Search results for: applied pharmacology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8400

Search results for: applied pharmacology

1860 Novel Hole-Bar Standard Design and Inter-Comparison for Geometric Errors Identification on Machine-Tool

Authors: F. Viprey, H. Nouira, S. Lavernhe, C. Tournier

Abstract:

Manufacturing of freeform parts may be achieved on 5-axis machine tools currently considered as a common means of production. In particular, the geometrical quality of the freeform parts depends on the accuracy of the multi-axis structural loop, which is composed of several component assemblies maintaining the relative positioning between the tool and the workpiece. Therefore, to reach high quality of the geometries of the freeform parts the geometric errors of the 5 axis machine should be evaluated and compensated, which leads one to master the deviations between the tool and the workpiece (volumetric accuracy). In this study, a novel hole-bar design was developed and used for the characterization of the geometric errors of a RRTTT 5-axis machine tool. The hole-bar standard design is made of Invar material, selected since it is less sensitive to thermal drift. The proposed design allows once to extract 3 intrinsic parameters: one linear positioning and two straightnesses. These parameters can be obtained by measuring the cylindricity of 12 holes (bores) and 11 cylinders located on a perpendicular plane. By mathematical analysis, twelve 3D points coordinates can be identified and correspond to the intersection of each hole axis with the least square plane passing through two perpendicular neighbour cylinders axes. The hole-bar was calibrated using a precision CMM at LNE traceable the SI meter definition. The reversal technique was applied in order to separate the error forms of the hole bar from the motion errors of the mechanical guiding systems. An inter-comparison was additionally conducted between four NMIs (National Metrology Institutes) within the EMRP IND62: JRP-TIM project. Afterwards, the hole-bar was integrated in RRTTT 5-axis machine tool to identify its volumetric errors. Measurements were carried out in real time and combine raw data acquired by the Renishaw RMP600 touch probe and the linear and rotary encoders. The geometric errors of the 5 axis machine were also evaluated by an accurate laser tracer interferometer system. The results were compared to those obtained with the hole bar.

Keywords: volumetric errors, CMM, 3D hole-bar, inter-comparison

Procedia PDF Downloads 384
1859 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling

Authors: Aamna Lawrence, Ashutosh Mishra

Abstract:

Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.

Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor

Procedia PDF Downloads 128
1858 Developing a Comprehensive Framework for Sustainable Urban Planning and Design: Insights From Iranian Cities

Authors: Mohammad Javad Seddighi, Avar Almukhtar

Abstract:

Sustainable urban planning and design (SUPD) play a critical role in achieving the United Nations Sustainable Development Goals (UN SDGs). While there are many rating systems and standards available to assess the sustainability of the built environment, there is still a lack of a comprehensive framework that can assess the quality of SUPD in a specific context. In this paper, we present a framework for assessing the quality of SUPD in Iranian cities, considering their unique cultural, social, and environmental contexts. The aim of this study is to develop a framework for assessing the quality of SUPD in Iranian cities. To achieve this aim, the following objectives are pursued review and synthesis of relevant literature on SUPD, identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities application of the framework to case studies of Iranian cities and evaluation and refinement of the framework based on the results of the case studies. The framework is developed based on a review and synthesis of relevant literature on SUPD, and the identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities. The framework is then applied to case studies of Iranian cities and the results are evaluated and refined. The data for this study are collected through a review of relevant literature on SUPD, including academic journals, conference proceedings, and books. The case studies of Iranian cities are selected based on their relevance and availability of data. The data are collected through interviews, site visits, and document analysis. This paper presents a framework for assessing the quality of SUPD in Iranian cities. The framework is developed based on a review and synthesis of relevant literature, identification of key indicators and criteria, application to case studies, and evaluation and refinement. The framework provides a comprehensive and context-specific approach to assessing the quality of SUPD in Iranian cities. It can be used by urban planners, designers, and policymakers to improve the sustainability and liveability of Iranian cities, and it can be adapted for use in other contexts.

