Search results for: catchment forest restoration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1529

Search results for: catchment forest restoration

899 Comparison of Different Machine Learning Algorithms for Solubility Prediction

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Molecular solubility prediction plays a crucial role in various fields, such as drug discovery, environmental science, and material science. In this study, we compare the performance of five machine learning algorithms—linear regression, support vector machines (SVM), random forests, gradient boosting machines (GBM), and neural networks—for predicting molecular solubility using the AqSolDB dataset. The dataset consists of 9981 data points with their corresponding solubility values. MACCS keys (166 bits), RDKit properties (20 properties), and structural properties(3) features are extracted for every smile representation in the dataset. A total of 189 features were used for training and testing for every molecule. Each algorithm is trained on a subset of the dataset and evaluated using metrics accuracy scores. Additionally, computational time for training and testing is recorded to assess the efficiency of each algorithm. Our results demonstrate that random forest model outperformed other algorithms in terms of predictive accuracy, achieving an 0.93 accuracy score. Gradient boosting machines and neural networks also exhibit strong performance, closely followed by support vector machines. Linear regression, while simpler in nature, demonstrates competitive performance but with slightly higher errors compared to ensemble methods. Overall, this study provides valuable insights into the performance of machine learning algorithms for molecular solubility prediction, highlighting the importance of algorithm selection in achieving accurate and efficient predictions in practical applications.

Keywords: random forest, machine learning, comparison, feature extraction

Procedia PDF Downloads 40
898 Coprophagus Beetles (Scarabaeidae: Coleoptera) of Buxa Tiger Reserve, West Bengal, India

Authors: Subhankar Kumar Sarkar

Abstract:

Scarab beetles composing the family Scarabaeidae is one of the largest families in the order Coleoptera. The family is comprised of 11 subfamilies. Of these, the subfamily Scarabaeinae includes 13 tribes globally. Indian species are however considered within 2 tribes Scarabaeini and Coprini. Scarab beetles under this subfamily also known as Coprophagus beetles play an indispensable role in forestry and agriculture. Both adults and larvae of these beetles do a remarkable job of carrying excrement into the soil thus enriching the soil to a great extent. Eastern and North Eastern states of India are heavily rich in diversity of organisms as this region exhibits the tropical rain forests of the eastern Himalayas, which exhibits one of the 18 biodiversity hotspots of the world and one of the three of India. Buxa Tiger Reserve located in Dooars between latitudes 26°30” to 26°55” North & longitudes 89°20” to 89°35” East is one such fine example of rain forests of the eastern Himalayas. Despite this, the subfamily is poorly known, particularly from this part of the globe and demands serious revisionary studies. It is with this background; the attempt is being made to assess the Scarabaeinae fauna of the forest. Both extensive and intensive surveys were conducted in different beats under different ranges of Buxa Tiger Reserve. For collection sweep nets, bush beating and collection in inverted umbrella, hand picking techniques were used. Several pit fall traps were laid in the collection localities of the Reserve to trap ground dwelling scarabs. Dung of various animals was also examined to make collections. In the evening hours UV light, trap was used to collect nocturnal beetles. The collected samples were studied under Stereozoom Binocular Microscopes Zeiss SV6, SV11 and Olympus SZ 30. The faunistic investigation of the forest revealed in the recognition of 19 species under 6 genera distributed over 2 tribes. Of these Heliocopris tyrannus Thomson, 1859 was recorded new from the Country, while Catharsius javanus Lansberge, 1886, Copris corpulentus Gillet, 1910, C. doriae Harold, 1877 and C. sarpedon Harold, 1868 from the state. 4 species are recorded as endemic to India. The forest is dominated by the members of the Genus Onthophagus, of which Onthophagus (Colobonthophagus) dama (Fabricius, 1798) is represented by highest number of individuals. Their seasonal distribution is most during Premonsoon followed by Monsoon and Postmonsoon. Zoogeographically all the recorded species are of oriental distribution.

Keywords: buxa tiger reserve, diversity, India, new records, scarabaeinae, scarabaeidae

Procedia PDF Downloads 241
897 Characterization of WNK2 Role on Glioma Cells Vesicular Traffic

Authors: Viviane A. O. Silva, Angela M. Costa, Glaucia N. M. Hajj, Ana Preto, Aline Tansini, Martin Roffé, Peter Jordan, Rui M. Reis

Abstract:

Autophagy is a recycling and degradative system suggested to be a major cell death pathway in cancer cells. Autophagy pathway is interconnected with the endocytosis pathways sharing the same ultimate lysosomal destination. Lysosomes are crucial regulators of cell homeostasis, responsible to downregulate receptor signalling and turnover. It seems highly likely that derailed endocytosis can make major contributions to several hallmarks of cancer. WNK2, a member of the WNK (with-no-lysine [K]) subfamily of protein kinases, had been found downregulated by its promoter hypermethylation, and has been proposed to act as a specific tumour-suppressor gene in brain tumors. Although some contradictory studies indicated WNK2 as an autophagy modulator, its role in cancer cell death is largely unknown. There is also growing evidence for additional roles of WNK kinases in vesicular traffic. Aim: To evaluate the role of WNK2 in autophagy and endocytosis on glioma context. Methods: Wild-type (wt) A172 cells (WNK2 promoter-methylated), and A172 transfected either with an empty vector (Ev) or with a WNK2 expression vector, were used to assess the cellular basal capacities to promote autophagy, through western blot and flow-cytometry analysis. Additionally, we evaluated the effect of WNK2 on general endocytosis trafficking routes by immunofluorescence. Results: The re-expression of ectopic WNK2 did not interfere with autophagy-related protein light chain 3 (LC3-II) expression levels as well as did not promote mTOR signaling pathway alteration when compared with Ev or wt A172 cells. However, the restoration of WNK2 resulted in a marked increase (8 to 92,4%) of Acidic Vesicular Organelles formation (AVOs). Moreover, our results also suggest that WNK2 cells promotes delay in uptake and internalization rate of cholera toxin B and transferrin ligands. Conclusions: The restoration of WNK2 interferes in vesicular traffic during endocytosis pathway and increase AVOs formation. This results also suggest the role of WNK2 in growth factor receptor turnover related to cell growth and homeostasis and associates one more time, WNK2 silencing contribution in genesis of gliomas.

