Search results for: optimal shape design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16228

Search results for: optimal shape design

9748 In-Context Meta Learning for Automatic Designing Pretext Tasks for Self-Supervised Image Analysis

Authors: Toktam Khatibi

Abstract:

Self-supervised learning (SSL) includes machine learning models that are trained on one aspect and/or one part of the input to learn other aspects and/or part of it. SSL models are divided into two different categories, including pre-text task-based models and contrastive learning ones. Pre-text tasks are some auxiliary tasks learning pseudo-labels, and the trained models are further fine-tuned for downstream tasks. However, one important disadvantage of SSL using pre-text task solving is defining an appropriate pre-text task for each image dataset with a variety of image modalities. Therefore, it is required to design an appropriate pretext task automatically for each dataset and each downstream task. To the best of our knowledge, the automatic designing of pretext tasks for image analysis has not been considered yet. In this paper, we present a framework based on In-context learning that describes each task based on its input and output data using a pre-trained image transformer. Our proposed method combines the input image and its learned description for optimizing the pre-text task design and its hyper-parameters using Meta-learning models. The representations learned from the pre-text tasks are fine-tuned for solving the downstream tasks. We demonstrate that our proposed framework outperforms the compared ones on unseen tasks and image modalities in addition to its superior performance for previously known tasks and datasets.

Keywords: in-context learning (ICL), meta learning, self-supervised learning (SSL), vision-language domain, transformers

Procedia PDF Downloads 75
9747 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms

Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian

Abstract:

Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.

Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm

Procedia PDF Downloads 134
9746 Parametric Study and Design on under Reamed Pile - An Experimental and Numerical Study

Authors: S. Chandrakaran, Aarthy D.

Abstract:

Abstract: Under reamed piles are piles which are of different types like bored cast in-situ pile or bored compaction concrete piles where one or more bulbs are provided. In this paper, the design procedure of under reamed pile by both experimental study and numerical study using PLAXIS 3D Foundation software was studied. The soil chosen for study was M Sand. The Single and double under reamed pile modelling was made using mild steel. The pile load test experiment was conducted in the laboratory and the ultimate compression load for 25 mm settlement on single and double under reamed pile was observed and finally the result was compared with conventional pile (pile without bulb). The parametric influence on under reamed pile was studied by varying the geometrical parameters like diameter of bulbs, spacing between bulbs, position of bulbs and number of bulbs. The results of the numerical model showed that when the diameter of bulb D u =2.5D, the ultimate compression load for an under-reamed pile with a single bulb increased by 55 % compared to a pile without a bulb. It was observed that when the spacing between the bulbs was S=6D u with three different positions of bulb from bottom of pile as D u , 2D u and 3D u , the ultimate compression load increased by 88%, 94% and 73 % respectively, compared to the ultimate compression load for 25 mm settlement on conventional pile and if spacing was more than 6D u , ultimate compression load for 25 mm settlement started to decrease. It was observed that when the bucket length was more than 2D u , the ultimate compression

Keywords: load capcity, under remed bulb . sand, model study, sand

Procedia PDF Downloads 77
9745 Investigation of Effect of Mixture Ratio and Compaction Pressure of Reinforced with Miscanthus Fibre Brake Pad Samples

Authors: M. Unaldi, R. Kus

Abstract:

Brake pads are important parts of the braking system and they are made of different materials. Use of asbestos fibre can cause health risks. The goal of this study is to determine the effect of ecological brake pad samples which are produced under different compaction pressure values and mixture ratios by using miscanthus as reinforcement component on the density, hardness, wear rate and compression strength properties, and friction coefficients changes of ecological brake pad samples. Miscanthus powder, cashew powder, alumina powder, phenolic resin powder, and calcite powder mixtures were used to produce ecological brake pad samples. The physical properties of the brake pad samples produced under different mixture ratios and compaction pressures values were determined to assign their effects on them by using Taguchi experimental design. Mixture ratios and compaction pressures values were chosen as the factors with three-levels. Experiments are conducted to L₉(3⁴) Taguchi orthogonal array design. The results showed that hardness value is very much affected both compaction pressure values and mixture ratios than the other physical properties. When reinforcing component ratio within the mixture and compaction pressure value is increased, hardness and compression strength values of the all samples are also increased. All test results taking into account, the ideal compaction value for used components and mixture ratios were determined as 200 MPa.

