph to identify key nodes (landmarks) that serve as critical influencers in the interconnected web of hyperacusis causes. This approach offers a unique perspective on the relative importance and centrality of different factors, shedding light on the complex interplay between physiological, psychological, and environmental determinants. Visualization techniques were also employed to enhance the interpretation and facilitate the identification of the central nodes. This research contributes to the growing body of knowledge surrounding hyperacusis by offering a network-centric perspective on its multifaceted causes. The outcomes hold the potential to inform clinical practices, guiding healthcare professionals in prioritizing interventions and personalized treatment plans based on the identified landmarks within the etiological network. Through the integration of graph theory into hyperacusis research, the complexity of this auditory condition was unraveled and pave the way for more effective approaches to its management.

Keywords: auditory condition, connected graph, hyperacusis, metric dimension

Procedia PDF Downloads 22
3635 Study on the Non-Contact Sheet Resistance Measuring of Silver Nanowire Coated Film Using Terahertz Wave

Authors: Dong-Hyun Kim, Wan-Ho Chung, Hak-Sung Kim

Abstract:

In this work, non-destructive evaluation was conducted to measure the sheet resistance of silver nanowire coated film and find a damage of that film using terahertz (THz) wave. Pulse type THz instrument was used, and the measurement was performed under transmission and pitch-catch reflection modes with 30 degree of incidence angle. In the transmission mode, the intensity of the THz wave was gradually increased as the conductivity decreased. Meanwhile, the intensity of THz wave was decreased as the conductivity decreased in the pitch-catch reflection mode. To confirm the conductivity of the film, sheet resistance was measured by 4-point probe station. Interaction formula was drawn from a relation between the intensity and the sheet resistance. Through substituting sheet resistance to the formula and comparing the resultant value with measured maximum THz wave intensity, measurement of sheet resistance using THz wave was more suitable than that using 4-point probe station. In addition, the damage on the silver nanowire coated film was detected by applying the THz image system. Therefore, the reliability of the entire film can be also be ensured. In conclusion, real-time monitoring using the THz wave can be applied in the transparent electrodes with detecting the damaged area as well as measuring the sheet resistance.

Keywords: terahertz wave, sheet resistance, non-destructive evaluation, silver nanowire

Procedia PDF Downloads 490
3634 Manual Wheelchair Propulsion Efficiency on Different Slopes

Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse

Abstract:

In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.

Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion

Procedia PDF Downloads 290
3633 Hybrid Precoder Design Based on Iterative Hard Thresholding Algorithm for Millimeter Wave Multiple-Input-Multiple-Output Systems

Authors: Ameni Mejri, Moufida Hajjaj, Salem Hasnaoui, Ridha Bouallegue

Abstract:

The technology advances have most lately made the millimeter wave (mmWave) communication possible. Due to the huge amount of spectrum that is available in MmWave frequency bands, this promising candidate is considered as a key technology for the deployment of 5G cellular networks. In order to enhance system capacity and achieve spectral efficiency, very large antenna arrays are employed at mmWave systems by exploiting array gain. However, it has been shown that conventional beamforming strategies are not suitable for mmWave hardware implementation. Therefore, new features are required for mmWave cellular applications. Unlike traditional multiple-input-multiple-output (MIMO) systems for which only digital precoders are essential to accomplish precoding, MIMO technology seems to be different at mmWave because of digital precoding limitations. Moreover, precoding implements a greater number of radio frequency (RF) chains supporting more signal mixers and analog-to-digital converters. As RF chain cost and power consumption is increasing, we need to resort to another alternative. Although the hybrid precoding architecture has been regarded as the best solution based on a combination between a baseband precoder and an RF precoder, we still do not get the optimal design of hybrid precoders. According to the mapping strategies from RF chains to the different antenna elements, there are two main categories of hybrid precoding architecture. Given as a hybrid precoding sub-array architecture, the partially-connected structure reduces hardware complexity by using a less number of phase shifters, whereas it sacrifices some beamforming gain. In this paper, we treat the hybrid precoder design in mmWave MIMO systems as a problem of matrix factorization. Thus, we adopt the alternating minimization principle in order to solve the design problem. Further, we present our proposed algorithm for the partially-connected structure, which is based on the iterative hard thresholding method. Through simulation results, we show that our hybrid precoding algorithm provides significant performance gains over existing algorithms. We also show that the proposed approach reduces significantly the computational complexity. Furthermore, valuable design insights are provided when we use the proposed algorithm to make simulation comparisons between the hybrid precoding partially-connected structure and the fully-connected structure.