Keywords: autophagy, endocytosis, glioma, WNK2

Procedia PDF Downloads 370
896 Assessing the Legacy Effects of Wildfire on Eucalypt Canopy Structure of South Eastern Australia

Authors: Yogendra K. Karna, Lauren T. Bennett

Abstract:

Fire-tolerant eucalypt forests are one of the major forest ecosystems of south-eastern Australia and thought to be highly resistant to frequent high severity wildfires. However, the impact of different severity wildfires on the canopy structure of fire-tolerant forest type is under-studied, and there are significant knowledge gaps in relation to the assessment of tree and stand level canopy structural dynamics and recovery after fire. Assessment of canopy structure is a complex task involving accurate measurements of the horizontal and vertical arrangement of the canopy in space and time. This study examined the utility of multitemporal, small-footprint lidar data to describe the changes in the horizontal and vertical canopy structure of fire-tolerant eucalypt forests seven years after wildfire of different severities from the tree to stand level. Extensive ground measurements were carried out in four severity classes to describe and validate canopy cover and height metrics as they change after wildfire. Several metrics such as crown height and width, crown base height and clumpiness of crown were assessed at tree and stand level using several individual tree top detection and measurement algorithm. Persistent effects of high severity fire 8 years after both on tree crowns and stand canopy were observed. High severity fire increased the crown depth but decreased the crown projective cover leading to more open canopy.

Keywords: canopy gaps, canopy structure, crown architecture, crown projective cover, multi-temporal lidar, wildfire severity

Procedia PDF Downloads 175
895 Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)

Authors: Rima Zakzouk, Yasushi Shimada, Yuan Zhou, Yasunori Sumi, Junji Tagami

Abstract:

Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment.

Keywords: image analysis, optical coherence tomography, phosphoric acid etching, self-etch adhesives

Procedia PDF Downloads 221
894 Woodfuels as Alternative Source of Energy in Rural and Urban Areas in the Philippines

Authors: R. T. Aggangan

Abstract:

Woodfuels continue to be a major component of the energy supply mix of the Philippines due to increasing demand for energy that are not adequately met by decreasing supply and increasing prices of fuel oil such as liquefied petroleum gas (LPG) and kerosene. The Development Academy of the Philippines projects the demand of woodfuels in 2016 as 28.3 million metric tons in the household sector and about 105.4 million metric tons combined supply potentials of both forest and non-forest lands. However, the Revised Master Plan for Forestry Development projects a demand of about 50 million cu meters of fuelwood in 2016 but the capability to supply from local sources is only about 28 million cu meters indicating a 44 % deficiency. Household demand constitutes 82% while industries demand is 18%. Domestic household demand for energy is for cooking needs while the industrial demand is for steam power generation, curing barns of tobacco: brick, ceramics and pot making; bakery; lime production; and small scale food processing. Factors that favour increased use of wood-based energy include the relatively low prices (increasing oil-based fuel prices), availability of efficient wood-based energy utilization technology, increasing supply, and increasing population that cannot afford conventional fuels. Moreover, innovations in combustion technology and cogeneration of heat and power from biomass for modern applications favour biomass energy development. This paper recommends policies and strategic directions for the development of the woodfuel industry with the twin goals of sustainably supplying the energy requirements of households and industry.

Keywords: biomass energy development, fuelwood, households and industry, innovations in combustion technology, supply and demand

Procedia PDF Downloads 333
893 Desertification of Earth and Reverting Strategies

Authors: V. R. Venugopal

Abstract:

Human being evolved 200,000 years ago in an area which is now the Sahara desert and lived all along in the northern part of Africa. It was around 10,000 to15,00 years that he moved out of Africa. Various ancient civilizations – mainly the Egyptian, Mesopotamian, Indus valley and the Chinese yellow river valley civilizations - developed and perished till the beginning of the Christian era. Strangely the regions where all these civilizations flourished are no deserts. After the ancient civilizations the two major religions of the world the Christianity and Islam evolved. These too evolved in the regions of Jerusalem and Mecca which are now in the deserts of the present Israel and Saudi Arabia. Human activity since ancient age right from his origin was in areas which are now deserts. This is only because wherever Man lived in large numbers he has turned them into deserts. Unfortunately, this is not the case with the ancient days alone. Over the last 500 years the forest cover on the earth is reduced by 80 percent. Even more currently Just over the last forty decades human population has doubled but the number of bugs, beetles, worms and butterflies (micro fauna) have declined by 45%. Deforestation and defaunation are the first signs of desertification and Desertification is a process parallel to the extinction of life. There is every possibility that soon most of the earth will be in deserts. This writer has been involved in the process of forestation and increase of fauna as a profession since twenty years and this is a report of his efforts made in the process, the results obtained and concept generated to revert the ongoing desertification of this earth. This paper highlights how desertification can be reverted by applying these basic principles. 1) Man is not owner of this earth and has no right destroy vegetation and micro fauna. 2) Land owner shall not have the freedom to do anything that he wishes with the land. 3) The land that is under agriculture shall be reduced at least by a half. 4) Irrigation and modern technology shall be used for the forest growth also. 5) Farms shall have substantial permanent vegetation and the practice of all in all out shall stop.

