Search results for: air flow rates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7251

Search results for: air flow rates

711 Responsibility of States in Air Traffic Management: Need for International Unification

Authors: Nandini Paliwal

Abstract:

Since aviation industry is one of the fastest growing sectors of the world economy, states depend on the air transport industry to maintain or stimulate economic growth. It significantly promotes and contributes to the economic well-being of every nation as well as world in general. Because of the continuous and rapid growth in civil aviation, it is inevitably leading to congested skies, flight delays and most alarmingly, a decrease in the safety of air navigation facilities. Safety is one of the most important concerns of aviation industry that has been unanimously recognised across the whole world. The available capacity of the air navigation system is not sufficient for the demand that is being generated. It has been indicated by forecast that the current growth in air traffic has the potential of causing delays in 20% of flights by 2020 unless changes are brought in the current system. Therefore, a safe, orderly and expeditious air navigation system is needed at the national and global levels, which, requires the implementation of an air traffic management (hereinafter referred as ‘ATM’) system to ensure an optimum flow of air traffic by utilising and enhancing capabilities provided by technical advances. The objective of this paper is to analyse the applicability of national regulations in case of liability arising out of air traffic management services and whether the current legal regime is sufficient to cover multilateral agreements including the Single European Sky regulations. In doing so, the paper will examine the international framework mainly the Article 28 of the Chicago Convention and its relevant annexes to determine the responsibility of states for providing air navigation services. Then, the paper will discuss the difference between the concept of responsibility and liability under the air law regime and how states might claim sovereign immunity for the functions of air traffic management. Thereafter, the paper will focus on the cross border agreements including the bilateral and multilateral agreements. In the end, the paper will address the scheme of Single European Sky and the need for an international convention dealing with the liability of air navigation service providers. The paper will conclude with some suggestions for unification of the laws at an international level dealing with liability of air navigation service providers and the requirement of enhanced co-operation among states in order to keep pace with technological advances.

Keywords: air traffic management, safety, single European sky, co-operation

Procedia PDF Downloads 166
710 Treatment with Triton-X 100: An Enhancement Approach for Cardboard Bioprocessing

Authors: Ahlam Said Al Azkawi, Nallusamy Sivakumar, Saif Nasser Al Bahri

Abstract:

Diverse approaches and pathways are under development with the determination to develop cellulosic biofuels and other bio-products eventually at commercial scale in “bio-refineries”; however, the key challenge is mainly the high level of complexity in processing the feedstock which is complicated and energy consuming. To overcome the complications in utilizing the naturally occurring lignocellulose biomass, using waste paper as a feedstock for bio-production may solve the problem. Besides being abundant and cheap, bioprocessing of waste paper has evolved in response to the public concern from rising landfill cost from shrinking landfill capacity. Cardboard (CB) is one of the major components of municipal solid waste and one of the most important items to recycle. Although 50-70% of cardboard constitute is known to be cellulose and hemicellulose, the presence of lignin around them cause hydrophobic cross-link which physically obstructs the hydrolysis by rendering it resistant to enzymatic cleavage. Therefore, pretreatment is required to disrupt this resistance and to enhance the exposure of the targeted carbohydrates to the hydrolytic enzymes. Several pretreatment approaches have been explored, and the best ones would be those can influence cellulose conversion rates and hydrolytic enzyme performance with minimal or less cost and downstream processes. One of the promising strategies in this field is the application of surfactants, especially non-ionic surfactants. In this study, triton-X 100 was used as surfactants to treat cardboard prior enzymatic hydrolysis and compare it with acid treatment using 0.1% H2SO4. The effect of the surfactant enhancement was evaluated through its effect on hydrolysis rate in respect to time in addition to evaluating the structural changes and modification by scanning electron microscope (SEM) and X-ray diffraction (XRD) and through compositional analysis. Further work was performed to produce ethanol from CB treated with triton-X 100 via separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF). The hydrolysis studies have demonstrated enhancement in saccharification by 35%. After 72 h of hydrolysis, a saccharification rate of 98% was achieved from CB enhanced with triton-X 100, while only 89 of saccharification achieved from acid pre-treated CB. At 120 h, the saccharification % exceeded 100 as reducing sugars continued to increase with time. This enhancement was not supported by any significant changes in the cardboard content as the cellulose, hemicellulose and lignin content remained same after treatment, but obvious structural changes were observed through SEM images. The cellulose fibers were clearly exposed with very less debris and deposits compared to cardboard without triton-X 100. The XRD pattern has also revealed the ability of the surfactant in removing calcium carbonate, a filler found in waste paper known to have negative effect on enzymatic hydrolysis. The cellulose crystallinity without surfactant was 73.18% and reduced to 66.68% rendering it more amorphous and susceptible to enzymatic attack. Triton-X 100 has proved to effectively enhance CB hydrolysis and eventually had positive effect on the ethanol yield via SSF. Treating cardboard with only triton-X 100 was a sufficient treatment to enhance the enzymatic hydrolysis and ethanol production.

Keywords: cardboard, enhancement, ethanol, hydrolysis, treatment, Triton-X 100

Procedia PDF Downloads 148
709 The Causes and Potential Solutions for Foodborne Illness, Food Security, and Food Safety: In the Case of the East Harerghe Region of Oromia, Ethiopia

Authors: Tuji Jemal Ahmed, Abdi Mohammed, Geremew Geidare Kailo

Abstract:

Food security, foodborne illness, and food safety are critical issues that affect the East Harerghe region of Oromia, Ethiopia. Despite the region's potential for agriculture, food insecurity remains a significant problem, with many households experiencing chronic hunger and malnutrition. The region also experiences high rates of foodborne illnesses, including cholera, typhoid, and diarrhea, which are caused by poor hygiene and sanitation practices. Additionally, food safety is a significant challenge, particularly in rural areas, where there is a lack of infrastructure, inadequate food storage facilities, and limited access to information about food safety. There are several factors that contribute to the current situation in the East Harerghe region; firstly, the region is susceptible to natural disasters, for instance, drought, which affects crop yields and livestock production. Secondly, the region also experiences poor infrastructure, which affects the storage and transportation of food, particularly in rural areas. Thirdly, there is a lack of awareness and knowledge on good hygiene and sanitation practices, specifically during food handling, processing, and storage. Fourthly, unitability due to conflict and other forms of land degradation exacerbates food insecurity and malnutrition. Finally, limited access to financial resources and markets commonly affects smallholder farmers by their ability to produce and sell food. To address the current situation in that area, several potential solutions can be implemented; investment in infrastructure is necessary, especially in rural areas, to improve the storage and transportation of food. Education and awareness programs on good hygiene and sanitation practices should target local communities, smallholder farmers, and food vendors. Financial resources and markets should be made more accessible to smallholder farmers, particularly through the provision of credit and improved access to markets. Addressing the underlying causes of conflict and promoting peaceful coexistence can help to reduce displacement and loss of livelihoods. Finally, the enforcement of food safety regulations and the implementation of standards for food processing and storage facilities are necessary to ensure food safety. In conclusion, addressing the challenges of food security, foodborne illness, and food safety in the East Harerghe region requires a coordinated effort from various stakeholders, including the government, non-governmental organizations, and local communities. By implementing the solutions outlined above, the region can improve its food security, prevent foodborne illnesses, and keep food safe for its population. Eventually, building the resilience of communities to shocks such as droughts, floods, and conflict is necessary to ensure long-term food security in the region.

Keywords: foodborne illness, food handling, food safety, food security

Procedia PDF Downloads 95
708 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 163
707 Optimal Placement of the Unified Power Controller to Improve the Power System Restoration

Authors: Mohammad Reza Esmaili

Abstract:

One of the most important parts of the restoration process of a power network is the synchronizing of its subsystems. In this situation, the biggest concern of the system operators will be the reduction of the standing phase angle (SPA) between the endpoints of the two islands. In this regard, the system operators perform various actions and maneuvers so that the synchronization operation of the subsystems is successfully carried out and the system finally reaches acceptable stability. The most common of these actions include load control, generation control and, in some cases, changing the network topology. Although these maneuvers are simple and common, due to the weak network and extreme load changes, the restoration will be associated with low speed. One of the best ways to control the SPA is to use FACTS devices. By applying a soft control signal, these tools can reduce the SPA between two subsystems with more speed and accuracy, and the synchronization process can be done in less time. Meanwhile, the unified power controller (UPFC), a series-parallel compensator device with the change of transmission line power and proper adjustment of the phase angle, will be the proposed option in order to realize the subject of this research. Therefore, with the optimal placement of UPFC in a power system, in addition to improving the normal conditions of the system, it is expected to be effective in reducing the SPA during power system restoration. Therefore, the presented paper provides an optimal structure to coordinate the three problems of improving the division of subsystems, reducing the SPA and optimal power flow with the aim of determining the optimal location of UPFC and optimal subsystems. The proposed objective functions in this paper include maximizing the quality of the subsystems, reducing the SPA at the endpoints of the subsystems, and reducing the losses of the power system. Since there will be a possibility of creating contradictions in the simultaneous optimization of the proposed objective functions, the structure of the proposed optimization problem is introduced as a non-linear multi-objective problem, and the Pareto optimization method is used to solve it. The innovative technique proposed to implement the optimization process of the mentioned problem is an optimization algorithm called the water cycle (WCA). To evaluate the proposed method, the IEEE 39 bus power system will be used.

Keywords: UPFC, SPA, water cycle algorithm, multi-objective problem, pareto

Procedia PDF Downloads 62
706 Influence of Morphology and Coatings in the Tribological Behavior of a Texturised Deterministic Surface by Photochemical Machining

Authors: Juan C. Sanchez, Jose L. Endrino, Alejandro Toro, Hugo A. Estupinan, Glenn Leighton

Abstract:

For years, the reduction of friction and wear has been a matter of interest in the engineering field. Several solutions have been proposed to address this issue, including the use of lubricants and coatings to reduce the frictional forces and to increase the surface wear resistance. Alternatively, texturing processes have been used in a wide variety of materials, in many cases inspired in natural surfaces. Nature has shown how species adapt to the environment and the engineers try to understand natural surfaces for particular applications by analyzing outstanding species such as gecko for high adhesion, lotus leaves for hydrophobicity, sharks for reduced flow resistance and snakes for optimized frictional response. Texturized surfaces have shown a superior performance in terms of the frictional response in many situations, and the control of its behavior greatly depends on the manufacturing process. The focus of this work is to evaluate the tribological behavior of AISI 52100 steel samples texturized by Photochemical Machining (PCM). The surface texture was inspired by several features of the snakeskin such as aspect ratio of fibrils and mean fibril spacing. Two coatings were applied on the texturized surface, namely Diamond-like Carbon (DLC) and Molybdenum Disulphide (MoS₂), and their tribological behavior after pin-on-disk tests were compared with that of the non-texturized and uncovered surfaces. The samples were characterised through Stereoscopic Microscope (SM), Scanning Electron Microscope (SEM), Optical Microscope (OM), Profilometer, Raman Spectrometer (RS) and X-Ray Diffractometer (XRD). The Coefficient of Friction (COF) measured in pin-on-disk tests showed correlations with the sliding direction (relative to the texture features) and the aspect ratio of the texture features. Regarding the coated surfaces, the DLC and MoS₂ coating had a good performance in terms of wear rate and coefficient of friction compared with the uncoated and non-texturized surfaces. On the other hand, for the uncoated surfaces, the texture showed an influence in the tribological performance with respect to the non-texturized surface.

Keywords: coating, coefficient of friction, deterministic surface, photochemical machining

Procedia PDF Downloads 146
705 Development of a Wound Dressing Material Based on Microbial Polyhydroxybutyrate Electrospun Microfibers Containing Curcumin

Authors: Ariel Vilchez, Francisca Acevedo, Rodrigo Navia

Abstract:

The wound healing process can be accelerated and improved by the action of antioxidants such as curcumin (Cur) over the tissues; however, the efficacy of curcumin used through the digestive system is not enough to exploit its benefits. Electrospinning presents an alternative to carry curcumin directly to the wounds, and polyhydroxybutyrate (PHB) is proposed as the matrix to load curcumin owing to its biodegradable and biocompatible properties. PHB is among 150 types of Polyhydroxyalkanoates (PHAs) identified, it is a natural thermoplastic polyester produced by microbial fermentation obtained from microorganisms. The proposed objective is to develop electrospun bacterial PHB-based microfibers containing curcumin for possible biomedical applications. Commercial PHB was solved in Chloroform: Dimethylformamide (4:1) to a final concentration of 7% m/V. Curcumin was added to the polymeric solution at 1%, and 7% m/m regarding PHB. The electrospinning equipment (NEU-BM, China) with a rotary collector was used to obtain Cur-PHB fibers at different voltages and flow rate of the polymeric solution considering a distance of 20 cm from the needle to the collector. Scanning electron microscopy (SEM) was used to determine the diameter and morphology of the obtained fibers. Thermal stability was obtained from Thermogravimetric (TGA) analysis, and Fourier Transform Infrared Spectroscopy (FT-IR) was carried out in order to study the chemical bonds and interactions. A preliminary curcumin release to Phosphate Buffer Saline (PBS) pH = 7.4 was obtained in vitro and measured by spectrophotometry. PHB fibers presented an intact chemical composition regarding the original condition (dust) according to FTIR spectra, the diameter fluctuates between 0.761 ± 0.123 and 2.157 ± 0.882 μm, with different qualities according to their morphology. The best fibers in terms of quality and diameter resulted in sample 2 and sample 6, obtained at 0-10kV and 0.5 mL/hr, and 0-10kV and 1.5 mL/hr, respectively. The melting temperature resulted near 178 °C, according to the bibliography. The crystallinity of fibers decreases while curcumin concentration increases for the studied interval. The curcumin release reaches near 14% at 37 °C at 54h in PBS adjusted to a quasi-Fickian Diffusion. We conclude that it is possible to load curcumin in PHB to obtain continuous, homogeneous, and solvent-free microfibers by electrospinning. Between 0% and 7% of curcumin, the crystallinity of fibers decreases as the concentration of curcumin increases. Thus, curcumin enhances the flexibility of the obtained material. HPLC should be used in further analysis of curcumin release.

Keywords: antioxidant, curcumin, polyhydroxybutyrate, wound healing

Procedia PDF Downloads 127
704 Impact of Displacements Durations and Monetary Costs on the Labour Market within a City Consisting on Four Areas a Theoretical Approach

Authors: Aboulkacem El Mehdi

Abstract:

We develop a theoretical model at the crossroads of labour and urban economics, used for explaining the mechanism through which the duration of home-workplace trips and their monetary costs impact the labour demand and supply in a spatially scattered labour market and how they are impacted by a change in passenger transport infrastructures and services. The spatial disconnection between home and job opportunities is referred to as the spatial mismatch hypothesis (SMH). Its harmful impact on employment has been subject to numerous theoretical propositions. However, all the theoretical models proposed so far are patterned around the American context, which is particular as it is marked by racial discrimination against blacks in the housing and the labour markets. Therefore, it is only natural that most of these models are developed in order to reproduce a steady state characterized by agents carrying out their economic activities in a mono-centric city in which most unskilled jobs being created in the suburbs, far from the Blacks who dwell in the city-centre, generating a high unemployment rates for blacks, while the White population resides in the suburbs and has a low unemployment rate. Our model doesn't rely on any racial discrimination and doesn't aim at reproducing a steady state in which these stylized facts are replicated; it takes the main principle of the SMH -the spatial disconnection between homes and workplaces- as a starting point. One of the innovative aspects of the model consists in dealing with a SMH related issue at an aggregate level. We link the parameters of the passengers transport system to employment in the whole area of a city. We consider here a city that consists of four areas: two of them are residential areas with unemployed workers, the other two host firms looking for labour force. The workers compare the indirect utility of working in each area with the utility of unemployment and choose between submitting an application for the job that generate the highest indirect utility or not submitting. This arbitration takes account of the monetary and the time expenditures generated by the trips between the residency areas and the working areas. Each of these expenditures is clearly and explicitly formulated so that the impact of each of them can be studied separately than the impact of the other. The first findings show that the unemployed workers living in an area benefiting from good transport infrastructures and services have a better chance to prefer activity to unemployment and are more likely to supply a higher 'quantity' of labour than those who live in an area where the transport infrastructures and services are poorer. We also show that the firms located in the most accessible area receive much more applications and are more likely to hire the workers who provide the highest quantity of labour than the firms located in the less accessible area. Currently, we are working on the matching process between firms and job seekers and on how the equilibrium between the labour demand and supply occurs.

Keywords: labour market, passenger transport infrastructure, spatial mismatch hypothesis, urban economics

Procedia PDF Downloads 289
703 Development of an Automatic Calibration Framework for Hydrologic Modelling Using Approximate Bayesian Computation

Authors: A. Chowdhury, P. Egodawatta, J. M. McGree, A. Goonetilleke

Abstract:

Hydrologic models are increasingly used as tools to predict stormwater quantity and quality from urban catchments. However, due to a range of practical issues, most models produce gross errors in simulating complex hydraulic and hydrologic systems. Difficulty in finding a robust approach for model calibration is one of the main issues. Though automatic calibration techniques are available, they are rarely used in common commercial hydraulic and hydrologic modelling software e.g. MIKE URBAN. This is partly due to the need for a large number of parameters and large datasets in the calibration process. To overcome this practical issue, a framework for automatic calibration of a hydrologic model was developed in R platform and presented in this paper. The model was developed based on the time-area conceptualization. Four calibration parameters, including initial loss, reduction factor, time of concentration and time-lag were considered as the primary set of parameters. Using these parameters, automatic calibration was performed using Approximate Bayesian Computation (ABC). ABC is a simulation-based technique for performing Bayesian inference when the likelihood is intractable or computationally expensive to compute. To test the performance and usefulness, the technique was used to simulate three small catchments in Gold Coast. For comparison, simulation outcomes from the same three catchments using commercial modelling software, MIKE URBAN were used. The graphical comparison shows strong agreement of MIKE URBAN result within the upper and lower 95% credible intervals of posterior predictions as obtained via ABC. Statistical validation for posterior predictions of runoff result using coefficient of determination (CD), root mean square error (RMSE) and maximum error (ME) was found reasonable for three study catchments. The main benefit of using ABC over MIKE URBAN is that ABC provides a posterior distribution for runoff flow prediction, and therefore associated uncertainty in predictions can be obtained. In contrast, MIKE URBAN just provides a point estimate. Based on the results of the analysis, it appears as though ABC the developed framework performs well for automatic calibration.