Keywords: alternating minimization, hybrid precoding, iterative hard thresholding, low-complexity, millimeter wave communication, partially-connected structure

Procedia PDF Downloads 321
3632 Finding a Set of Long Common Substrings with Repeats from m Input Strings

Authors: Tiantian Li, Lusheng Wang, Zhaohui Zhan, Daming Zhu

Abstract:

In this paper, we propose two string problems, and study algorithms and complexity of various versions for those problems. Let S = {s₁, s₂, . . . , sₘ} be a set of m strings. A common substring of S is a substring appearing in every string in S. Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer k, we want to find a set C of k common substrings of S such that the k common substrings in C appear in the same order and have no overlap among the m input strings in S, and the total length of the k common substring in C is maximized. This problem is referred to as the longest total length of k common substrings from m input strings (LCSS(k, m) for short). The other problem we study here is called the longest total length of a set of common substrings with length more than l from m input string (LSCSS(l, m) for short). Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer l, for LSCSS(l, m), we want to find a set of common substrings of S, each is of length more than l, such that the total length of all the common substrings is maximized. We show that both problems are NP-hard when k and m are variables. We propose dynamic programming algorithms with time complexity O(k n₁n₂) and O(n₁n₂) to solve LCSS(k, 2) and LSCSS(l, 2), respectively, where n1 and n₂ are the lengths of the two input strings. We then design an algorithm for LSCSS(l, m) when every length > l common substring appears once in each of the m − 1 input strings. The running time is O(n₁²m), where n1 is the length of the input string with no restriction on length > l common substrings. Finally, we propose a fixed parameter algorithm for LSCSS(l, m), where each length > l common substring appears m − 1 + c times among the m − 1 input strings (other than s1). In other words, each length > l common substring may repeatedly appear at most c times among the m − 1 input strings {s₂, s₃, . . . , sₘ}. The running time of the proposed algorithm is O((n12ᶜ)²m), where n₁ is the input string with no restriction on repeats. The LSCSS(l, m) is proposed to handle whole chromosome sequence alignment for different strains of the same species, where more than 98% of letters in core regions are identical.

Keywords: dynamic programming, algorithm, common substrings, string

Procedia PDF Downloads 13
3631 Enhanced Calibration Map for a Four-Hole Probe for Measuring High Flow Angles

Authors: Jafar Mortadha, Imran Qureshi

Abstract:

This research explains and compares the modern techniques used for measuring the flow angles of a flowing fluid with the traditional technique of using multi-hole pressure probes. In particular, the focus of the study is on four-hole probes, which offer great reliability and benefits in several applications where the use of modern measurement techniques is either inconvenient or impractical. Due to modern advancements in manufacturing, small multi-hole pressure probes can be made with high precision, which eliminates the need for calibrating every manufactured probe. This study aims to improve the range of calibration maps for a four-hole probe to allow high flow angles to be measured accurately. The research methodology comprises a literature review of the successful calibration definitions that have been implemented on five-hole probes. These definitions are then adapted and applied on a four-hole probe using a set of raw pressures data. A comparison of the different definitions will be carried out in Matlab and the results will be analyzed to determine the best calibration definition. Taking simplicity of implementation into account as well as the reliability of flow angles estimation, an adapted technique from a research paper written in 2002 offered the most promising outcome. Consequently, the method is seen as a good enhancement for four-hole probes and it can substitute for the existing calibration definitions that offer less accuracy.

Keywords: calibration definitions, calibration maps, flow measurement techniques, four-hole probes, multi-hole pressure probes

Procedia PDF Downloads 295
3630 A Test Methodology to Measure the Open-Loop Voltage Gain of an Operational Amplifier

Authors: Maninder Kaur Gill, Alpana Agarwal

Abstract:

It is practically not feasible to measure the open-loop voltage gain of the operational amplifier in the open loop configuration. It is because the open-loop voltage gain of the operational amplifier is very large. In order to avoid the saturation of the output voltage, a very small input should be given to operational amplifier which is not possible to be measured practically by a digital multimeter. A test circuit for measurement of open loop voltage gain of an operational amplifier has been proposed and verified using simulation tools as well as by experimental methods on breadboard. The main advantage of this test circuit is that it is simple, fast, accurate, cost effective, and easy to handle even on a breadboard. The test circuit requires only the device under test (DUT) along with resistors. This circuit has been tested for measurement of open loop voltage gain for different operational amplifiers. The underlying goal is to design testable circuits for various analog devices that are simple to realize in VLSI systems, giving accurate results and without changing the characteristics of the original system. The DUTs used are LM741CN and UA741CP. For LM741CN, the simulated gain and experimentally measured gain (average) are calculated as 89.71 dB and 87.71 dB, respectively. For UA741CP, the simulated gain and experimentally measured gain (average) are calculated as 101.15 dB and 105.15 dB, respectively. These values are found to be close to the datasheet values.