Keywords: desertification, extinction, micro fauna, reverting

Procedia PDF Downloads 312
892 A Smart Sensor Network Approach Using Affordable River Water Level Sensors

Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan

Abstract:

Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.

Keywords: smart sensing, internet of things, water level sensor, flooding

Procedia PDF Downloads 381
891 Landscape Pattern Evolution and Optimization Strategy in Wuhan Urban Development Zone, China

Authors: Feng Yue, Fei Dai

Abstract:

With the rapid development of urbanization process in China, its environmental protection pressure is severely tested. So, analyzing and optimizing the landscape pattern is an important measure to ease the pressure on the ecological environment. This paper takes Wuhan Urban Development Zone as the research object, and studies its landscape pattern evolution and quantitative optimization strategy. First, remote sensing image data from 1990 to 2015 were interpreted by using Erdas software. Next, the landscape pattern index of landscape level, class level, and patch level was studied based on Fragstats. Then five indicators of ecological environment based on National Environmental Protection Standard of China were selected to evaluate the impact of landscape pattern evolution on the ecological environment. Besides, the cost distance analysis of ArcGIS was applied to simulate wildlife migration thus indirectly measuring the improvement of ecological environment quality. The result shows that the area of land for construction increased 491%. But the bare land, sparse grassland, forest, farmland, water decreased 82%, 47%, 36%, 25% and 11% respectively. They were mainly converted into construction land. On landscape level, the change of landscape index all showed a downward trend. Number of patches (NP), Landscape shape index (LSI), Connection index (CONNECT), Shannon's diversity index (SHDI), Aggregation index (AI) separately decreased by 2778, 25.7, 0.042, 0.6, 29.2%, all of which indicated that the NP, the degree of aggregation and the landscape connectivity declined. On class level, the construction land and forest, CPLAND, TCA, AI and LSI ascended, but the Distribution Statistics Core Area (CORE_AM) decreased. As for farmland, water, sparse grassland, bare land, CPLAND, TCA and DIVISION, the Patch Density (PD) and LSI descended, yet the patch fragmentation and CORE_AM increased. On patch level, patch area, Patch perimeter, Shape index of water, farmland and bare land continued to decline. The three indexes of forest patches increased overall, sparse grassland decreased as a whole, and construction land increased. It is obvious that the urbanization greatly influenced the landscape evolution. Ecological diversity and landscape heterogeneity of ecological patches clearly dropped. The Habitat Quality Index continuously declined by 14%. Therefore, optimization strategy based on greenway network planning is raised for discussion. This paper contributes to the study of landscape pattern evolution in planning and design and to the research on spatial layout of urbanization.

Keywords: landscape pattern, optimization strategy, ArcGIS, Erdas, landscape metrics, landscape architecture

Procedia PDF Downloads 165
890 The Role of Sustainable Financing Models for Smallholder Tree Growers in Ghana

Authors: Raymond Awinbilla

Abstract:

The call for tree planting has long been set in motion by the government of Ghana. The Forestry Commission encourages plantation development through numerous interventions including formulating policies and enacting legislations. However, forest policies have failed and that has generated a major concern over the vast gap between the intentions of national policies and the realities established. This study addresses three objectives;1) Assessing the farmers' response and contribution to the tree planting initiative, 2) Identifying socio-economic factors hindering the development of smallholder plantations as a livelihood strategy, and 3) Determining the level of support available for smallholder tree growers and the factors influencing it. The field work was done in 12 farming communities in Ghana. The article illuminates that farmers have responded to the call for tree planting and have planted both exotic and indigenous tree species. Farmers have converted 17.2% (369.48ha) of their total land size into plantations and have no problem with land tenure. Operations and marketing constraints include lack of funds for operations, delay in payment, low price of wood, manipulation of price by buyers, documentation by buyers, and no ready market for harvesting wood products. Environmental institutions encourage tree planting; the only exception is with the Lands Commission. Support availed to farmers includes capacity building in silvicultural practices, organisation of farmers, linkage to markets and finance. Efforts by the Government of Ghana to enhance forest resources in the country could rely on the input of local populations.

Keywords: livelihood strategy, marketing constraints, environmental institutions, silvicultural practices

Procedia PDF Downloads 58
889 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
888 Unsupervised Detection of Burned Area from Remote Sensing Images Using Spatial Correlation and Fuzzy Clustering

Authors: Tauqir A. Moughal, Fusheng Yu, Abeer Mazher

Abstract:

Land-cover and land-use change information are important because of their practical uses in various applications, including deforestation, damage assessment, disasters monitoring, urban expansion, planning, and land management. Therefore, developing change detection methods for remote sensing images is an important ongoing research agenda. However, detection of change through optical remote sensing images is not a trivial task due to many factors including the vagueness between the boundaries of changed and unchanged regions and spatial dependence of the pixels to its neighborhood. In this paper, we propose a binary change detection technique for bi-temporal optical remote sensing images. As in most of the optical remote sensing images, the transition between the two clusters (change and no change) is overlapping and the existing methods are incapable of providing the accurate cluster boundaries. In this regard, a methodology has been proposed which uses the fuzzy c-means clustering to tackle the problem of vagueness in the changed and unchanged class by formulating the soft boundaries between them. Furthermore, in order to exploit the neighborhood information of the pixels, the input patterns are generated corresponding to each pixel from bi-temporal images using 3×3, 5×5 and 7×7 window. The between images and within image spatial dependence of the pixels to its neighborhood is quantified by using Pearson product moment correlation and Moran’s I statistics, respectively. The proposed technique consists of two phases. At first, between images and within image spatial correlation is calculated to utilize the information that the pixels at different locations may not be independent. Second, fuzzy c-means technique is used to produce two clusters from input feature by not only taking care of vagueness between the changed and unchanged class but also by exploiting the spatial correlation of the pixels. To show the effectiveness of the proposed technique, experiments are conducted on multispectral and bi-temporal remote sensing images. A subset (2100×1212 pixels) of a pan-sharpened, bi-temporal Landsat 5 thematic mapper optical image of Los Angeles, California, is used in this study which shows a long period of the forest fire continued from July until October 2009. Early forest fire and later forest fire optical remote sensing images were acquired on July 5, 2009 and October 25, 2009, respectively. The proposed technique is used to detect the fire (which causes change on earth’s surface) and compared with the existing K-means clustering technique. Experimental results showed that proposed technique performs better than the already existing technique. The proposed technique can be easily extendable for optical hyperspectral images and is suitable for many practical applications.