Keywords: brake pad, eco-friendly materials, hardness, Miscanthus, Taguchi method

Procedia PDF Downloads 322
9744 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 149
9743 Preparation, Physical and Photoelectrochemical Characterization of Ag/CuCo₂O₄: Application to Solar Light Oxidation of Methyl Orange

Authors: Radia Bagtache, Karima Boudjedien, Ahmed Malek Djaballah, Mohamed Trari

Abstract:

The compounds with a spinel structure have received special attention because of their numerous applications in electronics, magnetism, catalysis, electrocatalysis, photocatalysis, etc. Among these oxides, CuCo₂O₄ was selected because of its optimal band gap, very close to the ideal value for solar devices, its low cost, and a potential candidate in the field of energy storage. Herein, we reported the junction Ag/CuCo₂O₄ (5/95 % wt.) prepared by co-precipitation, characterized physically and photo electrochemically. Moreover, its performance was evaluated for the oxidation of methyl orange (MO) under solar light. The X-ray diffraction exhibited narrow peaks ascribed to the spinel CuCo₂O₄ and Ag. The SEM analysis displayed grains with regular shapes. The band gap of CuCo₂O₄ (1.38 eV) was deducted from the diffuse reflectance, and this value decreased down to 1.15 eV due to the synergy effect in the junction. The current-potential (J-E) curve plotted in Na₂SO₄ electrolyte showed a medium hysteresis, characteristic of good chemical stability. The capacitance-2 – potential (C⁻² – E) graph displayed that the spinel behaves as a p-type semiconductor, a property supported by chrono-amperometry. The conduction band, located at 4.05 eV (-0.94 VNHE), was made up of Co³⁺: 3d orbital. The result showed a total discoloration of MO after 2 h of illumination under solar light.

Keywords: junction Ag/CuCo₂O₄, semiconductor, environment, sunlight, characterization, depollution

Procedia PDF Downloads 64
9742 The Impact of Bequest Taxation on Human Capital Accumulation

Authors: Maciej Dudek, Robert Kruszewski, Janusz Kudla, Konrad Walczyk

Abstract:

In this paper, we study how taxation of bequests affects human capital formation in the long term and short term horizon. Our underlying model is an overlapping generation model (OLG) with some degree of altruism on the part of the ancestors' generation towards their descendants. We ask the question in three separate frameworks. First, we study a simple one-sector model where a proxy of human capital is wage income. It the steady-state -for CRRA utility function and human capital produced with non-decreasing returns -the taxation of bequests is neutral to the accumulation of human capital. In the second framework, neutrality applies to the growth rates of human capital, physical capital, and consumption. In this case, taxation increases the level of bequests, leading to a lower value of current consumption. Finally in we consider two periods model instead of infinite horizon model as long as the tax revenue is at least partially rebated back to the public, the fraction of human capital engaged in the process of formation of human capital increases with the tax rate on bequests. In other words, taxation of bequests is partially offset by an increase in human capital formation. Higher human capital allows the future generation to earn higher wages, and today's generation can find it optimal to endow the future generation with more human capital when taxation is imposed on physical capital transferred to the next generation.

Keywords: taxation, bequests, policy, human capital

Procedia PDF Downloads 161
9741 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 76
9740 Optimization of Tooth Root Profile and Drive Side Pressure Angle to Minimize Bending Stress at Root of Asymmetric Spur Gear Tooth

Authors: Priyakant Vaghela, Jagdish Prajapati

Abstract:

Bending stress at the root of the gear tooth is the very important criteria in gear design and it should be kept the minimum. Minimization of bending stress at the root of the gear tooth is a recent demand from industry. This paper presents an innovative approach to obtain minimum bending stress at the root of a tooth by optimizing tooth root profile and drive side pressure angle. Circular-filleted at the root of the tooth is widely used in the design. Circular fillet creates discontinuity at the root of the tooth. So, at root stress concentration occurs. In order to minimize stress concentration, an important criterion is a G2 continuity at the blending of the gear tooth. A Bezier curve is used with G2 continuity at the root of asymmetric spur gear tooth. The comparison has been done between normal and modified tooth using ANSYS simulation. Tooth root profile and drive side pressure angle are optimized to minimize bending stress at the root of the tooth of the asymmetric involute spur gear. Von Mises stress of optimized profile is analyzed and compared with normal profile symmetric gear. Von Mises stress is reducing by 31.27% by optimization of drive side pressure angle and root profile. Stress concentration of modified gear was significantly reduced.

Keywords: asymmetric spur gear tooth, G2 continuity, pressure angle, stress concentration at the root of tooth, tooth root stress

Procedia PDF Downloads 183
9739 An Improved Data Aided Channel Estimation Technique Using Genetic Algorithm for Massive Multi-Input Multiple-Output

Authors: M. Kislu Noman, Syed Mohammed Shamsul Islam, Shahriar Hassan, Raihana Pervin

Abstract:

With the increasing rate of wireless devices and high bandwidth operations, wireless networking and communications are becoming over crowded. To cope with such crowdy and messy situation, massive MIMO is designed to work with hundreds of low costs serving antennas at a time as well as improve the spectral efficiency at the same time. TDD has been used for gaining beamforming which is a major part of massive MIMO, to gain its best improvement to transmit and receive pilot sequences. All the benefits are only possible if the channel state information or channel estimation is gained properly. The common methods to estimate channel matrix used so far is LS, MMSE and a linear version of MMSE also proposed in many research works. We have optimized these methods using genetic algorithm to minimize the mean squared error and finding the best channel matrix from existing algorithms with less computational complexity. Our simulation result has shown that the use of GA worked beautifully on existing algorithms in a Rayleigh slow fading channel and existence of Additive White Gaussian Noise. We found that the GA optimized LS is better than existing algorithms as GA provides optimal result in some few iterations in terms of MSE with respect to SNR and computational complexity.

Keywords: channel estimation, LMMSE, LS, MIMO, MMSE

Procedia PDF Downloads 187
9738 Logical-Probabilistic Modeling of the Reliability of Complex Systems

Authors: Sergo Tsiramua, Sulkhan Sulkhanishvili, Elisabed Asabashvili, Lazare Kvirtia

Abstract:

The paper presents logical-probabilistic methods, models and algorithms for reliability assessment of complex systems, based on which a web application for structural analysis and reliability assessment of systems was created. The reliability assessment process included the following stages, which were reflected in the application: 1) Construction of a graphical scheme of the structural reliability of the system; 2) Transformation of the graphic scheme into a logical representation and modeling of the shortest ways of successful functioning of the system; 3) Description of system operability condition with logical function in the form of disjunctive normal form (DNF); 4) Transformation of DNF into orthogonal disjunction normal form (ODNF) using the orthogonalization algorithm; 5) Replacing logical elements with probabilistic elements in ODNF, obtaining a reliability estimation polynomial and quantifying reliability; 6) Calculation of weights of elements. Using the logical-probabilistic methods, models and algorithms discussed in the paper, a special software was created, by means of which a quantitative assessment of the reliability of systems of a complex structure is produced. As a result, structural analysis of systems, research and designing of optimal structure systems are carried out.

Keywords: Complex systems, logical-probabilistic methods, orthogonalization algorithm, reliability, weight of element

Procedia PDF Downloads 64
9737 Antibacterial Activity of Bacillus thuringiensis Cristalline Parasporal Proteins

Authors: R. Gounina-Allouane, N. Ouali, F. Z. Berrabah, A. Bentaleb

Abstract:

For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE.

Keywords: Bacillus thuringiensis, crystals, cry proteins, δ-endotoxins, antibacterial activity

Procedia PDF Downloads 428
9736 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning

Authors: Joseph George, Anne Kotteswara Roa

Abstract:

Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.