Keywords: Device Under Test (DUT), open loop voltage gain, operational amplifier, test circuit

Procedia PDF Downloads 447
3629 A Low Cost Non-Destructive Grain Moisture Embedded System for Food Safety and Quality

Authors: Ritula Thakur, Babankumar S. Bansod, Puneet Mehta, S. Chatterji

Abstract:

Moisture plays an important role in storage, harvesting and processing of food grains and related agricultural products. It is an important characteristic of most agricultural products for maintenance of quality. Accurate knowledge of the moisture content can be of significant value in maintaining quality and preventing contamination of cereal grains. The present work reports the design and development of microcontroller based low cost non-destructive moisture meter, which uses complex impedance measurement method for moisture measurement of wheat using parallel plate capacitor arrangement. Moisture can conveniently be sensed by measuring the complex impedance using a small parallel-plate capacitor sensor filled with the kernels in-between the two plates of sensor, exciting the sensor at 30 KHz and 100 KHz frequencies. The effects of density and temperature variations were compensated by providing suitable compensations in the developed algorithm. The results were compared with standard dry oven technique and the developed method was found to be highly accurate with less than 1% error. The developed moisture meter is low cost, highly accurate, non-destructible method for determining the moisture of grains utilizing the fast computing capabilities of microcontroller.

Keywords: complex impedance, moisture content, electrical properties, safety of food

Procedia PDF Downloads 462
3628 Ultrasonic Evaluation of Periodic Rough Inaccessible Surfaces from Back Side

Authors: Chanh Nghia Nguyen, Yu Kurokawa, Hirotsugu Inoue

Abstract:

The surface roughness is an important parameter for evaluating the quality of material surfaces since it affects functions and performance of industrial components. Although stylus and optical techniques are commonly used for measuring the surface roughness, they are applicable only to accessible surfaces. In practice, surface roughness measurement from the back side is sometimes demanded, for example, in inspection of safety-critical parts such as inner surface of pipes. However, little attention has been paid to the measurement of back surface roughness so far. Since back surface is usually inaccessible by stylus or optical techniques, ultrasonic technique is one of the most effective among others. In this research, an ultrasonic pulse-echo technique is considered for evaluating the pitch and the height of back surface having periodic triangular profile as a very first step. The pitch of the surface profile is measured by applying the diffraction grating theory for oblique incidence; then the height is evaluated by numerical analysis based on the Kirchhoff theory for normal incidence. The validity of the proposed method was verified by both numerical simulation and experiment. It was confirmed that the pitch is accurately measured in most cases. The height was also evaluated with good accuracy when it is smaller than a half of the pitch because of the approximation in the Kirchhoff theory.

Keywords: back side, inaccessible surface, periodic roughness, pulse-echo technique, ultrasonic NDE

Procedia PDF Downloads 275
3627 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation

Authors: Aicha Majda, Abdelhamid El Hassani

Abstract:

Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.

Keywords: graph cuts, lung CT scan, lung parenchyma segmentation, patch-based similarity metric

Procedia PDF Downloads 169
3626 Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak

Authors: Habila Nuhu

Abstract:

Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken.

Keywords: activity concentration, hazard index, soil samples, tin mining

Procedia PDF Downloads 111
3625 Text Analysis to Support Structuring and Modelling a Public Policy Problem-Outline of an Algorithm to Extract Inferences from Textual Data

Authors: Claudia Ehrentraut, Osama Ibrahim, Hercules Dalianis

Abstract:

Policy making situations are real-world problems that exhibit complexity in that they are composed of many interrelated problems and issues. To be effective, policies must holistically address the complexity of the situation rather than propose solutions to single problems. Formulating and understanding the situation and its complex dynamics, therefore, is a key to finding holistic solutions. Analysis of text based information on the policy problem, using Natural Language Processing (NLP) and Text analysis techniques, can support modelling of public policy problem situations in a more objective way based on domain experts knowledge and scientific evidence. The objective behind this study is to support modelling of public policy problem situations, using text analysis of verbal descriptions of the problem. We propose a formal methodology for analysis of qualitative data from multiple information sources on a policy problem to construct a causal diagram of the problem. The analysis process aims at identifying key variables, linking them by cause-effect relationships and mapping that structure into a graphical representation that is adequate for designing action alternatives, i.e., policy options. This study describes the outline of an algorithm used to automate the initial step of a larger methodological approach, which is so far done manually. In this initial step, inferences about key variables and their interrelationships are extracted from textual data to support a better problem structuring. A small prototype for this step is also presented.