Keywords: automatic calibration framework, approximate bayesian computation, hydrologic and hydraulic modelling, MIKE URBAN software, R platform

Procedia PDF Downloads 300
702 Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser

Authors: Mitchell J. Baum, Badin Gibbes, Greg Collecutt

Abstract:

This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions.

Keywords: computational fluid dynamics, desalination, field-scale simulation, multiport brine diffuser, negatively buoyant jet

Procedia PDF Downloads 210
701 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 207
700 Powered Two-Wheeler Rider’s Comfort over Road Sections with Skew Superelevation

Authors: Panagiotis Lemonakis, Nikolaos Moisiadis, Andromachi Gkoutzini, George Kaliabetsos, Nikos Eliou

Abstract:

The proper surface water drainage not only affects vehicle movement dynamics but also increases the likelihood of an accident due to the fact that inadequate drainage is associated with potential hydroplaning and splash and spray driving conditions. Nine solutions have been proposed to address hydroplaning in sections with inadequate drainage, e.g., augmented superelevation and longitudinal rates, reduction of runoff length, and skew superelevation. The latter has been extensively implemented in highways recently, enhancing the safety level in the applied road segments in regards to the effective drainage of the rainwater. However, the concept of the skew superelevation has raised concerns regarding the driver’s comfort when traveling over skew superelevation sections, particularly at high speeds. These concerns alleviated through the concept of the round-up skew superelevation, which reduces both the lateral and the vertical acceleration imposed to the drivers and hence, improves comfort and traffic safety. Various research studies aimed at investigating driving comfort by evaluating the lateral and vertical accelerations sustained by the road users and vehicles. These studies focused on the influence of the skew superelevation to passenger cars, buses and trucks, and the drivers themselves, traveling at a certain range of speeds either below or above the design speed. The outcome of these investigations which based on the use of simulations, revealed that the imposed accelerations did not exceed the statutory thresholds even when the travelling speed was significantly greater than the design speed. Nevertheless, the effect of the skew superelevation to other vehicle types for instance, motorcycles, has not been investigated so far. The present research study aims to bridge this gap by investigating the impact of skew superelevation on the motorcycle rider’s comfort. Power two-wheeler riders are susceptible to any changes on the pavement surface and therefore a comparison between the traditional superelevation practice and the skew superelevation concept is of paramount importance. The methodology based on the utilization of sophisticated software in order to design the model of the road for several values of the longitudinal slope. Based on the values of the slopes and the use of a mathematical equation, the accelerations imposed on the wheel of the motorcycle were calculated. Due to the fact that the final aim of the study is the influence of the skew superelevation to the rider, it was deemed necessary to convey the calculated accelerations from the wheel to the rider. That was accomplished by implementing the quarter car suspension model adjusted to the features of two-wheeler vehicles. Finally, the accelerations derived from this process evaluated according to specific thresholds originated from the International Organization for Standardization, which correspond to certain levels of comfort. The most important conclusion drawn is that the comfort of the riders is not dependent on the form of road gradient to a great extent due to the fact that the vertical acceleration imposed to the riders took similar values regardless of the value of the longitudinal slope.

Keywords: acceleration, comfort, motorcycle, safety, skew superelevation

Procedia PDF Downloads 150
699 Regulation of the Regeneration of Epidermal Langerhans Cells by Stress Hormone

Authors: Junichi Hosoi

Abstract:

Epidermal Langerhans cells reside in upper layer of epidermis and play a role in immune surveillance. The finding of the close association of nerve endings to Langerhans cells triggered the research on systemic regulation of Langerhans cells. They disappear from epidermis after exposure to environmental and internal stimuli and reappear about a week later. Myeloid progenitor cells are assumed to be one of the sources of Langerhans cells. We examined the effects of cortisol on the reappearance of Langerhans cells in vitro. Cord-blood derived CD34-positive cells were cultured in the medium supplemented with stem cell factor/Flt3 ligand/granulocyte macrophage-colony stimulating factor/tumor necrosis factor alpha/bone morphologic protein 7/transforming growth factor beta in the presence or absence of cortisol. Cells were analyzed by flow cytometry for CD1a (cluster differentiation 1a), a marker of Langerhans cells and dermal dendritic cells, and CD39 (cluster differentiation factor 39), extracellular adenosine triphosphatase. Both CD1a-positive cells and CD39-positive cells were decreased by treatment with cortisol (suppression by 35% and 22% compared to no stress hormone, respectively). Differentiated Langerhans cells are attracted to epidermis by chemokines that are secreted from keratinocytes. Epidermal keratinocytes were cultured in the presence or absence of cortisol and analyzed for the expression of CCL2 (C-C motif chemokine ligand 2) and CCL20 (C-C motif chemokine ligand 20), which are typical attractants of Langerhans cells, by quantitative reverse transcriptase polymerase chain reaction. The expression of both chemokines, CCL2 and CCL20, were suppressed by treatment with cortisol (suppression by 38% and 48% compared to no stress hormone, respectively). We examined the possible regulation of the suppression by cortisol with plant extracts. The extracts of Ganoderma lucidum and Iris protected the suppression of the differentiation to CD39-positive cells and also the suppression of the gene expression of LC-chemoattractants. These results suggest that cortisol, which is either systemic or locally produced, blocks the supply of epidermal Langerhans cells at 2 steps, differentiation from the precursor and attraction to epidermis. The suppression is possibly blocked by some plant extracts.

Keywords: Langerhans cell, stress, CD39, chemokine

Procedia PDF Downloads 183
698 Economic Factors Affecting Greenfield Petroleum Refinery and Petrochemical Projects in Africa

Authors: Daniel Muwooya

Abstract:

This paper analyses economic factors that have affected the competitiveness of petroleum refinery and petrochemical projects in sub-Saharan Africa in the past and continue to plague greenfield projects today. Traditional factors like plant sizing and complexity, low-capacity utilization, changing regulatory environment, and tighter product specifications have been important in the past. Additional factors include the development of excess refinery capacity in Asia and the growth of renewable sources of energy – especially for transportation. These factors create both challenges and opportunities for the development of greenfield refineries and petrochemical projects in areas of increased demand growth and new low-cost crude oil production – like sub-Saharan Africa. This paper evaluates the strategies available to project developers and host countries to address contemporary issues of energy transition and the apparent reduction of funds available for greenfield oil and gas projects. The paper also evaluates the structuring of greenfield refinery and petrochemical projects for limited recourse project finance bankability. The methodology of this paper includes analysis of current industry data, conference proceedings, academic papers, and academic books on the subjects of petroleum refinery economics, refinery financing, refinery operations, and project finance generally and specifically in the oil and gas industry; evaluation of expert opinions from journal articles; working papers from international bodies like the World Bank and the International Energy Agency; and experience from playing an active role in the development and financing of US$ 10 Billion greenfield oil development project in Uganda. The paper also applies the discounted cash flow modelling to illustrate the circumstances of an inland greenfield refinery project in Uganda. Greenfield refinery and petrochemical projects are still necessary in sub-Saharan Africa to, among other aspirations, support the transition from traditional sources of energy like biomass to such modern forms as liquefied petroleum gas. Project developers and host governments will be required to structure projects that support global climate change goals without occasioning undue delays to project execution.