Keywords: sustainable urban planning and design, framework, quality assessment, Iranian cities, case studies

Procedia PDF Downloads 118
1857 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
1856 Risk Management in Islamic Micro Finance Credit System for Poverty Alleviation from Qualitative Perspective

Authors: Liyu Adhi Kasari Sulung

Abstract:

Poverty has been a major problem in Indonesia. Islamic micro finance (IMF) named Baitul Maal Wat Tamwil (Bmt) plays a prominent role to eradicate this. Indonesia as the biggest muslim country has many successful applied products such as worldwide adopt group-based lending approach, flexible financing for farmers, and gold pawning. The Problems related to these models are operation risk management and internal control system (ICS). A proper ICS will help an organization in preventing the occurrence of bad financing through detecting error and irregularities in its operation. This study aims to seek a proper risk management scheme of credit system in Bmt and internal control system’s rank for every stage. Risk management variables are obtained at the first In-Depth Interview (IDI) and Focus Group Discussion (FGD) with Shariah supervisory boards, boards of directors, and operational managers. Survey was conducted covering nationwide data; West Java, South Sulawesi, and West Nusa Tenggara. Moreover, Content analysis is employed to build the relationship among these variables. Research Findings shows that risk management Characteristics in Indonesia involves ex ante, credit process, and ex post strategies to deal with risk in credit system. Ex-ante control consists of Shariah compliance, survey, group leader reference, and islamic forming orientation. Then, credit process involves saving, collateral, joint liability, loan repayment, and credit installment controlling. Finally, ex-post control includes shariah evaluation, credit evaluation, grace period and low installment provisions. In addition, internal control order sort three stages by its priority; Credit process as first rank, then ex-post control as second, and ex ante control as the last rank.

Keywords: internal control system, islamic micro finance, poverty, risk management

Procedia PDF Downloads 409
1855 Visual, Zoological Metaphors and 'Urtiin Duu' (Long Song) in Alshaa, Inner Mongolia

Authors: Oyuna Weina

Abstract:

This study examines how musicians use visual and zoological metaphors for singing technique and voice quality in a genre of traditional music called urtiin duu (‘long song’) in Alshaa, Inner Mongolia, China. Previous studies have discussed melodic contour in Mongol music, but little study of the intersection of singing technique, visual and zoological metaphors has yet been undertaken. The purpose of this study is to address this lack by analysing urtiin duu itself, traditional pedagogy and performances, all of which have been inspired and are assessed by reference to nature and mobile pastoral herding practices. This study investigates the visual and zoological metaphors related to urtiin duu especially colour, the shape of the circle and animals in the Mongol community. Urtiin duu singing is associated with certain colours in song texts, in selection of repertoire and in the status of singers. Musicians also use colour to describe timbre. These colours in turn reference worship of nature, religions, and daily practices of most Mongols in Alshaa. Moreover, voice quality and singing technique are often related to the animals not only in song text but also in the approach to breathing and to melodic contour. Additionally, the concept of boronhoi (‘the shape of circle’), not only is applied to the melodic contour but also to the voice quality and singing technique. These three factors illustrate the connections among nature, spiritual world and everyday herding life of Mongols. These different connections provide evidence of multi-layered meanings. In contemporary Alshaa, urtiin duu singers received Western musical training from the city and returned to their homelands to perform urtiin duu. In doing so, they are also trying to reconnect with the history, nature and spiritual world in order to achieve their ideal sound. Within a multicultural society, singers negotiate amongst themselves, and with ethnic groups, audiences and government officials. The power of the metaphor therefore assists and reconnects the strength of regional identity and ethnic identity in Alshaa.

Keywords: Alshaa, urtiin duu, visual, zoological metaphors

Procedia PDF Downloads 364
1854 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.

Keywords: computational brain, mind, psycholinguistic, system, under uncertainty

Procedia PDF Downloads 177
1853 The Impact of the Urban Planning and Environmental Problems over the Quality of Life Case Study: Median Zone of Bucharest's Sector 1, Romania

Authors: Cristian Cazacu, Bela Kobulniczky

Abstract:

Even though nowadays the median area of the Bucharest’s Sector 1 owns one of the best reputations in terms of quality of life level, the problems in urban planning from the last twenty years, as well as those related to the urban environment, became more and more obvious and shrill. And all this happened as long as non-compliance with urban and spatial planning laws, corroborated with uncontrolled territorial expansion on certain areas and faulty management of public and private spaces were more acute. The action of all these factors has been felt more and more strongly in the territory in the last twenty years, generating the degradation of the quality of the urban environment and affecting in parallel the general level of the inhabitants¬’ quality of life. Our methodology is based on analyzing a wide range of environmental parameters and it is also based on using advanced resources and skills for mapping planning and environmental dysfunctions as well as the possibility of integrating information into GIS programs, all data sets corroborated with problems related to spatial planning management and inaccuracies of the urbanistic sector. In the end, we managed to obtain a calculated and realistic image of the dysfunctions and a quantitative view of their magnitude in the territory. We also succeeded to create a full general map of the degree of degradation of the urban environment by typologies of urban tissues. Moreover, the methods applied by us can also be used globally to calculate and create realistic images and intelligent maps over the quality of the environment in areas larger than this one. Our study shows that environmental degradation occurred differently in the urban tissues from our study area, depending on several factors, reviewing the faulty way in which the processes of recovery / urban regeneration of the gap in recent years have led to the creation of new territorial dysfunctions. The general, centralized results show that the analyzed space has a much wider range of problems than initially thought, although notoriety and social etiquette place them far above other spaces from the same city of study.

Keywords: environment, GIS, planning, urban tissues

Procedia PDF Downloads 148
1852 Organizational Commitment in Islamic Boarding School: The Implementation of Organizational Behavior Integrative Model

Authors: Siswoyo Haryono

Abstract:

Purpose – The fundamental goal of this research is to see if the integrative organizational behavior model can be used effectively in Islamic boarding schools. This paper also seeks to assess the effect of Islamic organizational culture, leadership, and spiritual intelligence on teachers' organizational commitment to Islamic Boarding schools. The goal of the mediation analysis is to see if the Islamic work ethic has a more significant effect on the instructors' organizational commitment than the direct effects of Islamic organizational culture, leadership, and Islamic spiritual intelligence. Design/methodology/approach – A questionnaire survey was used to obtain data from teachers at Islamic Boarding Schools. This study used the AMOS technique for structural equation modeling to evaluate the expected direct effect. To test the hypothesized indirect effect, employed Sobel test. Findings – Islamic organizational culture, Islamic leadership, and Islamic spiritual intelligence significantly affect Islamic work ethic. When it comes to Islamic corporate culture, Islamic leadership, Islamic spiritual intelligence, and Islamic work ethics have a significant impact. The findings of the mediation study reveal that Islamic organizational culture, leadership, and spiritual intelligence influences organizational commitment through Islamic work ethic. The total effect analysis shows that the most effective path to increasing teachers’ organizational commitment is Islamic leadership - Islamic work ethic – organizational commitment. Originality/value – This study evaluates the Integrative Model of Organizational Behavior by Colquitt (2016) applied in Islamic Boarding School. The model consists of contemporary leadership and individual characteristic as the antecedent. The mediating variables of the model consist of individual mechanisms such as trust, justice, and ethic. Individual performance and organizational commitment are the model's outcomes. These variables, on the other hand, do not represent the Islamic viewpoint as a whole. As a result, this study aims to assess the role of Islamic principles in the model. The study employs reliability and validity tests to get reliable and valid measures. The findings revealed that the evaluation model is proven to improve organizational commitment at Islamic Boarding School.

Keywords: Islamic leadership, Islamic spiritual intelligence, Islamic work ethic, organizational commitment, Islamic boarding school

Procedia PDF Downloads 161
1851 Constraint-Based Computational Modelling of Bioenergetic Pathway Switching in Synaptic Mitochondria from Parkinson's Disease Patients

Authors: Diana C. El Assal, Fatima Monteiro, Caroline May, Peter Barbuti, Silvia Bolognin, Averina Nicolae, Hulda Haraldsdottir, Lemmer R. P. El Assal, Swagatika Sahoo, Longfei Mao, Jens Schwamborn, Rejko Kruger, Ines Thiele, Kathrin Marcus, Ronan M. T. Fleming

Abstract:

Degeneration of substantia nigra pars compacta dopaminergic neurons is one of the hallmarks of Parkinson's disease. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between supply and demand, thereby impeding normal neuronal bioenergetic requirements. Synaptic mitochondria exhibit increased vulnerability to dysfunction in Parkinson's disease. After biogenesis in and transport from the cell body, synaptic mitochondria become highly dependent upon oxidative phosphorylation. We applied a systems biochemistry approach to identify the metabolic pathways used by neuronal mitochondria for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism was extended with manual curation of the biochemical literature and specialised using omics data from Parkinson's disease patients and controls, to generate reconstructions of synaptic and somal mitochondrial metabolism. These reconstructions were converted into stoichiometrically- and fluxconsistent constraint-based computational models. These models predict that Parkinson's disease is accompanied by an increase in the rate of glycolysis and a decrease in the rate of oxidative phosphorylation within synaptic mitochondria. This is consistent with independent experimental reports of a compensatory switching of bioenergetic pathways in the putamen of post-mortem Parkinson's disease patients. Ongoing work, in the context of the SysMedPD project is aimed at computational prediction of mitochondrial drug targets to slow the progression of neurodegeneration in the subset of Parkinson's disease patients with overt mitochondrial dysfunction.

Keywords: bioenergetics, mitochondria, Parkinson's disease, systems biochemistry

Procedia PDF Downloads 294
1850 Characterization of the Groundwater Aquifers at El Sadat City by Joint Inversion of VES and TEM Data

Authors: Usama Massoud, Abeer A. Kenawy, El-Said A. Ragab, Abbas M. Abbas, Heba M. El-Kosery

Abstract:

Vertical Electrical Sounding (VES) and Transient Electro Magnetic (TEM) survey have been applied for characterizing the groundwater aquifers at El Sadat industrial area. El-Sadat city is one of the most important industrial cities in Egypt. It has been constructed more than three decades ago at about 80 km northwest of Cairo along the Cairo–Alexandria desert road. Groundwater is the main source of water supplies required for domestic, municipal, and industrial activities in this area due to the lack of surface water sources. So, it is important to maintain this vital resource in order to sustain the development plans of this city. In this study, VES and TEM data were identically measured at 24 stations along three profiles trending NE–SW with the elongation of the study area. The measuring points were arranged in a grid like pattern with both inter-station spacing and line–line distance of about 2 km. After performing the necessary processing steps, the VES and TEM data sets were inverted individually to multi-layer models, followed by a joint inversion of both data sets. Joint inversion process has succeeded to overcome the model-equivalence problem encountered in the inversion of individual data set. Then, the joint models were used for the construction of a number of cross sections and contour maps showing the lateral and vertical distribution of the geo-electrical parameters in the subsurface medium. Interpretation of the obtained results and correlation with the available geological and hydrogeological information revealed TWO aquifer systems in the area. The shallow Pleistocene aquifer consists of sand and gravel saturated with fresh water and exhibits large thickness exceeding 200 m. The deep Pliocene aquifer is composed of clay and sand and shows low resistivity values. The water bearing layer of the Pleistocene aquifer and the upper surface of Pliocene aquifer are continuous and no structural features have cut this continuity through the investigated area.

Keywords: El Sadat city, joint inversion, VES, TEM

Procedia PDF Downloads 370
1849 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 173
1848 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India

Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay

Abstract:

Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.

Keywords: trout, Kashmir, value chain, linkages, culture

Procedia PDF Downloads 403
1847 Property and Inheritance Rights for Women Whose Husbands Disappeared during the Last War in Kosovo: Case Studies: Krusha e Vogël and Krusha e Madhe, Region of Prizren, Kosovo

Authors: Venera Goxha

Abstract:

Property and inheritance rights for women whose husbands were killed or disappeared during the last war in Kosovo is the purpose of this study, respectively, the access of these women to family real estate. The case study is about women whose husbands were killed or disappeared during the last war in Kosovo and who, on this occasion, earned the title of 'widow'.The research is conducted in the villages of Krusha e Vogël - Municipality of Prizren, and Krusha e Madhe - Municipality of Rahovec, one of the most suffered villages from the recent war in Kosovo. Krusha e Vogël, as a result of the recent war, has 113 male victims, or 70% of all men from the age of 13 to the age of 77, leaving widows and orphans. In the village of Krusha e Madhe, 243 Albanians were massacred by Serbs living in the same village, leaving widows and orphaned children alive. According to these data, most of the Krushian families, as heads of households, have surviving wives and widows. Therefore, being the head of the family and facing a mountain of challenges, such as economic, social, and cultural, the issue of how these women have approached the property and family heritage is considered. The equal right to property and inheritance is a right that is guaranteed to women with all legislation in force, starting from the Constitution of the Republic of Kosovo onwards. Article 7 of the Constitution of Kosovo and the subsequent legal framework recognizes the equality of women and the equal division of property between heirs, daughters, and sons. However, some of the legislation does not successfully reflect the current reality in Kosovo. All these ambiguities follow from the ‘patriarchal law’ of the Albanians in the time of the early Middle Ages, later known as the ‘Kanun of Lekë Dukagjini’. At the time it was written and applied, it weighted the law in force, but later over time, it passed into tradition, culture, and mentality. The Kanun of Lekë Dukagjini, in no context, has treated women equally to men. The female, according to the Kanun, was a working tool, a creature to be born, to work, to carry, to raise children, and to remain faithful to the husband even when the husband is not faithful.

Keywords: property rights, heritage, widows, code

Procedia PDF Downloads 61
1846 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
1845 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy

Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu

Abstract:

Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.

Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR

Procedia PDF Downloads 69
1844 Exploring the Determinants of Personal Finance Difficulties by Machine Learning: Focus on Socio-Economic and Behavioural Changes Brought by COVID-19

Authors: Brian Tung, Yam Wing Siu, Tsun Se Cheong

Abstract:

Purpose: This research aims to explore how personal and environmental factors, especially the socio-economic changes and behavioral changes fostered by the COVID-19 outbreak pandemic, affect the financial vulnerability of a specific segment of people in financial distress. Innovative research methodology of machine learning will be applied to data collected from over 300 local individuals in Hong Kong seeking counseling or similar services in recent years. Results: First, machine learning has found that too much exposure to digital services and information on digitized services may lead to adverse effects on respondents’ financial vulnerability. Second, the improvement in financial literacy level provides benefits to the financially vulnerable group, especially those respondents who have started with a lower level. Third, serious addiction to digital technology can lead to worsened debt servicing ability. Machine learning also has found a strong correlation between debt servicing situations and income-seeking behavior as well as spending behavior. In addition, if the vulnerable groups are able to make appropriate investments, they can reduce the probability of incurring financial distress. Finally, being too active in borrowing and repayment can result in a higher likelihood of over-indebtedness. Conclusion: Findings can be employed in formulating a better counseling strategy for professionals. Debt counseling services can be more preventive in nature. For example, according to the findings, with a low level of financial literacy, the respondents are prone to overspending and unable to react properly to the e-marketing promotion messages pop-up from digital services or even falling into financial/investment scams. In addition, people with low levels of financial knowledge will benefit from financial education. Therefore, financial education programs could include tech-savvy matters as special features.

Keywords: personal finance, digitization of the economy, COVID-19 pandemic, addiction to digital technology, financial vulnerability

Procedia PDF Downloads 58
1843 Pediatric Health Nursing Research in Jordan: Evaluating the State of Knowledge and Determining Future Research Direction

Authors: Inaam Khalaf, Nadin M. Abdel Razeq, Hamza Alduraidi, Suhaila Halasa, Omayyah S. Nassar, Eman Al-Horani, Jumana Shehadeh, Anna Talal

Abstract:

Background: Nursing researchers are responsible for generating knowledge that corresponds to national and global research priorities in order to promote, restore, and maintain the health of individuals and societies. The objectives of this scoping review of Jordanian literature are to assess the existing research on pediatric nursing in terms of evolution, authorship and collaborations, funding sources, methodologies, topics of research, and pediatric subjects' age groups so as to identify gaps in research. Methodology: A search was conducted using related keywords obtained from national and international databases. The reviewed literature included pediatric health articles published through December 2019 in English and Arabic, authored by nursing researchers. The investigators assessed the retrieved studies and extracted data using a data-mining checklist. Results: The review included 265 articles authored by Jordanian nursing researchers concerning children's health, published between 1987 and 2019; 95% were published between 2009 and 2019. The most commonly applied research methodology was the descriptive non-experimental method (76%). The main generic topics were health promotion and disease prevention (23%), chronic physical conditions (19%), mental health, behavioral disorders, and forensic issues (16%). Conclusion: The review findings identified a grave shortage of evidence concerning nursing care issues for children below five years of age, especially those between ages two and five years. The research priorities identified in this review resonate with those identified in international reports. Implications: Nursing researchers are encouraged to conduct more research targeting topics of national-level importance in collaboration with clinically involved nurses and international scholars.