Keywords: public policy, problem structuring, qualitative analysis, natural language processing, algorithm, inference extraction

Procedia PDF Downloads 589
3624 Eliminating Arm, Neck and Leg Fatigue of United Asia International Plastics Corporation Workers through Rapid Entire Body Assessment

Authors: John Cheferson R. De Belen, John Paul G. Elizares, Ronald John G. Raz, Janina Elyse A. Reyes, Charie G. Salengua, Aristotle L. Soriano

Abstract:

Plastic is a type of synthetic or man-made polymer that can readily be molded into a variety of products. Its usage over the past century has enabled society to make huge technological advances. The workers of United Asia International Plastics Corporation (UAIPC), a plastic manufacturing company performs manual packaging which causes fatigue and stress on their arm, neck, and legs due to extended periods of standing and repetitive motions. With the use of the Fishbone Diagram, Five-Why Analysis, Rapid Entire Body Assessment (REBA), and Anthropometry, the stressful tasks and activities were identified and analyzed. Given the anthropometric measurements obtained from the workers, improved dimensions for the tables and chairs should be used and provide a new packaging machine. The validation of this proposal shall follow after its implementation. By eliminating fatigue during working hours in the production, the workers will be at ease at performing their work properly; productivity will increase that will lead to more profit. Further areas for study include measurement and comparison of the worker’s anthropometric measurement with the industry standard.

Keywords: anthropometry, fishbone diagram, five-why analysis, rapid entire body assessment

Procedia PDF Downloads 264
3623 Enhancing Signal Reception in a Mobile Radio Network Using Adaptive Beamforming Antenna Arrays Technology

Authors: Ugwu O. C., Mamah R. O., Awudu W. S.

Abstract:

This work is aimed at enhancing signal reception on a mobile radio network and minimizing outage probability in a mobile radio network using adaptive beamforming antenna arrays. In this research work, an empirical real-time drive measurement was done in a cellular network of Globalcom Nigeria Limited located at Ikeja, the headquarters of Lagos State, Nigeria, with reference base station number KJA 004. The empirical measurement includes Received Signal Strength and Bit Error Rate which were recorded for exact prediction of the signal strength of the network as at the time of carrying out this research work. The Received Signal Strength and Bit Error Rate were measured with a spectrum monitoring Van with the help of a Ray Tracer at an interval of 100 meters up to 700 meters from the transmitting base station. The distance and angular location measurements from the reference network were done with the help Global Positioning System (GPS). The other equipment used were transmitting equipment measurements software (Temsoftware), Laptops and log files, which showed received signal strength with distance from the base station. Results obtained were about 11% from the real-time experiment, which showed that mobile radio networks are prone to signal failure and can be minimized using an Adaptive Beamforming Antenna Array in terms of a significant reduction in Bit Error Rate, which implies improved performance of the mobile radio network. In addition, this work did not only include experiments done through empirical measurement but also enhanced mathematical models that were developed and implemented as a reference model for accurate prediction. The proposed signal models were based on the analysis of continuous time and discrete space, and some other assumptions. These developed (proposed) enhanced models were validated using MATLAB (version 7.6.3.35) program and compared with the conventional antenna for accuracy. These outage models were used to manage the blocked call experience in the mobile radio network. 20% improvement was obtained when the adaptive beamforming antenna arrays were implemented on the wireless mobile radio network.

Keywords: beamforming algorithm, adaptive beamforming, simulink, reception

Procedia PDF Downloads 41
3622 Relationship Between Quetelet Equation and Skin Fold Teckniques in Determining Obesity Among Adolescents in Maiduguri, Borno State, Nigeria

Authors: A. Kaidal, M. M. Abdllahi, O. L. Badaki

Abstract:

The study was conducted to determine the relationship between Quetelet Equation and Skin fold measurement in determining obesity among adolescent male students of University of Maiduguri Demonstration Secondary School, Borno State, Nigeria. A total of 66 students participated in the study, their age ranges from 15-18 years. The ex-post-facto research design was used for this study. Anthropometric measurements were taken at three sites (thigh, abdomen and chest) using accu–measure Skin fold caliper. The values of the three measurements were used to determine the percentage body fat of the participants using the 3-Point Skin Fold Bodyfat calculator of Jackson-Pollock. Body mass index (BMI) was determined using weight (kg) divided by height in (m2). The data obtained was analyzed using descriptive statistics (mean and standard deviation) and inferential statistics of Pearson product moment correlation coefficient to determine the relationship between the two techniques. The result showed a significant positive relationship r=0.673 p<0.05 between body mass index and skin fold measurement techniques. It was however observed that BMI techniques of determining body fat tend to overestimate the actual percent body fat of adolescents studied. Based on this result, it is recommended that the use of BMI as a technique for determining obesity should be used with caution.