Keywords: skin cancer, deep learning, performance measures, accuracy, datasets

Procedia PDF Downloads 120
9735 Efficacy of Self-Assessment Metacognitive Strategy on Academic Performance Among Upper Basic Students in Ankpa, Kogi State, Nigeria

Authors: Daodu Joshua Rotimi

Abstract:

This study investigated the Efficacy of Self-Assessment Metacognitive Strategy on Academic performance in Energy Concepts among Upper Basic Science Students in Ankpa, Kogi State, Nigeria. The research design adopted for the study was a Quasi-experimental control group design which employed a pretest, posttest of the experimental and control groups. The population of the study consisted of one hundred and twenty-four (124) JSSII Students; sixty-five (65) for the experimental group and (59) for the control group. The instrument used for the study was the Energy Concept Performance Test (ECPT), with a reliability coefficient of 0.80. Two research questions were answered using descriptive statistics of mean and standard deviation, while two hypotheses were tested using a t-test at P≤0.05 level of significance. The findings of the study revealed that the use of the Self-Assessment Metacognitive Strategy has a positive effect on students’ performance in energy concepts among upper Basic Science Students leading to high academic performance; also, there is no significant difference in the mean Academic Performance scores between Male and Female students taught Energy Concept using Self-Assessment Metacognitive Strategy. Based on the research findings, recommendations were made, which include that Secondary school teachers should be encouraged the use Self-Assessment Metacognitive strategy so as to make the learning process attractive, interactive and enriching to the learners.

Keywords: metacognition, self-assessment, performance, efficacy

Procedia PDF Downloads 120
9734 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images

Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn

Abstract:

The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.

Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation

Procedia PDF Downloads 354
9733 Design Challenges for Severely Skewed Steel Bridges

Authors: Muna Mitchell, Akshay Parchure, Krishna Singaraju

Abstract:

There is an increasing need for medium- to long-span steel bridges with complex geometry due to site restrictions in developed areas. One of the solutions to grade separations in congested areas is to use longer spans on skewed supports that avoid at-grade obstructions limiting impacts to the foundation. Where vertical clearances are also a constraint, continuous steel girders can be used to reduce superstructure depths. Combining continuous long steel spans on severe skews can resolve the constraints at a cost. The behavior of skewed girders is challenging to analyze and design with subsequent complexity during fabrication and construction. As a part of a corridor improvement project, Walter P Moore designed two 1700-foot side-by-side bridges carrying four lanes of traffic in each direction over a railroad track. The bridges consist of prestressed concrete girder approach spans and three-span continuous steel plate girder units. The roadway design added complex geometry to the bridge with horizontal and vertical curves combined with superelevation transitions within the plate girder units. The substructure at the steel units was skewed approximately 56 degrees to satisfy the existing railroad right-of-way requirements. A horizontal point of curvature (PC) near the end of the steel units required the use flared girders and chorded slab edges. Due to the flared girder geometry, the cross-frame spacing in each bay is unique. Staggered cross frames were provided based on AASHTO LRFD and NCHRP guidelines for high skew steel bridges. Skewed steel bridges develop significant forces in the cross frames and rotation in the girder websdue to differential displacements along the girders under dead and live loads. In addition, under thermal loads, skewed steel bridges expand and contract not along the alignment parallel to the girders but along the diagonal connecting the acute corners, resulting in horizontal displacement both along and perpendicular to the girders. AASHTO LRFD recommends a 95 degree Fahrenheit temperature differential for the design of joints and bearings. The live load and the thermal loads resulted in significant horizontal forces and rotations in the bearings that necessitated the use of HLMR bearings. A unique bearing layout was selected to minimize the effect of thermal forces. The span length, width, skew, and roadway geometry at the bridges also required modular bridge joint systems (MBJS) with inverted-T bent caps to accommodate movement in the steel units. 2D and 3D finite element analysis models were developed to accurately determine the forces and rotations in the girders, cross frames, and bearings and to estimate thermal displacements at the joints. This paper covers the decision-making process for developing the framing plan, bearing configurations, joint type, and analysis models involved in the design of the high-skew three-span continuous steel plate girder bridges.