Keywords: burned area, change detection, correlation, fuzzy clustering, optical remote sensing

Procedia PDF Downloads 169
887 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
886 Resons for Seeking Dental Care, Caries Profile and Treatment Need of Children in Tabuk, KSA

Authors: Syed Ameer Haider Jafri, Mariam Amri

Abstract:

Dental caries is the most prevalent dental disease of childhood. The aims and objectives of this study were to identify the most common reason for seeking dental treatment and to determine caries profile and there is a treatment need in children visiting the hospital. A total of 170 Saudi children of age 1-5 years studied. Results show the most common reason for visiting hospital was decay followed by pain. These children show mean DMFT/DMFS of 9.8/22.4 and most commonly needed treatment was one-surface restoration followed by pulp treatment.

Keywords: dental caries, DMFT/DMFS index, prevalence, dental treatment need

Procedia PDF Downloads 509
885 A Study on Soil Micro-Arthropods Assemblage in Selected Plantations in The Nilgiris, Tamilnadu

Authors: J. Dharmaraj, C. Gunasekaran

Abstract:

Invertebrates are the reliable ecological indicators of disturbance of the forest ecosystems and they respond to environment changes more quickly than other fauna. Among these the terrestrial invertebrates are vital to functioning ecosystems, contributing to processes such as decomposition, nutrient cycling and soil fertility. The natural ecosystems of the forests have been subject to various types of disturbances, which lead to decline of flora and fauna. The comparative diversity of micro-arthropods in natural forest, wattle plantation and eucalyptus plantations were studied in Nilgiris. The study area was divided in to five major sites (Emerald (Site-I), Thalaikundha (Site-II), Kodapmund (Site-III), Aravankad (Site-IV), Kattabettu (Site-V). The research was conducted during period from March 2014 to August 2014. The leaf and soil samples were collected and isolated by using Berlese funnel extraction methods. Specimens were isolated and identified according to their morphology (Balogh 1972). In the present study results clearly showed the variation in soil pH, NPK (Major Nutrients) and organic carbon among the study sites. The chemical components of the leaf litters of the plantation decreased the diversity of micro-arthropods and decomposition rate leads to low amount of carbon and other nutrients present in the soil. Moreover eucalyptus and wattle plantations decreases the availability of the ground water source to other plantations and micro-arthropods and hences affects the soil fertility. Hence, the present study suggests to minimize the growth of wattle and eucalyptus tree plantations in the natural areas which may help to reduce the decline of forests.

Keywords: micro-arthropods, assemblage, berlese funnel, morphology, NPK, nilgiris

Procedia PDF Downloads 308
884 Effective Emergency Response and Disaster Prevention: A Decision Support System for Urban Critical Infrastructure Management

Authors: M. Shahab Uddin, Pennung Warnitchai

Abstract:

Currently more than half of the world’s populations are living in cities, and the number and sizes of cities are growing faster than ever. Cities rely on the effective functioning of complex and interdependent critical infrastructures networks to provide public services, enhance the quality of life, and save the community from hazards and disasters. In contrast, complex connectivity and interdependency among the urban critical infrastructures bring management challenges and make the urban system prone to the domino effect. Unplanned rapid growth, increased connectivity, and interdependency among the infrastructures, resource scarcity, and many other socio-political factors are affecting the typical state of an urban system and making it susceptible to numerous sorts of diversion. In addition to internal vulnerabilities, urban systems are consistently facing external threats from natural and manmade hazards. Cities are not just complex, interdependent system, but also makeup hubs of the economy, politics, culture, education, etc. For survival and sustainability, complex urban systems in the current world need to manage their vulnerabilities and hazardous incidents more wisely and more interactively. Coordinated management in such systems makes for huge potential when it comes to absorbing negative effects in case some of its components were to function improperly. On the other hand, ineffective management during a similar situation of overall disorder from hazards devastation may make the system more fragile and push the system to an ultimate collapse. Following the quantum, the current research hypothesizes that a hazardous event starts its journey as an emergency, and the system’s internal vulnerability and response capacity determine its destination. Connectivity and interdependency among the urban critical infrastructures during this stage may transform its vulnerabilities into dynamic damaging force. An emergency may turn into a disaster in the absence of effective management; similarly, mismanagement or lack of management may lead the situation towards a catastrophe. Situation awareness and factual decision-making is the key to win a battle. The current research proposed a contextual decision support system for an urban critical infrastructure system while integrating three different models: 1) Damage cascade model which demonstrates damage propagation among the infrastructures through their connectivity and interdependency, 2) Restoration model, a dynamic restoration process of individual infrastructure, which is based on facility damage state and overall disruptions in surrounding support environment, and 3) Optimization model that ensures optimized utilization and distribution of available resources in and among the facilities. All three models are tightly connected, mutually interdependent, and together can assess the situation and forecast the dynamic outputs of every input. Moreover, this integrated model will hold disaster managers and decision makers responsible when it comes to checking all the alternative decision before any implementation, and support to produce maximum possible outputs from the available limited inputs. This proposed model will not only support to reduce the extent of damage cascade but will ensure priority restoration and optimize resource utilization through adaptive and collaborative management. Complex systems predictably fail but in unpredictable ways. System understanding, situation awareness, and factual decisions may significantly help urban system to survive and sustain.