Keywords: body max index, skin fold, quetelet, techniques

Procedia PDF Downloads 542
3621 Sustainable Balanced Scorecard for Kaizen Evaluation: Comparative Study between Egypt and Japan

Authors: Ola I. S. El Dardery, Ismail Gomaa, Adel R.M. Rayan, Ghada El Khayat, Sara H. Sabry

Abstract:

Continuous improvement activities are becoming a key factor of the success of any organization, those improvement activities include but not limited to kaizen, six sigma, lean projects, and continuous improvement projects. Kaizen is a Japanese philosophy of continuous improvement by making small incremental changes to improve an organization’s performance, reduce costs, reduce delay time, reduce waste in production, etc. This study aims at proposing a new measuring technique for kaizen activities using a Sustainable balanced scorecard structure. A survey questionnaire was developed and introduced to kaizen participants in both Egypt and Japan with the purpose of allocating key performance indicators for both kaizen process (critical success factors) and result (kaizen benefits) into the five perspectives of sustainable balanced scorecard. The study contributes to the literature by presenting a new kaizen measurement of both kaizen process and results, that will illuminate the benefits of using kaizen. Also, the presented measurement can help in the sustainability of kaizen implementation. Determining the combination of the proper kaizen measures could be used by any industry whether service or manufacturing to better measure kaizen activates. The comparison between Japanese measures, as the leaders of kaizen philosophy, and Egyptian measures will help recommending better practices of kaizen in Egypt, and contributing to the 2030 sustainable development goals.

Keywords: continuous improvements, kaizen, performance, sustainable balanced scorecard

Procedia PDF Downloads 147
3620 Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform

Authors: K. Chethana, A. S. Guru Prasad, H. N. Vikranth, H. Varun, S. N. Omkar, S. Asokan

Abstract:

This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc.

Keywords: biomechanics, fiber bragg gratings, plantar strain measurement, postural stability analysis

Procedia PDF Downloads 572
3619 Radial Distortion Correction Based on the Concept of Verifying the Planarity of a Specimen

Authors: Shih-Heng Tung, Ming-Hsiang Shih, Wen-Pei Sung

Abstract:

Because of the rapid development of digital camera and computer, digital image correlation method has drawn lots of attention recently and has been applied to a variety of fields. However, the image distortion is inevitable when the image is captured through a lens. This image distortion problem can result in an innegligible error while using digital image correlation method. There are already many different ways to correct the image distortion, and most of them require specific image patterns or precise control points. A new distortion correction method is proposed in this study. The proposed method is based on the fact that a flat surface should keep flat when it is measured using three-dimensional (3D) digital image measurement technique. Lens distortion can be divided into radial distortion, decentering distortion and thin prism distortion. Because radial distortion has a more noticeable influence than the other types of distortions, this method deals only with radial distortion. The simplified 3D digital image measurement technique is adopted to measure the surface coordinates of a flat specimen. Then the gradient method is applied to find the best correction parameters. A few experiments are carried out in this study to verify the correctness of this method. The results show that this method can achieve a good accuracy and it is suitable for both large and small distortion conditions. The most important advantage is that it requires neither mark with specific pattern nor precise control points.

Keywords: 3D DIC, radial distortion, distortion correction, planarity

Procedia PDF Downloads 551
3618 Detection of Patient Roll-Over Using High-Sensitivity Pressure Sensors

Authors: Keita Nishio, Takashi Kaburagi, Yosuke Kurihara

Abstract:

Recent advances in medical technology have served to enhance average life expectancy. However, the total time for which the patients are prescribed complete bedrest has also increased. With patients being required to maintain a constant lying posture- also called bedsore- development of a system to detect patient roll-over becomes imperative. For this purpose, extant studies have proposed the use of cameras, and favorable results have been reported. Continuous on-camera monitoring, however, tends to violate patient privacy. We have proposed unconstrained bio-signal measurement system that could detect body-motion during sleep and does not violate patient’s privacy. Therefore, in this study, we propose a roll-over detection method by the date obtained from the bi-signal measurement system. Signals recorded by the sensor were assumed to comprise respiration, pulse, body motion, and noise components. Compared the body-motion and respiration, pulse component, the body-motion, during roll-over, generate large vibration. Thus, analysis of the body-motion component facilitates detection of the roll-over tendency. The large vibration associated with the roll-over motion has a great effect on the Root Mean Square (RMS) value of time series of the body motion component calculated during short 10 s segments. After calculation, the RMS value during each segment was compared to a threshold value set in advance. If RMS value in any segment exceeded the threshold, corresponding data were considered to indicate occurrence of a roll-over. In order to validate the proposed method, we conducted experiment. A bi-directional microphone was adopted as a high-sensitivity pressure sensor and was placed between the mattress and bedframe. Recorded signals passed through an analog Band-pass Filter (BPF) operating over the 0.16-16 Hz bandwidth. BPF allowed the respiration, pulse, and body-motion to pass whilst removing the noise component. Output from BPF was A/D converted with the sampling frequency 100Hz, and the measurement time was 480 seconds. The number of subjects and data corresponded to 5 and 10, respectively. Subjects laid on a mattress in the supine position. During data measurement, subjects—upon the investigator's instruction—were asked to roll over into four different positions—supine to left lateral, left lateral to prone, prone to right lateral, and right lateral to supine. Recorded data was divided into 48 segments with 10 s intervals, and the corresponding RMS value for each segment was calculated. The system was evaluated by the accuracy between the investigator’s instruction and the detected segment. As the result, an accuracy of 100% was achieved. While reviewing the time series of recorded data, segments indicating roll-over tendencies were observed to demonstrate a large amplitude. However, clear differences between decubitus and the roll-over motion could not be confirmed. Extant researches possessed a disadvantage in terms of patient privacy. The proposed study, however, demonstrates more precise detection of patient roll-over tendencies without violating their privacy. As a future prospect, decubitus estimation before and after roll-over could be attempted. Since in this paper, we could not confirm the clear differences between decubitus and the roll-over motion, future studies could be based on utilization of the respiration and pulse components.

Keywords: bedsore, high-sensitivity pressure sensor, roll-over, unconstrained bio-signal measurement

Procedia PDF Downloads 121
3617 The Power of Words: The Use of Language in Ethan Frome

Authors: Ritu Sharma

Abstract:

In order to be objective, critics must examine the dynamic relationships between the author, the reader, the text, and the outside world. However, it is also crucial to recognize that because the language was created by God, meaning is ingrained in it. Meaning is located in and discovered through literature rather than being limited to the author, reader, text, or the outside world. The link between the author, the reader, and the text is crucial because literature unites an author and a reader through the use of language. Literature is a potent kind of communication, and Ethan Frome's audience is forever changed as a result of the book's language and the language its characters use. The narrative of Ethan Frome and his wife Zeena is presented in Ethan Frome. Ethan's story is told throughout the course of the book, revealed through the eyes of the narrator, an outsider passing through Starkfield, as well as through the insight that the narrator gains from the townspeople and his stay on the Frome farm. The story is set in the rural New England community of Starkfield, Massachusetts. The weather provides the ideal setting for Ethan and the narrator to get to know one another as the narrator gets preoccupied with unraveling the narrative that underlies Ethan's physical anomalies. In addition to telling a gripping tale and capturing human nature as it is, Ethan Frome uses its storyline to achieve something more significant. The book by Edith Wharton supports language. Zeena's deliberate and convincing language challenges relativity and meaninglessness. Ethan and Mattie's effort to effectively use words reflects the complexity of language, and their battle illustrates the influence that language may have if and when it is used. Ethan Frome defends the written word, the foundation upon which it is constructed, as a literary work. Communication is based on language, and as the characters respond to and get involved in disputes throughout the book, Zeena, Ethan, and Mattie, each reflects particular theories of communication that help define their uses of communication within the broader context of language.

Keywords: dynamic relationships, potent, communication, complexity

Procedia PDF Downloads 91
3616 Smart Books as a Supporting Tool for Developing Skills of Designing and Employing Webquest 2.0

Authors: Huda Alyami

Abstract:

The present study aims to measure the effectiveness of an "Interactive eBook" in order to develop skills of designing and employing webquests for female intern teachers. The study uses descriptive analytical methodology as well as quasi-experimental methodology. The sample of the study consists of (30) female intern teachers from the Department of Special Education (in the tracks of Gifted Education and Learning Difficulties), during the first semester of the academic year 2015, at King Abdul-Aziz University in Jeddah city. The sample is divided into (15) female intern teachers for the experimental group, and (15) female intern teachers for the control group. A set of qualitative and quantitative tools have been prepared and verified for the study, embodied in: a list of the designing webquests' skills, a list of the employing webquests' skills, a webquests' knowledge achievement test, a product rating card, an observation card, and an interactive ebook. The study concludes the following results: 1. After pre-control, there are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of the experimental and the control groups in the post measurement of the webquests' knowledge achievement test, in favor of the experimental group. 2. There are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of experimental and control groups in the post measurement of the product rating card in favor of the experimental group. 3. There are statistically significant differences, at the significance level of (α ≤ 0.05), between the mean scores of experimental and control groups in the post measurement of the observation card for the experimental group. In the light of the previous findings, the study recommends the following: taking advantage of interactive ebooks when teaching all educational courses for various disciplines at the university level, creating educational participative platforms to share educational interactive ebooks for various disciplines at the local and regional levels. The study suggests conducting further qualitative studies on the effectiveness of interactive ebooks, in addition to conducting studies on the use of (Web 2.0) in webquests.

Keywords: interactive eBook, webquest, design, employing, develop skills

Procedia PDF Downloads 183
3615 Two Component Source Apportionment Based on Absorption and Size Distribution Measurement

Authors: Tibor Ajtai, Noémi Utry, Máté Pintér, Gábor Szabó, Zoltán Bozóki

Abstract:

Beyond its climate and health related issues ambient light absorbing carbonaceous particulate matter (LAC) has also become a great scientific interest in terms of its regulations recently. It has been experimentally demonstrated in recent studies, that LAC is dominantly composed of traffic and wood burning aerosol particularly under wintertime urban conditions, when the photochemical and biological activities are negligible. Several methods have been introduced to quantitatively apportion aerosol fractions emitted by wood burning and traffic but most of them require costly and time consuming off-line chemical analysis. As opposed to chemical features, the microphysical properties of airborne particles such as optical absorption and size distribution can be easily measured on-line, with high accuracy and sensitivity, especially under highly polluted urban conditions. Recently a new method has been proposed for the apportionment of wood burning and traffic aerosols based on the spectral dependence of their absorption quantified by the Aerosol Angström Exponent (AAE). In this approach the absorption coefficient is deduced from transmission measurement on a filter accumulated aerosol sample and the conversion factor between the measured optical absorption and the corresponding mass concentration (the specific absorption cross section) are determined by on-site chemical analysis. The recently developed multi-wavelength photoacoustic instruments provide novel, in-situ approach towards the reliable and quantitative characterization of carbonaceous particulate matter. Therefore, it also opens up novel possibilities on the source apportionment through the measurement of light absorption. In this study, we demonstrate an in-situ spectral characterization method of the ambient carbon fraction based on light absorption and size distribution measurements using our state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS) and Single Mobility Particle Sizer (SMPS) The carbonaceous particulate selective source apportionment study was performed for ambient particulate matter in the city center of Szeged, Hungary where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. The proposed model is based on the parallel, in-situ measurement of optical absorption and size distribution. AAEff and AAEwb were deduced from the measured data using the defined correlation between the AOC(1064nm)/AOC(266nm) and N100/N20 ratios. σff(λ) and σwb(λ) were determined with the help of the independently measured temporal mass concentrations in the PM1 mode. Furthermore, the proposed optical source apportionment is based on the assumption that the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed here by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data. The results by the proposed novel optical absorption based source apportionment method prove its applicability whenever measurements are performed at an urban site where traffic and wood burning are the dominant carbonaceous sources of emission.

Keywords: absorption, size distribution, source apportionment, wood burning, traffic aerosol

Procedia PDF Downloads 227
3614 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 337
3613 Measurement of Turbulence with PITOT Static Tube in Low Speed Subsonic Wind Tunnel

Authors: Gopikrishnan, Bharathiraja, Boopalan, Jensin Joshua

Abstract:

The Pitot static tube has proven their values and practicability in measuring velocity of fluids for many years. With the aim of extensive usage of such Pitot tube systems, one of the major enabling technologies is to use the design and fabricate a high sensitive pitot tube for the purpose of calibration of the subsonic wind tunnel. Calibration of wind tunnel is carried out by using different instruments to measure variety of parameters. Using too many instruments inside the tunnel may not only affect the fluid flow but also lead to drag or losses. So, it is essential to replace the different system with a single system that would give all the required information. This model of high sensitive Pitot tube has been designed to ease the calibration process. It minimizes the use of different instruments and this single system is capable of calibrating the wind tunnel test section. This Pitot static tube is completely digitalized and so that the velocity data`s can be collected directly from the instrument. Since the turbulence factors are dependent on velocity, the data’s that are collected from the pitot static tube are then processed and the level of turbulence in the fluid flow is calculated. It is also capable of measuring the pressure distribution inside the wind tunnel and the flow angularity of the fluid. Thus, the well-designed high sensitive Pitot static tube is utilized in calibrating the tunnel and also for the measurement of turbulence.