Keywords: complex geometry, continuous steel plate girders, finite element structural analysis, high skew, HLMR bearings, modular joint

Procedia PDF Downloads 181
9732 Genotypic Variation in the Germination Performance and Seed Vigor of Safflower (Carthamus tinctorius L.)

Authors: Mehmet Demir Kaya, Engin Gökhan Kulan, Onur İleri, Süleyman Avcı

Abstract:

Due to variation in seed size, shape and oil content of safflower cultivars, germination and emergence performance have been severely influenced by seed characteristics. This study aimed to determine genotypic variation among safflower genotypes for one thousand seed weight, oil content, germination and seed vigor using electrical conductivity (EC) and cold test. In the study, safflower lines ES37-5, ES38-4, ES43-11, ES55-14 and ES58-11 which were developed by single seed selection method, and Dinçer and Remzibey-05 were used as standard varieties. The genotypes were grown under rainfed conditions in Eskişehir, Turkey with four replications. The seeds of each genotype were subjected to standard germination and emergence test at 25°C for 10 days with four replications and 50 seeds per replicate. Electrical conductivity test was performed at 25°C for 24 h to assess the seed vigor. Also, cold test were applied to each safflower genotype at 10°C for 4 days and 25°C for 6 days. Results showed that oil content of the safflower genotypes were different. The highest oil content was determined in ES43-11 with 36.6% while the lowest was 25.9% in ES38-4. Higher germination and emergence rate were obtained from ES55-14 with 96.5% and 73.0%, respectively. There was no significant difference among the safflower genotypes for EC values. Cold test showed that ES43-11 and ES55-14 gave the maximum germination percentages. It was concluded that genotypic factors except for soil and climatic conditions play an important role for determining seed vigor because safflower genotypes grown at the same condition produced various seed vigor values.

Keywords: Carthamus tinctorius L., germination, emergence, cold test, electrical conductivity

Procedia PDF Downloads 358
9731 Becoming a Teacher in Kazakhstan

Authors: D. Shamatov

Abstract:

Becoming a teacher is a journey with significant learning experiences. Exploring teachers’ lives and experiences can provide much-needed insights into the multiple realities of teaching. Teachers’ stories through qualitative narrative studies help understand and appreciate the complexities of the socio-political, economic and practical realities facing teachers. Events and experiences, both past and present, that take place at home, school, and in the broader social sphere help to shape these teachers’ lives and careers. Researchers and educators share the responsibility of listening to these teachers’ stories and life experiences and being sensitive to their voices in order to develop effective models for teacher development. A better understanding of how teachers learn to become teachers can help teacher educators prepare more effective teacher education programs. This paper is based on qualitative research which includes individual and focus group interviews, as well as auto-biography stories of Master of Science in School Leadership students at Graduate School of Education of Nazarbayev University. Twenty five MSc students from across Kazakhstan reflected on their professional journey and wrote their professional autobiographies as teachers. Their autobiographies capture the richness of their experiences and beliefs as a teacher, but also serve as window to understand broader socio-economic and political contexts where these teachers live and work. The study also provides an understanding of the systemic and socio-economic challenges of teachers in the context of post-Soviet Kazakhstan. It helps the reader better understand how wider societal forces interact and frame the development of teachers. The paper presents the findings from these stories of MSc students and offers some practical and policy implications for teacher preparation and teacher development.

Keywords: becoming a teacher, Kazakhstan, teacher stories, teacher development

Procedia PDF Downloads 425
9730 General Time-Dependent Sequenced Route Queries in Road Networks

Authors: Mohammad Hossein Ahmadi, Vahid Haghighatdoost

Abstract:

Spatial databases have been an active area of research over years. In this paper, we study how to answer the General Time-Dependent Sequenced Route queries. Given the origin and destination of a user over a time-dependent road network graph, an ordered list of categories of interests and a departure time interval, our goal is to find the minimum travel time path along with the best departure time that minimizes the total travel time from the source location to the given destination passing through a sequence of points of interests belonging to each of the specified categories of interest. The challenge of this problem is the added complexity to the optimal sequenced route queries, where we assume that first the road network is time dependent, and secondly the user defines a departure time interval instead of one single departure time instance. For processing general time-dependent sequenced route queries, we propose two solutions as Discrete-Time and Continuous-Time Sequenced Route approaches, finding approximate and exact solutions, respectively. Our proposed approaches traverse the road network based on A*-search paradigm equipped with an efficient heuristic function, for shrinking the search space. Extensive experiments are conducted to verify the efficiency of our proposed approaches.