Keywords: disaster prevention, decision support system, emergency response, urban critical infrastructure system

Procedia PDF Downloads 227
883 An Alternative to Resolve Land use Conflicts: the Rétköz Lake Project

Authors: Balázs Kulcsár

Abstract:

Today, there is no part of the world that does not bear the mark of man in some way. This process seems unstoppable. So perhaps the best thing we can do is to touch that handprint gently and with the utmost care. There are multiple uses for the same piece of land, the coordination of which requires careful and sustainable spatial planning. The case study of the Rétközlake in north-eastern Hungary illustrates a habitat rehabilitation project in which a number of human uses were coordinated with the conservation and restoration of the natural environment. Today, the good condition of the habitat can only be maintained artificially, but the project has paid particular attention to finding a sustainable solution. The rehabilitation of Lake Rétköz is considered good practice in resolving land-use conflicts.

Keywords: sustainability, ecosystem service, land use conflict, landscape utilization

Procedia PDF Downloads 167
882 Innovative Biomonitoring in Port Ecosystem: Lessons and Perspectives from the QUAMPO Project

Authors: Benedicte Madon, Marion Pillet, Justine Castrec, Quentin Fonatine, Pierre Lejeune, Michel Marengo, Helene Thomas

Abstract:

Biodiversity in port ecosystems faces many anthropic pressures from port activities. The maritime industry and port areas have been under scrutiny regarding their environmental impacts. In the port value chain, port managers need to implement actions to fulfil environmental certifications and European Directive requirements. This paper seeks to highlight the lessons learned and opportunities through the QUAMPO project to move towards port biodiversity restoration in Corsica using innovative biomonitoring in the goal of obtaining green certification.

Keywords: biomonitoring, port, water quality, invertebrate, corsica, biomarker, trace elements, HAP, PCB, certification

Procedia PDF Downloads 119
881 Investigation and Comprehensive Benefit Analysis of 11 Typical Polar-Based Agroforestry Models Based on Analytic Hierarchy Process in Anhui Province, Eastern China

Authors: Zhihua Cao, Hongfei Zhao, Zhongneng Wu

Abstract:

The development of polar-based agroforestry was necessary due to the influence of the timber market environment in China, which can promote the coordinated development of forestry and agriculture, and gain remarkable ecological, economic and social benefits. The main agroforestry models of the main poplar planting area in Huaibei plain and along the Yangtze River plain were carried out. 11 typical management models of poplar were selected to sum up: pure poplar forest, poplar-rape-soybean, poplar-wheat-soybean, poplar-rape-cotton, poplar-wheat, poplar-chicken, poplar-duck, poplar-sheep, poplar-Agaricus blazei, poplar-oil peony, poplar-fish, represented by M0-M10, respectively. 12 indexes related with economic, ecological and social benefits (annual average cost, net income, ratio of output to investment, payback period of investment, land utilization ratio, utilization ratio of light energy, improvement and system stability of ecological and production environment, product richness, labor capacity, cultural quality of labor force, sustainability) were screened out to carry on the comprehensive evaluation and analysis to 11 kinds of typical agroforestry models based on analytic hierarchy process (AHP). The results showed that the economic benefit of each agroforestry model was in the order of: M8 > M6 > M9 > M7 > M5 > M10 > M4 > M1 > M2 > M3 > M0. The economic benefit of poplar-A. blazei model was the highest (332, 800 RMB / hm²), followed by poplar-duck and poplar-oil peony model (109, 820RMB /hm², 5, 7226 RMB /hm²). The order of comprehensive benefit was: M8 > M4 > M9 > M6 > M1 > M2 > M3 > M7 > M5 > M10 > M0. The economic benefit and comprehensive benefit of each agroforestry model were higher than that of pure poplar forest. The comprehensive benefit of poplar-A. blazei model was the highest, and that of poplar-wheat model ranked second, while its economic benefit was not high. Next were poplar-oil peony and poplar-duck models. It was suggested that the model of poplar-wheat should be adopted in the plain along the Yangtze River, and the whole cycle mode of poplar-grain, popalr-A. blazei, or poplar-oil peony should be adopted in Huaibei plain, northern Anhui. Furthermore, wheat, rape, and soybean are the main crops before the stand was closed; the agroforestry model of edible fungus or Chinese herbal medicine can be carried out when the stand was closed in order to maximize the comprehensive benefit. The purpose of this paper is to provide a reference for forest farmers in the selection of poplar agroforestry model in the future and to provide the basic data for the sustainable and efficient study of poplar agroforestry in Anhui province, eastern China.