Keywords: Jordan, scoping review, children health nursing, pediatric, adolescents

Procedia PDF Downloads 86
1842 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering

Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott

Abstract:

Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.

Keywords: cancer research, graph theory, machine learning, single cell analysis

Procedia PDF Downloads 113
1841 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 248
1840 The Impact of Urbanisation on Sediment Concentration of Ginzo River in Katsina City, Katsina State, Nigeria

Authors: Ahmed A. Lugard, Mohammed A. Aliyu

Abstract:

This paper studied the influence of urban development and its accompanied land surface transformation on sediment concentration of a natural flowing Ginzo river across the city of Katsina. An opposite twin river known as Tille river, which is less urbanized, was used to compare the result of the sediment concentration of the Ginzo River in order to ascertain the consequences of the urban area on impacting the sediment concentration. An instrument called USP 61 point integrating cable way sampler described by Gregory and walling (1973), was used to collect the suspended sediment samples in the wet season months of June, July, August and September. The result obtained in the study shows that only the sample collected at the peripheral site of the city, which is mostly farmland areas resembles the results in the four sites of Tille river, which is the reference stream in the study. It was found to be only + 10% different from one another, while at the other three sites of the Ginzo which are highly urbanized the disparity ranges from 35-45% less than what are obtained at the four sites of Tille River. In the generalized assessment, the t-distribution result applied to the two set of data shows that there is a significant difference between the sediment concentration of urbanized River Ginzo and that of less urbanized River Tille. The study further discovered that the less sediment concentration found in urbanized River Ginzo is attributed to concretization of surfaced, tarred roads, concretized channeling of segments of the river including the river bed and reserved open grassland areas, all within the catchments. The study therefore concludes that urbanization affect not only the hydrology of an urbanized river basin, but also the sediment concentration which is a significant aspect of its geomorphology. This world certainly affects the flood plain of the basin at a certain point which might be a suitable land for cultivation. It is recommended here that further studies on the impact of urbanization on River Basins should focus on all elements of geomorphology as it has been on hydrology. This would make the work rather complete as the two disciplines are inseparable from each other. The authorities concern should also trigger a more proper environmental and land use management policies to arrest the menace of land degradation and related episodic events.

Keywords: environment, infiltration, river, urbanization

Procedia PDF Downloads 318
1839 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 105
1838 Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study

Authors: Xiao Yang, Ji Zhang, Yingli Song, Hui Huang, Jing Zhang, Yan Wang, Rongrong Han, Zhixuan Xiang, Lu Chen, Lingling Gao

Abstract:

Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research.

Keywords: physical activity, gestational diabetes, self-efficacy, predictors

Procedia PDF Downloads 101
1837 Series Connected GaN Resonant Tunneling Diodes for Multiple-Valued Logic

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, XueYan Yang, ZuMao Li, GuanLin Wu, HePeng Zhang, ZhiPeng Sun

Abstract:

III-Nitride resonant tunneling diode (RTD) is one of the most promising candidates for multiple-valued logic (MVL) elements. Here, we report a monolithic integration of GaN resonant tunneling diodes to realize multiple negative differential resistance (NDR) regions for MVL application. GaN RTDs, composed of a 2 nm quantum well embedded in two 1 nm quantum barriers, are grown by plasma-assisted molecular beam epitaxy on free-standing c-plane GaN substrates. Negative differential resistance characteristic with a peak current density of 178 kA/cm² in conjunction with a peak-to-valley current ratio (PVCR) of 2.07 is observed. Statistical properties exhibit high consistency showing a peak current density standard deviation of almost 1%, laying the foundation for the monolithic integration. After complete electrical isolation, two diodes of the designed same area are connected in series. By solving the Poisson equation and Schrodinger equation in one dimension, the energy band structure is calculated to explain the transport mechanism of the differential negative resistance phenomenon. Resonant tunneling events in a sequence of the series-connected RTD pair (SCRTD) form multiple NDR regions with nearly equal peak current, obtaining three stable operating states corresponding to ternary logic. A frequency multiplier circuit achieved using this integration is demonstrated, attesting to the robustness of this multiple peaks feature. This article presents a monolithic integration of SCRTD with multiple NDR regions driven by the resonant tunneling mechanism, which can be applied to a multiple-valued logic field, promising a fast operation speed and a great reduction of circuit complexity and demonstrating a new solution for nitride devices to break through the limitations of binary logic.