Keywords: trip planning, time dependent, sequenced route query, road networks

Procedia PDF Downloads 313
9729 TomoTherapy® System Repositioning Accuracy According to Treatment Localization

Authors: Veronica Sorgato, Jeremy Belhassen, Philippe Chartier, Roddy Sihanath, Nicolas Docquiere, Jean-Yves Giraud

Abstract:

We analyzed the image-guided radiotherapy method used by the TomoTherapy® System (Accuray Corp.) for patient repositioning in clinical routine. The TomoTherapy® System computes X, Y, Z and roll displacements to match the reference CT, on which the dosimetry has been performed, with the pre-treatment MV CT. The accuracy of the repositioning method has been studied according to the treatment localization. For this, a database of 18774 treatment sessions, performed during 2 consecutive years (2016-2017 period) has been used. The database includes the X, Y, Z and roll displacements proposed by TomoTherapy® System as well as the manual correction of these proposals applied by the radiation therapist. This manual correction aims to further improve the repositioning based on the clinical situation and depends on the structures surrounding the target tumor tissue. The statistical analysis performed on the database aims to define repositioning limits to be used as security and guiding tool for the manual adjustment implemented by the radiation therapist. This tool will participate not only to notify potential repositioning errors but also to further improve patient positioning for optimal treatment.

Keywords: accuracy, IGRT MVCT, image-guided radiotherapy megavoltage computed tomography, statistical analysis, tomotherapy, localization

Procedia PDF Downloads 220
9728 Nonlinear Finite Element Analysis of Concrete Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Concrete filled steel I-girder (CFIG) bridge was proposed and the bending and shear strength was confirmed by experiments. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used to the intermediate support of a continuous girder. Three-dimensional finite element models were established to simulate the bending and shear behaviors of CFIG and to clarify the load transfer mechanism. Steel plates and filled concrete were modeled as a three-dimensional 8-node solid element and steel reinforcement bars as a three-dimensional 2-node truss element. The elements were mostly divided into the 50 x 50 mm mesh size. The non-linear stress-strain relation is assumed for concrete in compression including the softening effect after the peak, and the stress increases linearly for concrete in tension until concrete cracking but then decreases due to tension stiffening effect. The stress-strain relation for steel plates was tri-linear and that for reinforcements was bi-linear. The concrete and the steel plates were rigidly connected. The developed FEM model was applied to simulate and analysis the bending behaviors of the CFIG specimens. The vertical displacements and the strains of steel plates and the filled concrete obtained by FEM agreed very well with the test results until the yield load. The specimens collapsed when the upper flange buckled or the concrete spalled off. These phenomena cannot be properly analyzed by FEM, which produces a small discrepancy at the ultimate states. The FEM model was also applied to simulate and analysis the shear tests of the CFIG specimens. The vertical displacements and strains of steel and concrete calculated by FEM model agreed well with the test results. A truss action was confirmed by the FEM and the experiment, clarifying that shear forces were mainly resisted by the tension strut of the steel plate and the compression strut of the filled concrete acting in the diagonal direction. A trail design with the CFIG was carried out for a four-span continuous highway bridge and the design method was established. Construction cost was estimated about 12% lower than that of a conventional steel I-section girder.

Keywords: concrete filled steel I-girder, bending strength, FEM, limit states design, steel I-girder, shear strength

Procedia PDF Downloads 210
9727 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 156
9726 Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Authors: Michael G. Pantelyat

Abstract:

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Keywords: electromagnetic devices, multiphysics, numerical analysis, simulation and design

Procedia PDF Downloads 380
9725 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 401
9724 The Effect of Sand Content on Behavior of Kaolin Clay

Authors: Hamed Tohidi, James W. Mahar

Abstract:

One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained.