Keywords: agroforestry, analytic hierarchy process (AHP), comprehensive benefit, model, poplar

Procedia PDF Downloads 164
880 Challenges of Landscape Design with Tree Species Diversity

Authors: Henry Kuppen

Abstract:

In the last decade, tree managers have faced many threats of pests and diseases and the effects of climate change. Managers will recognize that they have to put more energy and more money into tree management. By recognizing the cause behind this, the opportunity will arise to build sustainable tree populations for the future. More and more, unwanted larvae are sprayed, ash dieback infected trees are pruned or felled, and emerald ash borer is knocking at the door of West Europe. A lot of specific knowledge is needed to produce management plans and best practices. If pest and disease have a large impact, society loses complete tree species and need to start all over again building urban forest. But looking at the cause behind it, landscape design, and tree species selection, the sustainable solution does not present itself in managing these threats. Every pest or disease needs two important basic ingredients to be successful: climate and food. The changing climate is helping several invasive pathogens to survive. Food is often designed by the landscapers and managers of the urban forest. Monocultures promote the success of pathogens. By looking more closely at the basics, tree managers will realise very soon that the solution will not be the management of pathogens. The long-term solution for sustainable tree populations is a different design of our urban landscape. The use of tree species diversity can help to reduce the impact of climate change and pathogens. Therefore landscapers need to be supported. They are the specialists in designing the landscape using design values like canopy volume, ecosystem services, and seasonal experience. It’s up to the species specialist to show what the opportunities are for different species that meet the desired interpretation of the landscape. Based on landscapers' criteria, selections can be made, including tree species related requirements. Through this collaboration and formation of integral teams, sustainable plant design will be possible.

Keywords: climate change, landscape design, resilient landscape, tree species selection

Procedia PDF Downloads 130
879 Descriptive Study of Tropical Tree Species in Commercial Interest Biosphere Reserve Luki in the Democratic Republic of Congo (DRC)

Authors: Armand Okende, Joëlle De Weerdt, Esther Fichtler, Maaike De Ridder, Hans Beeckman

Abstract:

The rainforest plays a crucial role in regulating the climate balance. The biodiversity of tropical rainforests is undeniable, but many aspects remain poorly known, which directly influences its management. Despite the efforts of sustainable forest management, human pressure in terms of exploitation and smuggling of timber forms a problem compared to exploited species whose status is considered "vulnerable" on the IUCN red list compiled by. Commercial species in Class III of the Democratic Republic of Congo are the least known in the market operating, and their biology is unknown or non-existent. Identification of wood in terms of descriptions and anatomical measurements of the wood is in great demand for various stakeholders such as scientists, customs, IUCN, etc. The objective of this study is the qualitative and quantitative description of the anatomical characteristics of commercial species in Class III of DR Congo. The site of the Luki Biosphere Reserve was chosen because of its high tree species richness. This study focuses on the wood anatomy of 14 commercial species of Class III of DR Congo. Thirty-four wooden discs were collected for these species. The following parameters were measured in the field: Diameter at breast height (DBH), total height and geographic coordinates. Microtomy, identification of vessel parameters (diameter, density and grouping) and photograph of the microscopic sections and determining age were performed in this study. The results obtained are detailed anatomical descriptions of species in Class III of the Democratic Republic of Congo.

Keywords: sustainable management of forest, rainforest, commercial species of class iii, vessel diameter, vessel density, grouping vessel

Procedia PDF Downloads 214
878 Significant Influence of Land Use Type on Earthworm Communities but Not on Soil Microbial Respiration in Selected Soils of Hungary

Authors: Tsedekech Gebremeskel Weldmichael, Tamas Szegi, Lubangakene Denish, Ravi Kumar Gangwar, Erika Micheli, Barbara Simon

Abstract:

Following the 1992 Earth Summit in Rio de Janeiro, soil biodiversity has been recognized globally as a crucial player in guaranteeing the functioning of soil and a provider of several ecosystem services essential for human well-being. The microbial fraction of the soil is a vital component of soil fertility as soil microbes play key roles in soil aggregate formation, nutrient cycling, humification, and degradation of pollutants. Soil fauna, such as earthworms, have huge impacts on soil organic matter dynamics, nutrient cycling, and infiltration and distribution of water in the soil. Currently, land-use change has been a global concern as evidence accumulates that it adversely affects soil biodiversity and the associated ecosystem goods and services. In this study, we examined the patterns of soil microbial respiration (SMR) and earthworm (abundance, biomass, and species richness) across three land-use types (grassland, arable land, and forest) in Hungary. The objectives were i) to investigate whether there is a significant difference in SMR and earthworm (abundance, biomass, and species richness) among land-use types. ii) to determine the key soil properties that best predict the variation in SMR and earthworm communities. Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. For physicochemical parameters, soil organic matter (SOM), pH, CaCO₃, E₄/E₆, available nitrogen (NH₄⁺-N and NO₃⁻-N), potassium (K₂O), phosphorus (P₂O₅), exchangeable Ca²⁺, Mg²⁺, soil moisture content (MC) and bulk density were measured. The analysis of SMR was determined by basal respiration method, and the extraction of earthworms was carried out by hand sorting method as described by ISO guideline. The results showed that there was no statistically significant difference among land-use types in SMR (p > 0.05). However, the highest SMR was observed in grassland soils (11.77 mgCO₂ 50g⁻¹ soil 10 days⁻¹) and lowest in forest soils (8.61 mgCO₂ 50g⁻¹ soil 10 days⁻¹). SMR had strong positive correlations with exchangeable Ca²⁺ (r = 0.80), MC (r = 0.72), and exchangeable Mg²⁺(r = 0.69). We found a pronounced variation in SMR among soil texture classes (p < 0.001), where the highest value in silty clay loam soils and the lowest in sandy soils. This study provides evidence that agricultural activities can negatively influence earthworm communities, in which the arable land had significantly lower earthworm communities compared to forest and grassland respectively. Overall, in our study, land use type had minimal effects on SMR whereas, earthworm communities were profoundly influenced by land-use type particularly agricultural activities related to tillage. Exchangeable Ca²⁺, MC, and texture were found to be the key drivers of the variation in SMR.