Keywords: GaN resonant tunneling diode, multiple-valued logic system, frequency multiplier, negative differential resistance, peak-to-valley current ratio

Procedia PDF Downloads 81
1836 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 351
1835 Embracing Transculturality by Internationalising the EFL Classroom

Authors: Karen Jacob

Abstract:

Over the last decades, there has been a rise in the use of CLIL (content and language integrated learning) methodology as a way of reinforcing FL (foreign language) acquisition. CLIL techniques have also been transferred to the formal instruction-based FL classroom where through content-based lessons and project work it can very often say that teachers are ‘clilling’ in the FL classroom. When it comes to motivating students to acquire an FL, we have to take into account that English is not your run-of-the-mill FL: English is an international language (EIL). Consequently, this means that EFL students should be able to use English as an international medium of communication. This leads to the assumption that along with FL competence, speakers of EIL will need to become competent international citizens with knowledge of other societies, both contextually and geographically, and be flexible, open-minded, respectful and sensitive towards other world groups. Rather than ‘intercultural’ competence we should be referring to ‘transcultural’ competence. This paper reports the implementation of a content- and task-based approach to EFL teaching which was applied to two groups of 15 year-olds from two schools on the Spanish island of Mallorca during the school year 2015-2016. Students worked on three units of work that aimed at ‘internationalising’ the classroom by introducing topics that would encourage them to become transculturally aware of the world in which they live. In this paper we discuss the feedback given by the teachers and students on various aspects of the approach in order to answer the following research questions: 1) To what extent were the students motivated by the content and activities of the classes?; 2) Did this motivation have a positive effect on the students’ overall results for the subject; 3) Did the participants show any signs of becoming transculturally aware. Preliminary results from qualitative data show that the students enjoyed the move away from the more traditional EFL content and, as a result, they became more competent in speaking and writing. Students also appeared to become more knowledgeable and respectful towards the ‘other’. The EFL approach described in this paper takes a more qualitative approach to research by describing what is really going on in the EFL classroom and makes a conscious effort to provide real examples of not only the acquisition of linguistic competence but also the acquisition of other important communication skills that are of utmost importance in today's international arena.

Keywords: CLIL, content- and task-based learning, internationalisation, transcultural competence

Procedia PDF Downloads 241
1834 Prediction Model of Body Mass Index of Young Adult Students of Public Health Faculty of University of Indonesia

Authors: Yuwaratu Syafira, Wahyu K. Y. Putra, Kusharisupeni Djokosujono

Abstract:

Background/Objective: Body Mass Index (BMI) serves various purposes, including measuring the prevalence of obesity in a population, and also in formulating a patient’s diet at a hospital, and can be calculated with the equation = body weight (kg)/body height (m)². However, the BMI of an individual with difficulties in carrying their weight or standing up straight can not necessarily be measured. The aim of this study was to form a prediction model for the BMI of young adult students of Public Health Faculty of University of Indonesia. Subject/Method: This study used a cross sectional design, with a total sample of 132 respondents, consisted of 58 males and 74 females aged 21- 30. The dependent variable of this study was BMI, and the independent variables consisted of sex and anthropometric measurements, which included ulna length, arm length, tibia length, knee height, mid-upper arm circumference, and calf circumference. Anthropometric information was measured and recorded in a single sitting. Simple and multiple linear regression analysis were used to create the prediction equation for BMI. Results: The male respondents had an average BMI of 24.63 kg/m² and the female respondents had an average of 22.52 kg/m². A total of 17 variables were analysed for its correlation with BMI. Bivariate analysis showed the variable with the strongest correlation with BMI was Mid-Upper Arm Circumference/√Ulna Length (MUAC/√UL) (r = 0.926 for males and r = 0.886 for females). Furthermore, MUAC alone also has a very strong correlation with BMI (r = 0,913 for males and r = 0,877 for females). Prediction models formed from either MUAC/√UL or MUAC alone both produce highly accurate predictions of BMI. However, measuring MUAC/√UL is considered inconvenient, which may cause difficulties when applied on the field. Conclusion: The prediction model considered most ideal to estimate BMI is: Male BMI (kg/m²) = 1.109(MUAC (cm)) – 9.202 and Female BMI (kg/m²) = 0.236 + 0.825(MUAC (cm)), based on its high accuracy levels and the convenience of measuring MUAC on the field.