Keywords: clay's behaviour, plasticity, sand content, Kaolin clay

Procedia PDF Downloads 244
9723 Structural Analysis of Sheep and Goat Farms in Konya Province

Authors: Selda Uzal Seyfi

Abstract:

Goat milk is a quite important in human nutrition. In order to meet the demand to the goat and sheep milk occurring in the recent years, an increase is seen in the demand to housing projects, which will enable animals to be sheltered in the suitable environments. This study was carried out in between 2012 and 2013, in order to identify the existing cases of sheep and goat housings in the province Konya and their possibilities to be developed. In the study, in the province Konya, 25 pieces of sheep and goat farms and 46 pieces of sheep and goat housings (14 sheep housings, 3 goat housings, and 29 housings, in which both sheep and goat are bred ) that are present in the farm were investigated as material. In the study, examining the general features of the farms that are present in the region and structural features of housings that are present in the farms, it is studied whether or not they are suitable for animal breeding. As a result of the study, the barns were evaluated as insufficient in terms of barn design, although 48% of they were built after 2000. In 63% of housings examined, stocking density of resting area was below the value of 1 m2/animal and in 59% of the housings, stocking density of courtyard area was below the 2 m2/animal. Feeding length, in 57% of housings has a value of 0.30 m and below. In the region, it will be possible to obtain the desired productivity level by building new barn designs, developed in accordance with the animal behaviors and welfare. Carrying out the necessary works is an important issue in terms of country and regional economy.

Keywords: barn design, goat housing, sheep housing, structural analysis

Procedia PDF Downloads 279
9722 Fabrication of Textile-Based Radio Frequency Metasurfaces

Authors: Adria Kajenski, Guinevere Strack, Edward Kingsley, Shahriar Khushrushahi, Alkim Akyurtlu

Abstract:

Radio Frequency (RF) metasurfaces are arrangements of subwavelength elements interacting with electromagnetic radiation. These arrangements affect polarization state, amplitude, and phase of impinged radio waves; for example, metasurface designs are used to produce functional passband and stopband filters. Recent advances in additive manufacturing techniques have enabled the low-cost, rapid fabrication of ultra-thin metasurface elements on flexible substrates such as plastic films, paper, and textiles. Furthermore, scalable manufacturing processes promote the integration of fabric-based RF metasurfaces into the market of sensors and devices within the Internet of Things (IoT). The design and fabrication of metasurfaces on textiles require a multidisciplinary team with expertise in i) textile and materials science, ii) metasurface design and simulation, and iii) metasurface fabrication and testing. In this presentation, we will discuss RF metasurfaces on fabric with an emphasis on how the materials, including fabric and inks, along with fabrication techniques, affect the RF performance. We printed metasurfaces using a direct-write approach onto various woven and non-woven fabrics, as well as on fabrics coated with either thermoplastic or thermoset coatings. Our team also performed a range of tests on the printed structures, including different inks and their curing parameters, wash durability, abrasion resistance, and RF performance over time.

Keywords: electronic textiles, metasurface, printed electronics, flexible

Procedia PDF Downloads 191
9721 Personal Variables and Students’ Perception of School Security in Secondary Schools in Calabar Municipality, Cross River State, Nigeria

Authors: James Bassey Ejue, Dorn Cklaimz Enamhe, Helen Francis Ejue

Abstract:

The study examined the influence of personal variables such as sex, type of school, and parental socio-economic status on secondary school students’ perception of school security. To guide the study, three null hypotheses were formulated. The research design adopted was the survey design, and a 20-item instrument was constructed and validated by the researchers through a test-retest procedure. The sample size for the study comprised 2,198 students made up of male and female students selected through a stratified random sampling technique. This was drawn from a study population of 21,988, made up of 12,635 students and 9353 students from public and private secondary schools, respectively. Data were analyzed using an independent t-test statistical tool. The findings showed that female students were more fearful in their perception of school security; the students in private schools perceived school to be more insecure than those in public schools; and the students from high parental socio-economic status are more associated with the perception of school as insecure than the ones from low parental socio-economic status. Based on these findings, it was recommended that, among others, more reassuring measures be put in place to check school security for females, for those in private schools, and for those from high parental socio-economic status. School counsellors should also be guided accordingly in designing intervention strategies.