Keywords: financing, refinery and petrochemical economics, Africa, project finance

Procedia PDF Downloads 56
697 Considerations When Using the Beach Chair Position for Surgery

Authors: Aniko Babits, Ahmad Daoud

Abstract:

Introduction: The beach chair position (BCP) is a good approach to almost all types of shoulder procedures. However, moving an anaesthetized patient from the supine to sitting position may pose a risk of cerebral hypoperfusion and potential cerebral ischaemia as a result of significant reductions in blood pressure and cardiac output. Hypocapnia in ventilated patients and impaired blood flow to the vertebral artery due to hyperextension, rotation, or tilt of the head may have an impact too. Co-morbidities that may increase the risk of cerebral ischaemia in the BCP include diabetes with autonomic neuropathy, cerebrovascular disease, cardiac disease, severe hypertension, generalized vascular disease, history of fainting, and febrile conditions. Beach chair surgery requires a careful anaesthetic and surgical management to optimize patient safety and minimize the risk of adverse outcomes. Methods: We describe the necessary steps for optimal patient positioning and the aims of intraoperative management, including anaesthetic techniques to ensure patient safety in the BCP. Results: Regardless of the anaesthetic technique, adequate patient positioning is paramount in the BCP. The key steps to BCP are aimed at optimizing surgical success and minimizing the risk of severe neurovascular complications. The primary aim of anaesthetic management is to maintain cardiac output and mean arterial pressure (MAP) to protect cerebral perfusion. Blood pressure management includes treating a fall in MAP of more than 25% from baseline or a MAP less than 70 mmHg. This can be achieved by using intravenous fluids or vasopressors. A number of anaesthetic techniques could also improve cerebral oxygenation, including avoidance of intermittent positive pressure ventilation (IPPV) with general anaesthesia (GA), using regional anaesthesia, maintaining normocapnia and normothermia, and the application of compression stockings. Conclusions: In summary, BCP is a reliable and effective position to perform shoulder procedures. Simple steps to patient positioning and careful anaesthetic management could maximize patient safety and avoid unwanted adverse outcomes in patients undergoing surgery in BCP.

Keywords: beach chair position, cerebral oxygenation, cerebral perfusion, sitting position

Procedia PDF Downloads 86
696 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: building optimization, green building, post occupancy evaluation, stakeholder engagement

Procedia PDF Downloads 352
695 Toxicity of PPCPs on Adapted Sludge Community

Authors: G. Amariei, K. Boltes, R. Rosal, P. Leton

Abstract:

Wastewater treatment plants (WWTPs) are supposed to hold an important place in the reduction of emerging contaminants, but provide an environment that has potential for the development and/or spread of adaptation, as bacteria are continuously mixed with contaminants at sub-inhibitory concentrations. Reviewing the literature, there are little data available regarding the use of adapted bacteria forming activated sludge community for toxicity assessment, and only individual validations have been performed. Therefore, the aim of this work was to study the toxicity of Triclosan (TCS) and Ibuprofen (IBU), individually and in binary combination, on adapted activated sludge (AS). For this purpose a battery of biomarkers were assessed, involving oxidative stress and cytotoxicity responses: glutation-S-transferase (GST), catalase (CAT) and viable cells with FDA. In addition, we compared the toxic effects on adapted bacteria with unadapted bacteria, from a previous research. Adapted AS comes from three continuous-flow AS laboratory systems; two systems received IBU and TCS, individually; while the other received the binary combination, for 14 days. After adaptation, each bacterial culture condition was exposure to IBU, TCS and the combination, at 12 h. The concentration of IBU and TCS ranged 0.5-4mg/L and 0.012-0.1 mg/L, respectively. Batch toxicity experiments were performed using Oxygraph system (Hansatech), for determining the activity of CAT enzyme based on the quantification of oxygen production rate. Fluorimetric technique was applied as well, using a Fluoroskan Ascent Fl (Thermo) for determining the activity of GST enzyme, using monochlorobimane-GSH as substrate, and to the estimation of viable cell of the sludge, by fluorescence staining using Fluorescein Diacetate (FDA). For IBU adapted sludge, CAT activity it was increased at low concentration of IBU, TCS and mixture. However, increasing the concentration the behavior was different: while IBU tends to stabilize the CAT activity, TCS and the mixture decreased this one. GST activity was significantly increased by TCS and mixture. For IBU, no variations it was observed. For TCS adapted sludge, no significant variations on CAT activity it was observed. GST activity it was significant decreased for all contaminants. For mixture adapted sludge the behaviour of CAT activity it was similar to IBU adapted sludge. GST activity it was decreased at all concentration of IBU. While the presence of TCS and mixture, respectively, increased the GST activity. These findings were consistent with the viability cells evaluation, which clearly showed a variation of sludge viability. Our results suggest that, compared with unadapted bacteria, the adapted bacteria conditions plays a relevant role in the toxicity behaviour towards activated sludge communities.