Keywords: pitot static tube, turbulence, wind tunnel, velocity

Procedia PDF Downloads 526
3612 Cultural Background as Moderator of the Association Between Personal Bonding Social Capital and Well-Being: An Association Study in a Sample of Dutch and Turkish Older Adults in the Netherlands

Authors: Marianne Simons, Sinan Kurt, Marjolein Stefens, Kai Karos, Johan Lataster

Abstract:

As cultural diversity within older populations in European countries increases, the role of cultural background should be taken account of in aging studies. Bonding social capital (BSC), containing someone’s socio-emotional resources, is recognised as an important ingredient for wellbeing in old age and found to be associated with someone’s cultural background. The current study examined the association between BSC, loneliness and wellbeing in a sample including older Turkish migrants with a collectivistic cultural background and native Dutch older adults, both living in the Netherlands, characterised by an individualistic culture. A sample of 119 Turkish migrants (64.7% male; age 65-87, M(SD)=71.13(5.04) and 124 native Dutch adults (32.3% male, age 65-94, M(SD)= 71.9(5.32) filled out either an online or printed questionnaire measuring BSC, psychological, social and emotional well-being, loneliness and relevant demographic covariates. Regression analysis - including confounders age, gender, level of education, physical health and relationship - showed positive associations between BSC and respectively emotional, social and psychological well-being and a negative association with loneliness in both samples. Moderation analyses showed that these associations were significantly stronger for the Turkish older migrants than for their native peers. Measurement invariance analysis indicated partial metric invariance for the measurement of BSC and loneliness and non-invariance for wellbeing, calling for caution comparing means between samples. The results stress the importance of BSC for wellbeing of older migrants from collectivistic cultures living in individualistic countries. Previous research, shows a trend of older migrants displaying lower levels of BSC as well as associated variables, such as education, physical health, and financial income. This calls for more research of the interplay between demographic and psychosocial factors restraining mental wellbeing of older migrant populations. Measurement invariance analyses further emphasize the importance of taking cultural background into account in positive aging studies.

Keywords: positive aging, cultural background, wellbeing, social capital, loneliness

Procedia PDF Downloads 90
3611 Digital Phase Shifting Holography in a Non-Linear Interferometer using Undetected Photons

Authors: Sebastian Töpfer, Marta Gilaberte Basset, Jorge Fuenzalida, Fabian Steinlechner, Juan P. Torres, Markus Gräfe

Abstract:

This work introduces a combination of digital phase-shifting holography with a non-linear interferometer using undetected photons. Non-linear interferometers can be used in combination with a measurement scheme called quantum imaging with undetected photons, which allows for the separation of the wavelengths used for sampling an object and detecting it in the imaging sensor. This method recently faced increasing attention, as it allows to use of exotic wavelengths (e.g., mid-infrared, ultraviolet) for object interaction while at the same time keeping the detection in spectral areas with highly developed, comparable low-cost imaging sensors. The object information, including its transmission and phase influence, is recorded in the form of an interferometric pattern. To collect these, this work combines the method of quantum imaging with undetected photons with digital phase-shifting holography with a minimal sampling of the interference. With this, the quantum imaging scheme gets extended in its measurement capabilities and brings it one step closer to application. Quantum imaging with undetected photons uses correlated photons generated by spontaneous parametric down-conversion in a non-linear interferometer to create indistinguishable photon pairs, which leads to an effect called induced coherence without induced emission. Placing an object inside changes the interferometric pattern depending on the object’s properties. Digital phase-shifting holography records multiple images of the interference with determined phase shifts to reconstruct the complete interference shape, which can afterward be used to analyze the changes introduced by the object and conclude its properties. An extensive characterization of this method was done using a proof-of-principle setup. The measured spatial resolution, phase accuracy, and transmission accuracy are compared for different combinations of camera exposure times and the number of interference sampling steps. The current limits of this method are shown to allow further improvements. To summarize, this work presents an alternative holographic measurement method using non-linear interferometers in combination with quantum imaging to enable new ways of measuring and motivating continuing research.

Keywords: digital holography, quantum imaging, quantum holography, quantum metrology

Procedia PDF Downloads 92