Keywords: body mass index, mid-upper arm circumference, prediction model, ulna length

Procedia PDF Downloads 214
1833 Health Economics in the Cost-Benefit Analysis of Transport Schemes

Authors: Henry Kelly, Helena Shaw

Abstract:

This paper will seek how innovative methods from Health Economics and, to a lesser extent, wellbeing analysis can be applied in the Cost-Benefit Analysis (CBA) of transport infrastructure and policy interventions. The context for this will focus on the framework articulated by the UK Treasury (finance department) and the English Department for Transport. Both have well-established methods for undertaking CBA, but there is increased policy interest, particularly at a regional level of exploring broader strategic goals beyond those traditionally associated with transport user benefits, productivity gains, and labour market access. Links to different CBA approaches internationally, such as New Zealand, France, and Wales will be referenced. By exploring a complementary method of accessing the impacts of policies through the quantification of health impacts is a fruitful line to explore. In a previous piece of work, 14 impact pathways were identified, mapping the relationship between transport and health. These are wide-ranging, from improved employment prospects, the stress of unreliable journey times, and air quality to isolation and loneliness. Importantly, we will consider these different measures of health from an intersectional point of view to ensure that the basis that remains in the health industry does not get translated across to this work. The objective is to explore how a CBA based on these pathways may, through quantifying forecast impacts in terms of Quality-Adjusted Life Years may, produce different findings than a standard approach. Of particular interest is how a health-based approach may have different distributional impacts on socio-economic groups and may favour distinct types of interventions. Consideration will be given to the degree this approach may double-count impacts or if it is possible to identify additional benefits to the established CBA approach. The investigation will explore a range of schemes, from a high-speed rail link, highway improvements, rural mobility hubs, and coach services to cycle lanes. The conclusions should aid the progression of methods concerning the assessment of publicly funded infrastructure projects.

Keywords: cost-benefit analysis, health, QALYs transport

Procedia PDF Downloads 80
1832 Analysing Time Series for a Forecasting Model to the Dynamics of Aedes Aegypti Population Size

Authors: Flavia Cordeiro, Fabio Silva, Alvaro Eiras, Jose Luiz Acebal

Abstract:

Aedes aegypti is present in the tropical and subtropical regions of the world and is a vector of several diseases such as dengue fever, yellow fever, chikungunya, zika etc. The growth in the number of arboviruses cases in the last decades became a matter of great concern worldwide. Meteorological factors like mean temperature and precipitation are known to influence the infestation by the species through effects on physiology and ecology, altering the fecundity, mortality, lifespan, dispersion behaviour and abundance of the vector. Models able to describe the dynamics of the vector population size should then take into account the meteorological variables. The relationship between meteorological factors and the population dynamics of Ae. aegypti adult females are studied to provide a good set of predictors to model the dynamics of the mosquito population size. The time-series data of capture of adult females of a public health surveillance program from the city of Lavras, MG, Brazil had its association with precipitation, humidity and temperature analysed through a set of statistical methods for time series analysis commonly adopted in Signal Processing, Information Theory and Neuroscience. Cross-correlation, multicollinearity test and whitened cross-correlation were applied to determine in which time lags would occur the influence of meteorological variables on the dynamics of the mosquito abundance. Among the findings, the studied case indicated strong collinearity between humidity and precipitation, and precipitation was selected to form a pair of descriptors together with temperature. In the techniques used, there were observed significant associations between infestation indicators and both temperature and precipitation in short, mid and long terms, evincing that those variables should be considered in entomological models and as public health indicators. A descriptive model used to test the results exhibits a strong correlation to data.

Keywords: Aedes aegypti, cross-correlation, multicollinearity, meteorological variables

Procedia PDF Downloads 180
1831 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 185