Keywords: earthworm community, land use, soil biodiversity, soil microbial respiration, soil property

Procedia PDF Downloads 140
877 Restoration of Steppes in Algeria: Case of the Stipa tenacissima L. Steppe

Authors: H. Kadi-Hanifi, F. Amghar

Abstract:

Steppes of arid Mediterranean zones are deeply threatened by desertification. To stop or alleviate ecological and economic problems associated with this desertification, management actions have been implemented since the last three decades. The struggle against desertification has become a national priority in many countries. In Algeria, several management techniques have been used to cope with desertification. This study aims at investigating the effect of exclosure on floristic diversity and chemical soil proprieties after four years of implementation. 167 phyto-ecological samples have been studied, 122 inside the exclosure and 45 outside. Results showed that plant diversity, composition, vegetation cover, pastoral value and soil fertility were significantly higher in protected areas.

Keywords: Algeria, arid, desertification, pastoral management, soil fertility

Procedia PDF Downloads 192
876 Study of Chemical and Physical - Mechanical Properties Lime Mortar with Addition of Natural Resins

Authors: I. Poot-Ocejo, H. Silva-Poot, J. C. Cruz, A. Yeladaqui-Tello

Abstract:

Mexico has remarkable archaeological remains mainly in the Maya area, which are critical to the preservation of our cultural heritage, so the authorities have an interest in preserving and restoring these vestiges of the most original way, by employing techniques traditional, which has advantages such as compatibility, durability, strength, uniformity and chemical composition. Recent studies have confirmed the addition of natural resins extracted from the bark of trees, of which Brosium alicastrum (Ramon) has been the most evaluated, besides being one of the most abundant species in the vicinity of the archaeological sites, like that Manilkara Zapota (Chicozapote). Therefore, the objective is to determine if these resins are capable of being employed in archaeological restoration. This study shows the results of the chemical composition and physical-mechanical behavior of mortar mixtures eight made with commercial lime and off by hand, calcium sand, resins added with Brosium alicastrum (Ramon) and Manilkara zapota (Chicozapote), where determined and quantified properties and chemical composition of the resins by X-Ray Fluorescence (XRF), the pH of the material was determined, indicating that both resins are acidic (3.78 and 4.02), and the addition rate maximum was obtained from resins in water by means of ultrasonic baths pulses, being in the case of 10% Manilkara zapota, because it contains up to 40% rubber and for 40% alicastrum Brosium contain less rubber. Through quantitative methodology, the compressive strength 96 specimens of 5 cm x 5 cm x 5 cm of mortar binding, 72 with partial substitution of water mixed with natural resins in proportions 5 to 10% in the case was evaluated of Manilkara Zapota, for Brosium alicastrum 20 and 40%, and 12 artificial resin and 12 without additive (mortars witnesses). 24 specimens likewise glued brick with mortar, for testing shear adhesion was found where, then the microstructure more conducive additions was determined by SEM analysis were prepared sweep. The test results indicate that the addition Manilkara zapota resin in the proportion of 10% 1.5% increase in compressive strength and 1% with respect to adhesion, compared to the control without addition mortar; In the case of Brosium alicastrum results show that compressive strengths and adhesion were insignificant compared to those made with registered by Manilkara zapota mixtures. Mortars containing the natural resins have improvements in physical properties and increase the mechanical strength and adhesion, compared to those who do not, in addition to the components are chemically compatible, therefore have considered that can be employed in Archaeological restoration.

Keywords: lime, mortar, natural resins, Manilkara zapota mixtures, Brosium alicastrum

Procedia PDF Downloads 371
875 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine

Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren

Abstract:

It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.

Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring

Procedia PDF Downloads 335
874 Digital Elevation Model Analysis of Potential Prone Flood Disaster Watershed Citarum Headwaters Bandung

Authors: Faizin Mulia Rizkika, Iqbal Jabbari Mufti, Muhammad R. Y. Nugraha, Fadil Maulidir Sube

Abstract:

Flooding is an event of ponding on the flat area around the river as a result of the overflow of river water was not able to be accommodated by the river and may cause damage to the infrastructure of a region. This study aimed to analyze the data of Digital Elevation Model (DEM) for information that plays a role in the mapping of zones prone to flooding, mapping the distribution of zones prone to flooding that occurred in the Citarum upstream using secondary data and software (ArcGIS, MapInfo), this assessment was made distribution map of flooding, there were 13 counties / districts dam flood-prone areas in Bandung, and the most vulnerable districts are areas Baleendah-Dayeuhkolot-Bojongsoang-Banjaran. The area has a low slope and the same limits with boundary rivers and areas that have excessive land use, so the water catchment area is reduced.

Keywords: mitigation, flood, citarum, DEM

Procedia PDF Downloads 387
873 Assessment of Al/Fe Humus, pH, and P Retention to Differentiate Andisols under Different Cultivation, Karanganyar, Central Java, Indonesia

Authors: Miseri Roeslan Afany, Nur Ainun Pulungan

Abstract:

The unique characteristics of Andisol differentiate them from other soils. These characteristics become a guideline in determining management and usage with regards to agriculture. Especially in the tropical area, Andisols may have fast mineral alteration due to intensive water movement in the soils. Four soil chemical tests were conducted for evaluating soils in the study area. Al/Fe humus, allophane, pH, and P retention were used to differentiate Andisols under different practices. Non-cultivation practice (e.g. natural forest) and cultivation practices (e.g. horticulture systems and intensive farming systems) are compared in this study. We applied Blackmore method for P retention analysis. The aims of this study are: (i) to analyze the specific behavior of Al/Fe humus, pH, and allophane towards P retention in order (ii) to evaluate the effect of cultivation practices on their behavior changes among Andisols, and (iii) to gain the sustainable agriculture through proposing an appropriate soil managements in the study area. 5 observation sites were selected, and 75 soil sampling were analyzed in this study. The results show that the cultivation decreases P retention in all sampling sites. There is a declining from ±90% to ±50% of P retention in the natural forest where shifts into cultivated land. The average of P retention under 15 years of cultivation down into 63%, whereas, the average of P retention more than 15 years of cultivation down into 54%. Many factors affect the retention of P in the soil such as: (1) type and amount of clay, (2) allophone and/or imogolit, (3) Al/Fe humus, (4) soil pH, (5) type and amount of organic material, (6) Exchangeable bases (Ca, Mg, Na, K), (7) forms and solubility of Al/Fe. To achieve the sustainable agriculture in the study area, conventional agriculture practices should be preserved and intensive fertilizing practices should be applied in order to increase the soil pH, to maintain the organic matter of andisols, to maintain microba activities, and to release Al/Fe humus complex, and thus increase available P in the soils.