Keywords: adapted sludge community, mixture, PPCPs, toxicity

Procedia PDF Downloads 396
694 Developing a Product Circularity Index with an Emphasis on Longevity, Repairability, and Material Efficiency

Authors: Lina Psarra, Manogj Sundaresan, Purjeet Sutar

Abstract:

In response to the global imperative for sustainable solutions, this article proposes the development of a comprehensive circularity index applicable to a wide range of products across various industries. The absence of a consensus on using a universal metric to assess circularity performance presents a significant challenge in prioritizing and effectively managing sustainable initiatives. This circularity index serves as a quantitative measure to evaluate the adherence of products, processes, and systems to the principles of a circular economy. Unlike traditional distinct metrics such as recycling rates or material efficiency, this index considers the entire lifecycle of a product in one single metric, also incorporating additional factors such as reusability, scarcity of materials, reparability, and recyclability. Through a systematic approach and by reviewing existing metrics and past methodologies, this work aims to address this gap by formulating a circularity index that can be applied to diverse product portfolio and assist in comparing the circularity of products on a scale of 0%-100%. Project objectives include developing a formula, designing and implementing a pilot tool based on the developed Product Circularity Index (PCI), evaluating the effectiveness of the formula and tool using real product data, and assessing the feasibility of integration into various sustainability initiatives. The research methodology involves an iterative process of comprehensive research, analysis, and refinement where key steps include defining circularity parameters, collecting relevant product data, applying the developed formula, and testing the tool in a pilot phase to gather insights and make necessary adjustments. Major findings of the study indicate that the PCI provides a robust framework for evaluating product circularity across various dimensions. The Excel-based pilot tool demonstrated high accuracy and reliability in measuring circularity, and the database proved instrumental in supporting comprehensive assessments. The PCI facilitated the identification of key areas for improvement, enabling more informed decision-making towards circularity and benchmarking across different products, essentially assisting towards better resource management. In conclusion, the development of the Product Circularity Index represents a significant advancement in global sustainability efforts. By providing a standardized metric, the PCI empowers companies and stakeholders to systematically assess product circularity, track progress, identify improvement areas, and make informed decisions about resource management. This project contributes to the broader discourse on sustainable development by offering a practical approach to enhance circularity within industrial systems, thus paving the way towards a more resilient and sustainable future.

Keywords: circular economy, circular metrics, circularity assessment, circularity tool, sustainable product design, product circularity index

Procedia PDF Downloads 23
693 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7

Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.

Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis

Procedia PDF Downloads 449
692 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 278
691 Common Misconceptions around Human Immunodeficiency Virus in Rural Uganda: Establishing the Role for Patient Education Leaflets Using Patient and Staff Surveys

Authors: Sara Qandil, Harriet Bothwell, Lowri Evans, Kevin Jones, Simon Collin

Abstract:

Background: Uganda suffers from high rates of HIV. Misconceptions around HIV are known to be prevalent in Sub-Saharan Africa (SSA). Two of the most common misconceptions in Uganda are that HIV can be transmitted by mosquito bites or from sharing food. The aim of this project was to establish the local misconceptions around HIV in a Central Ugandan population, and identify if there is a role for patient education leaflets. This project was undertaken as a student selected component (SSC) offered by Swindon Academy, based at the Great Western Hospital, to medical students in their fourth year of the undergraduate programme. Methods: The study was conducted at Villa Maria Hospital; a private, rural hospital in Kalungu District, Central Uganda. 36 patients, 23 from the hospital clinic and 13 from the community were interviewed regarding their understanding of HIV and by what channels they had obtained this understanding. Interviews were conducted using local student nurses as translators. Verbal responses were translated and then transcribed by the researcher. The same 36 patients then undertook a 'misconception' test consisting of 35 questions. Quantitative data was analysed using descriptive statistics and results were scored based on three components of 'transmission knowledge', 'prevention knowledge' and 'misconception rejection'. Each correct response to a question was scored one point, otherwise zero e.g. correctly rejecting a misconception scored one point, but answering ‘yes’ or ‘don’t know’ scored zero. Scores ≤ 27 (the average score) were classified as having ‘poor understanding’. Mean scores were compared between participants seen at the HIV clinic and in the community, and p-values (including Fisher’s exact test) were calculated using Stata 2015. Level of significance was set at 0.05. Interviews with 7 members of staff working in the HIV clinic were undertaken to establish what methods of communication are used to educate patients. Interviews were transcribed and thematic analysis undertaken. Results: The commonest misconceptions which failed to be rejected included transmission of HIV by kissing (78%), mosquitoes (69%) and touching (36%). 33% believed HIV may be prevented by praying. The overall mean scores for transmission knowledge (87.5%) and prevention knowledge (81.1%) were better than misconception rejection scores (69.3%). HIV clinic respondents did tend to have higher scores, i.e. fewer misconceptions, although there was statistical evidence of a significant difference only for prevention knowledge (p=0.03). Analysis of the qualitative data is ongoing but several patients expressed concerns about not being able to read and therefore leaflets not having a helpful role. Conclusions: Results from this paper identified that a high proportion of the population studied held misconceptions about HIV. Qualitative data suggests that there may be a role for patient education leaflets, if pictorial-based and suitable for those with low literacy skill.

Keywords: HIV, human immunodeficiency virus, misconceptions, patient education, Sub-Saharan Africa, Uganda

Procedia PDF Downloads 252
690 Characterization and Modelling of Aerosol Droplet in Absorption Columns

Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem. Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.

Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation

Procedia PDF Downloads 244
689 The Influence of Age and Education on Patients' Attitudes Towards Contraceptives in Rural California

Authors: Shivani Thakur, Jasmin Dominguez Cervantes, Ahmed Zabiba, Fatima Zabiba, Sandhini Agarwal, Kamalpreet Kaur, Hussein Maatouk, Shae Chand, Omar Madriz, Tiffany Huang, Saloni Bansal

Abstract:

Contraceptives are an effective public health achievement, allowing for family planning and reducing the risk of sexually transmitted diseases (STDs). California’s rural Central Valley has high rates of teenage pregnancy and STDs. Factors affecting contraceptive usage here may include religious concerns, financial issues, and regional variations in the accessibility and availability of contraceptives. The increasing population and diversity of the Central Valley make the understanding of the determinants of unintended pregnancy and STDs increasingly nuanced. Patients in California’s Central Valley were surveyed at 6 surgical clinics to assess attitudes toward contraceptives. The questionnaire consisted of demographics and 14 Likert-scale statements investigating patients’ feelings regarding contraceptives. Parametric and non-parametric analysis was performed on the Likert statements. A correlation matrix for the Likert-scale statements was used to evaluate the strength of the relationship between each question. 76 patients aged 18-75 years completed the questionnaire. 90% of the participants were female, 76% Hispanic, 36% married, 44% with an income range between 30-60K, and 83% were between childbearing ages. 60% of participants stated they are currently using or had used some type of contraceptive. 25% of participants had at least one unplanned pregnancy. The most common type of contraceptives used were oral contraceptives(28%) and condoms(38%). The top reasons for patients’ contraceptive usage were: prevention of pregnancy (72%), safe sex/prevention of STDs (32%), and regulation of menstrual cycle (19%). Further analysis of Likert responses revealed that contraception usage increased due to approval of contraceptives (x̄=3.98, σ =1.02); partner approval of contraceptives (x̄=3.875, σ =1.16); and reduced anxiety about pregnancy (x̄=3.875, σ =1.23). Younger females (18-34 years old) agreed more with the statement that the cost of contraceptive supplies is too expensive than older females (35-75 years old), (x̄=3.2, σ = 1.4 vs x̄=2.8, σ =1.3, p<0.05). Younger females (44%) were also more likely to use short-acting contraceptive methods (oral and male condoms) compared to older females (64%) who use long-acting methods (implants/ intrauterine devices). 51% of Hispanic females were using some type of contraceptive. Of those Hispanic females who do not use contraceptives, 33% stated having no children, and all plan to have at least one child in the future. 35% of participants had a bachelor's degree. Those with bachelor’s degrees were more likely to use contraceptives, 58% vs 51%, p<0.05, and less likely to have unplanned pregnancy, 50% vs. 12%, p<0.01. There is increasing use and awareness among patients in rural settings concerning contraceptives. Our finding shows that younger women and women with higher educational attainment tend to have more positive attitudes towards the use of contraceptives. This work gives physicians an understanding of patients’ concerns about contraceptive methods and offers insight into culturally competent intervention programs that respect individual values.

Keywords: contraceptives, public health, rural california, women of child baring age

Procedia PDF Downloads 54
688 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 222
687 Multilingual Students Acting as Language Brokers in Italy: Their Points of View and Feelings towards This Activity

Authors: Federica Ceccoli

Abstract:

Italy is undergoing one of its largest migratory waves, and Italian schools are reporting the highest numbers of multilingual students coming from immigrant families and speaking minority languages. For these pupils, who have not perfectly acquired their mother tongue yet, learning a second language may represent a burden on their linguistic development and may have some repercussions on their school performances and relational skills. These are some of the reasons why they have turned out to be those who have the worst grades and the highest school drop-out rates. However, despite these negative outcomes, it has been demonstrated that multilingual immigrant students frequently act as translators or language brokers for their peers or family members who do not speak Italian fluently. This activity has been defined as Child Language Brokering (hereinafter CLB) and it has become a common practice especially in minority communities as immigrants’ children often learn the host language much more quickly than their parents, thus contributing to their family life by acting as language and cultural mediators. This presentation aims to analyse the data collected by a research carried out during the school year 2014-2015 in the province of Ravenna, in the Northern Italian region of Emilia-Romagna, among 126 immigrant students attending junior high schools. The purpose of the study was to analyse by means of a structured questionnaire whether multilingualism matched with language brokering experiences or not and to examine the perspectives of those students who reported having acted as translators using their linguistic knowledge to help people understand each other. The questionnaire consisted of 34 items roughly divided into 2 sections. The first section required multilingual students to provide personal details like their date and place of birth, as well as details about their families (number of siblings, parents’ jobs). In the second section, they were asked about the languages spoken in their families as well as their language brokering experience. The in-depth questionnaire sought to investigate a wide variety of brokering issues such as frequency and purpose of the activity, where, when and which documents young language brokers translate and how they feel about this practice. The results have demonstrated that CLB is a very common practice among immigrants’ children living in Ravenna and almost all students reported positive feelings when asked about their brokering experience with their families and also at school. In line with previous studies, responses to the questionnaire item regarding the people they brokered for revealed that the category ranking first is parents. Similarly, language-brokering activities tend to occur most often at home and the documents they translate the most (either orally or in writing) are notes from teachers. Such positive feelings towards this activity together with the evidence that it occurs very often in schools have laid the foundation for further projects on how this common practice may be valued and used to strengthen the linguistic skills of these multilingual immigrant students and thus their school performances.

Keywords: immigration, language brokering, multilingualism, students' points of view

Procedia PDF Downloads 174
686 Long-Term Resilience Performance Assessment of Dual and Singular Water Distribution Infrastructures Using a Complex Systems Approach

Authors: Kambiz Rasoulkhani, Jeanne Cole, Sybil Sharvelle, Ali Mostafavi

Abstract:

Dual water distribution systems have been proposed as solutions to enhance the sustainability and resilience of urban water systems by improving performance and decreasing energy consumption. The objective of this study was to evaluate the long-term resilience and robustness of dual water distribution systems versus singular water distribution systems under various stressors such as demand fluctuation, aging infrastructure, and funding constraints. To this end, the long-term dynamics of these infrastructure systems was captured using a simulation model that integrates institutional agency decision-making processes with physical infrastructure degradation to evaluate the long-term transformation of water infrastructure. A set of model parameters that varies for dual and singular distribution infrastructure based on the system attributes, such as pipes length and material, energy intensity, water demand, water price, average pressure and flow rate, as well as operational expenditures, were considered and input in the simulation model. Accordingly, the model was used to simulate various scenarios of demand changes, funding levels, water price growth, and renewal strategies. The long-term resilience and robustness of each distribution infrastructure were evaluated based on various performance measures including network average condition, break frequency, network leakage, and energy use. An ecologically-based resilience approach was used to examine regime shifts and tipping points in the long-term performance of the systems under different stressors. Also, Classification and Regression Tree analysis was adopted to assess the robustness of each system under various scenarios. Using data from the City of Fort Collins, the long-term resilience and robustness of the dual and singular water distribution systems were evaluated over a 100-year analysis horizon for various scenarios. The results of the analysis enabled: (i) comparison between dual and singular water distribution systems in terms of long-term performance, resilience, and robustness; (ii) identification of renewal strategies and decision factors that enhance the long-term resiliency and robustness of dual and singular water distribution systems under different stressors.