Keywords: personal variables, students, perception, school security

Procedia PDF Downloads 68
9720 Impact of Colors, Space Design and Artifacts on Cognitive Health in Government Hospitals of Uttarakhand

Authors: Ila Gupta

Abstract:

The government hospitals in India by and large lack the necessary aesthetic therapeutic components, both in their interior and exterior space designs. These components especially in terms of color application are important to the emotional as well as physical well being of the patients and other participants of the space. The preliminary survey of few government hospitals in Uttarakhand, India, reveals that the government health care industry provides a wide scope for intervention. All most all of the spaces do not adhere to a proper therapeutic color scheme which directly helps the well-being of their patients and workers. The paper aims to conduct a survey and come up with recommendations in this regard. The government hospitals also lack a proper signage system which allows the space to be more user-friendly. The hospital spaces in totality also have scope for improvement in terms of space/landscape design which enhances the work environment in an efficient and positive way. This study will thus enable to come up with feasible recommendations for healthcare and built environment as well as retrofitting the existing spaces. The objective of the paper is mainly on few case studies. The present ambience in many government hospitals generally lacks a welcoming ambience. It is proposed to select one or two government hospitals and demonstrate application of appropriate and self-sustainable color schemes, placement of artifacts, changes in outdoor and indoor space design to bring about a change that is conducive for cognitive healing. Exterior changes to existing and old hospital buildings in depressed historic areas signify financial investment and change, and have the potential to play a significant role in both urban preservation and revitalization. Changes to exterior architectural colors are perhaps the most visible signifier of such revitalization, as the use of color changes as a tool in façade and interior improvement programs. The present project will provide its recommendations on the basis of case studies done in the Indian Public Health Care system. Furthermore, the recommendations will be in accordance with the extended study conducted in Indian Ayurvedic, Yogic texts as well as Vastu texts, which provides knowledge about built environments and healing properties of color.

Keywords: color, environment, facade, architectural color history, interior improvement programs, community development, district/government hospitals

Procedia PDF Downloads 160
9719 Advanced Oxidation Processes as a Pre-oxidation Step for Biological Treatment of Leachate from Technical Landfills

Authors: Ala Abdessemed, Mohamed Seddik Oussama Belahmadi, Nabil Charchar, Abdefettah Gherib, Bradai Fares, Boussadia Chouaib Nour El-Islem

Abstract:

Algerian cities are confronted with large quantities of waste generated by the disposal of household and similar residues in technical landfills (CET), such as the one in the location of Batna. The interaction between waste components and incoming water generates leachates rich in organic matter and trace elements, which require treatment before discharge. The aim of this study was to propose an effective process for treating the leachates, which were subjected to an initial chemical treatment using the (H₂O₂/UV) system. Optimal treatment conditions were determined at [H₂O₂] of 0.3 M and pH of 8.6. Next, two hybrid biological treatment systems were applied: hybrid system I (H₂O₂/UV/bacteria) and hybrid system II (H₂O₂/UV/bacteria/microalgae). The three processes resulted in the following degradation rates, expressed in terms of total organic carbon (TOC) 27.4% for the (H₂O₂/UV) system; 58.1% for the hybrid system I (H₂O₂/UV/Bacteria); 67.86% for the hybrid system II (H₂O₂/UV/Bacteria/Microalgae). This study demonstrates that a hybrid approach combining advanced oxidation processes and biological treatments is a highly effective alternative to achieve satisfactory treatment.

Keywords: leachate, landfill, advanced oxidation processes, biological treatment, bacteria, microalgae, total organic carbon

Procedia PDF Downloads 62