Keywords: Andisols, cultivation, P retention, sustainable agriculture

Procedia PDF Downloads 280
872 The Grand Egyptian Museum as a Cultural Interface

Authors: Mahmoud Moawad Mohamed Osman

Abstract:

The Egyptian civilization was and still is an inspiration for many human civilizations and modern sciences. For this reason, there is still a passion for the ancient Egyptian civilization. Due to the breadth and abundance of the outputs of the ancient Egyptian civilization, many museums have been established that contribute to displaying and demonstrating the splendor of the ancient Egyptian civilization, and among those museums is the Grand Egyptian Museum (Egypt's gift to the whole world). The idea of establishing the Grand Egyptian Museum began in the nineties of the last century, and in 2002 the foundation stone was laid for the museum project to be built in a privileged location overlooking the eternal pyramids of Giza, where the Egyptian state was declared, and under the auspices of the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Union of Architects. , for an international architectural competition for the best design for the museum. The current design submitted by Heneghan Peng Architects in Ireland won, and its design was based on the rays of the sun extending from the tops of the three pyramids when they meet to represent a conical mass, which is the Grand Egyptian Museum. The construction of the museum project began in May 2005, when the site was paved and prepared, and in 2006, the largest antiquities restoration center in the Middle East was established, dedicated to the restoration, preservation, maintenance and rehabilitation of the antiquities scheduled to be displayed in the museum halls, which was opened in 2010. The construction of the museum building, which has an area of more than 300,000 square meters, was completed during the year 2021, and includes a number of exhibition halls, each of which is considered larger than many current museums in Egypt and the world. The museum is considered one of the most important and greatest achievements of modern Egypt. It was created to be an integrated global civilizational, cultural and entertainment edifice, and to be the first destination for everyone interested in ancient Egyptian heritage, as the largest museum in the world that tells the story of the history of ancient Egyptian civilization, as it contains a large number of distinctive and unique artifacts, including the treasures of the golden king Tutankhamun, which... It is displayed for the first time in its entirety since the discovery of his tomb in November 1922, in addition to the collection of Queen Hetepheres, the guard of the mother of King Khufu, the builder of the Great Pyramid in Giza, as well as the Museum of King Khufu’s Boats, as well as various archaeological collectibles from the pre-dynastic era until the Greek and Roman eras.

Keywords: grand egyptian museum, egyptian civilization, education, museology

Procedia PDF Downloads 44
871 Deep Learning Based on Image Decomposition for Restoration of Intrinsic Representation

Authors: Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Kensuke Nakamura, Dongeun Choi, Byung-Woo Hong

Abstract:

Artefacts are commonly encountered in the imaging process of clinical computed tomography (CT) where the artefact refers to any systematic discrepancy between the reconstructed observation and the true attenuation coefficient of the object. It is known that CT images are inherently more prone to artefacts due to its image formation process where a large number of independent detectors are involved, and they are assumed to yield consistent measurements. There are a number of different artefact types including noise, beam hardening, scatter, pseudo-enhancement, motion, helical, ring, and metal artefacts, which cause serious difficulties in reading images. Thus, it is desired to remove nuisance factors from the degraded image leaving the fundamental intrinsic information that can provide better interpretation of the anatomical and pathological characteristics. However, it is considered as a difficult task due to the high dimensionality and variability of data to be recovered, which naturally motivates the use of machine learning techniques. We propose an image restoration algorithm based on the deep neural network framework where the denoising auto-encoders are stacked building multiple layers. The denoising auto-encoder is a variant of a classical auto-encoder that takes an input data and maps it to a hidden representation through a deterministic mapping using a non-linear activation function. The latent representation is then mapped back into a reconstruction the size of which is the same as the size of the input data. The reconstruction error can be measured by the traditional squared error assuming the residual follows a normal distribution. In addition to the designed loss function, an effective regularization scheme using residual-driven dropout determined based on the gradient at each layer. The optimal weights are computed by the classical stochastic gradient descent algorithm combined with the back-propagation algorithm. In our algorithm, we initially decompose an input image into its intrinsic representation and the nuisance factors including artefacts based on the classical Total Variation problem that can be efficiently optimized by the convex optimization algorithm such as primal-dual method. The intrinsic forms of the input images are provided to the deep denosing auto-encoders with their original forms in the training phase. In the testing phase, a given image is first decomposed into the intrinsic form and then provided to the trained network to obtain its reconstruction. We apply our algorithm to the restoration of the corrupted CT images by the artefacts. It is shown that our algorithm improves the readability and enhances the anatomical and pathological properties of the object. The quantitative evaluation is performed in terms of the PSNR, and the qualitative evaluation provides significant improvement in reading images despite degrading artefacts. The experimental results indicate the potential of our algorithm as a prior solution to the image interpretation tasks in a variety of medical imaging applications. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).

Keywords: auto-encoder neural network, CT image artefact, deep learning, intrinsic image representation, noise reduction, total variation

Procedia PDF Downloads 190
870 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92