Keywords: complex systems, dual water distribution systems, long-term resilience performance, multi-agent modeling, sustainable and resilient water systems

Procedia PDF Downloads 286
685 The Effect of Stent Coating on the Stent Flexibility: Comparison of Covered Stent and Bare Metal Stent

Authors: Keping Zuo, Foad Kabinejadian, Gideon Praveen Kumar Vijayakumar, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery stenting (CAS) is the standard procedure for patients with severe carotid stenosis at high risk for carotid endarterectomy (CAE). A major drawback of CAS is the higher incidence of procedure-related stroke compared with traditional open surgical treatment for carotid stenosis - CEA, even with the use of the embolic protection devices (EPD). As the currently available bare metal stents cannot address this problem, our research group developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet maintaining the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid atherosclerotic stenosis. The purpose of this study is to evaluate the effect of membrane coating on the stent flexibility in order to improve the clinical performance of our novel covered stents. A total of 21 stents were evaluated in this study: 15 self expanding bare nitinol stents and 6 PTFE-covered stents. 10 of the bare stents were coated with 11%, 16% and 22% Polyurethane(PU), 4%, 6.25% and 11% EE, as well as 22% PU plus 5 μm Parylene. Different laser cutting designs were performed on 4 of the PTFE covert stents. All the stents, with or without the covered membrane, were subjected to a three-point flexural test. The stents were placed on two supports that are 30 mm apart, and the actuator is applying a force in the exact middle of the two supports with a loading pin with radius 2.5 mm. The loading pin displacement change, the force and the variation in stent shape were recorded for analysis. The flexibility of the stents was evaluated by the lumen area preservation at three displacement bending levels: 5mm, 7mm, and 10mm. All the lumen areas in all stents decreased with the increase of the displacement from 0 to 10 mm. The bare stents were able to maintain 0.864 ± 0.015, 0.740 ± 0.025 and 0.597 ± 0.031of original lumen area at 5 mm, 7 mm and 10mm displacement respectively. For covered stents, the stents with EE coating membrane showed the best lumen area preservation (0.839 ± 0.005, 0.7334 ± 0.043 and 0.559 ± 0.014), whereas, the stents with PU and Parylene coating were only 0.662, 0.439 and 0.305. Bending stiffness was also calculated and compared. These results provided optimal material information and it was crucial for enhancing clinical performance of our novel covered stents.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 293
684 Gauging Floral Resources for Pollinators Using High Resolution Drone Imagery

Authors: Nicholas Anderson, Steven Petersen, Tom Bates, Val Anderson

Abstract:

Under the multiple-use management regime established in the United States for federally owned lands, government agencies have come under pressure from commercial apiaries to grant permits for the summer pasturing of honeybees on government lands. Federal agencies have struggled to integrate honeybees into their management plans and have little information to make regulations that resolve how many colonies should be allowed in a single location and at what distance sets of hives should be placed. Many conservation groups have voiced their concerns regarding the introduction of honeybees to these natural lands, as they may outcompete and displace native pollinating species. Assessing the quality of an area in regard to its floral resources, pollen, and nectar can be important when attempting to create regulations for the integration of commercial honeybee operations into a native ecosystem. Areas with greater floral resources may be able to support larger numbers of honeybee colonies, while poorer resource areas may be less resilient to introduced disturbances. Attempts are made in this study to determine flower cover using high resolution drone imagery to help assess the floral resource availability to pollinators in high elevation, tall forb communities. This knowledge will help in determining the potential that different areas may have for honeybee pasturing and honey production. Roughly 700 images were captured at 23m above ground level using a drone equipped with a Sony QX1 RGB 20-megapixel camera. These images were stitched together using Pix4D, resulting in a 60m diameter high-resolution mosaic of a tall forb meadow. Using the program ENVI, a supervised maximum likelihood classification was conducted to calculate the percentage of total flower cover and flower cover by color (blue, white, and yellow). A complete vegetation inventory was taken on site, and the major flowers contributing to each color class were noted. An accuracy assessment was performed on the classification yielding an 89% overall accuracy and a Kappa Statistic of 0.855. With this level of accuracy, drones provide an affordable and time efficient method for the assessment of floral cover in large areas. The proximal step of this project will now be to determine the average pollen and nectar loads carried by each flower species. The addition of this knowledge will result in a quantifiable method of measuring pollen and nectar resources of entire landscapes. This information will not only help land managers determine stocking rates for honeybees on public lands but also has applications in the agricultural setting, aiding producers in the determination of the number of honeybee colonies necessary for proper pollination of fruit and nut crops.

Keywords: honeybee, flower, pollinator, remote sensing

Procedia PDF Downloads 137
683 Thin Film Thermoelectric Generator with Flexible Phase Change Material-Based Heatsink

Authors: Wu Peiqin

Abstract:

Flexible thermoelectric devices are light and flexible, which can be in close contact with any shape of heat source surfaces to minimize heat loss and achieve efficient energy conversion. Among the wide application fields, energy harvesting via flexible thermoelectric generators can adapt to a variety of curved heat sources (such as human body, circular tubes, and surfaces of different shapes) and can drive low-power electronic devices, exhibiting one of the most promising technologies in self-powered systems. The heat flux along the cross-section of the flexible thin-film generator is limited by the thickness, so the temperature difference decreases during the generation process, and the output power is low. At present, most of the heat flow directions of the thin film thermoelectric generator are along the thin-film plane; however, this method is not suitable for attaching to the human body surface to generate electricity. In order to make the film generator more suitable for thermoelectric generation, it is necessary to apply a flexible heatsink on the air sides with the film to maintain the temperature difference. In this paper, Bismuth telluride thermoelectric paste was deposited on polyimide flexible substrate by a screen printing method, and the flexible thermoelectric film was formed after drying. There are ten pairs of thermoelectric legs. The size of the thermoelectric leg is 20 x 2 x 0.1 mm, and adjacent thermoelectric legs are spaced 2 mm apart. A phase change material-based flexible heatsink was designed and fabricated. The flexible heatsink consists of n-octadecane, polystyrene, and expanded graphite. N-octadecane was used as the thermal storage material, polystyrene as the supporting material, and expanded graphite as the thermally conductive additive. The thickness of the flexible phase change material-based heatsink is 2mm. A thermoelectric performance testing platform was built, and its output performance was tested. The results show that the system can generate an open-circuit output voltage of 3.89 mV at a temperature difference of 10K, which is higher than the generator without a heatsink. Therefore, the flexible heatsink can increase the temperature difference between the two ends of the film and improve the output performance of the flexible film generator. This result promotes the application of the film thermoelectric generator in collecting human heat for power generation.

Keywords: flexible thermoelectric generator, screen printing, PCM, flexible heatsink

Procedia PDF Downloads 96
682 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 264