Search results for: models synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8827

Search results for: models synthesis

2347 Composition and Catalytic Behaviour of Biogenic Iron Containing Materials Obtained by Leptothrix Bacteria Cultivation in Different Growth Media

Authors: M. Shopska, D. Paneva, G. Kadinov, Z. Cherkezova-Zheleva, I. Mitov

Abstract:

The iron containing materials are used as catalysts in different processes. The chemical methods of their synthesis use toxic and expensive chemicals; sophisticated devices; energy consumption processes that raise their cost. Besides, dangerous waste products are formed. At present time such syntheses are out of date and wasteless technologies are indispensable. The bioinspired technologies are consistent with the ecological requirements. Different microorganisms participate in the biomineralization of the iron and some phytochemicals are involved, too. The methods for biogenic production of iron containing materials are clean, simple, nontoxic, realized at ambient temperature and pressure, cheaper. The biogenic iron materials embrace different iron compounds. Due to their origin these substances are nanosized, amorphous or poorly crystalline, porous and have number of useful properties like SPM, high magnetism, low toxicity, biocompatibility, absorption of microwaves, high surface area/volume ratio, active sites on the surface with unusual coordination that distinguish them from the bulk materials. The biogenic iron materials are applied in the heterogeneous catalysis in different roles - precursor, active component, support, immobilizer. The application of biogenic iron oxide materials gives rise to increased catalytic activity in comparison with those of abiotic origin. In our study we investigated the catalytic behavior of biomasses obtained by cultivation of Leptothrix bacteria in three nutrition media – Adler, Fedorov, and Lieske. The biomass composition was studied by Moessbauer spectroscopy and transmission IRS. Catalytic experiments on CO oxidation were carried out using in situ DRIFTS. Our results showed that: i) the used biomasses contain α-FeOOH, γ-FeOOH, γ-Fe2O3 in different ratios; ii) the biomass formed in Adler medium contains γ-FeOOH as main phase. The CO conversion was about 50% as evaluated by decreased integrated band intensity in the gas mixture spectra during the reaction. The main phase in the spent sample is γ-Fe2O3; iii) the biomass formed in Lieske medium contains α-FeOOH. The CO conversion was about 20%. The main phase in the spent sample is α-Fe2O3; iv) the biomass formed in Fedorov medium contains γ-Fe2O3 as main phase. CO conversion in the test reaction was about 19%. The results showed that the catalytic activity up to 200°C resulted predominantly from α-FeOOH and γ-FeOOH. The catalytic activity at temperatures higher than 200°C was due to the formation of γ-Fe2O3. The oxyhydroxides, which are the principal compounds in the biomass, have low catalytic activity in the used reaction; the maghemite has relatively good catalytic activity; the hematite has activity commensurate with that of the oxyhydroxides. Moreover it can be affirmed that catalytic activity is inherent in maghemite, which is obtained by transformation of the biogenic lepidocrocite, i.e. it has biogenic precursor.

Keywords: nanosized biogenic iron compounds, catalytic behavior in reaction of CO oxidation, in situ DRIFTS, Moessbauer spectroscopy

Procedia PDF Downloads 369
2346 A Machine Learning Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

There has been a need in recent years to predict student academic achievement prior to graduation. This is to assist them in improving their grades, especially for those who have struggled in the past. The purpose of this research is to use supervised learning techniques to create a model that predicts student academic progress. Many scholars have developed models that predict student academic achievement based on characteristics including smoking, demography, culture, social media, parent educational background, parent finances, and family background, to mention a few. This element, as well as the model used, could have misclassified the kids in terms of their academic achievement. As a prerequisite to predicting if the student will perform well in the future on related courses, this model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester. With a 96.7 percent accuracy, the model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost. This model is offered as a desktop application with user-friendly interfaces for forecasting student academic progress for both teachers and students. As a result, both students and professors are encouraged to use this technique to predict outcomes better.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 108
2345 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads

Authors: Kayijuka Idrissa

Abstract:

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Keywords: statistical methods, traffic flow, Poisson distribution, car moving technics

Procedia PDF Downloads 281
2344 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 544
2343 Efficiency of Membrane Distillation to Produce Fresh Water

Authors: Sabri Mrayed, David Maccioni, Greg Leslie

Abstract:

Seawater desalination has been accepted as one of the most effective solutions to the growing problem of a diminishing clean drinking water supply. Currently, two desalination technologies dominate the market – the thermally driven multi-stage flash distillation (MSF) and the membrane based reverse osmosis (RO). However, in recent years membrane distillation (MD) has emerged as a potential alternative to the established means of desalination. This research project intended to determine the viability of MD as an alternative process to MSF and RO for seawater desalination. Specifically the project involves conducting a thermodynamic analysis of the process based on the second law of thermodynamics to determine the efficiency of the MD. Data was obtained from experiments carried out on a laboratory rig. In order to determine exergy values required for the exergy analysis, two separate models were built in Engineering Equation Solver – the ’Minimum Separation Work Model’ and the ‘Stream Exergy Model’. The efficiency of MD process was found to be 17.3 %, and the energy consumption was determined to be 4.5 kWh to produce one cubic meter of fresh water. The results indicate MD has potential as a technique for seawater desalination compared to RO and MSF. However, it was shown that this was only the case if an alternate energy source such as green or waste energy was available to provide the thermal energy input to the process. If the process was required to power itself, it was shown to be highly inefficient and in no way thermodynamically viable as a commercial desalination process.

Keywords: desalination, exergy, membrane distillation, second law efficiency

Procedia PDF Downloads 360
2342 A Hybrid Algorithm Based on Greedy Randomized Adaptive Search Procedure and Chemical Reaction Optimization for the Vehicle Routing Problem with Hard Time Windows

Authors: Imen Boudali, Marwa Ragmoun

Abstract:

The Vehicle Routing Problem with Hard Time Windows (VRPHTW) is a basic distribution management problem that models many real-world problems. The objective of the problem is to deliver a set of customers with known demands on minimum-cost vehicle routes while satisfying vehicle capacity and hard time windows for customers. In this paper, we propose to deal with our optimization problem by using a new hybrid stochastic algorithm based on two metaheuristics: Chemical Reaction Optimization (CRO) and Greedy Randomized Adaptive Search Procedure (GRASP). The first method is inspired by the natural process of chemical reactions enabling the transformation of unstable substances with excessive energy to stable ones. During this process, the molecules interact with each other through a series of elementary reactions to reach minimum energy for their existence. This property is embedded in CRO to solve the VRPHTW. In order to enhance the population diversity throughout the search process, we integrated the GRASP in our method. Simulation results on the base of Solomon’s benchmark instances show the very satisfactory performances of the proposed approach.

Keywords: Benchmark Problems, Combinatorial Optimization, Vehicle Routing Problem with Hard Time Windows, Meta-heuristics, Hybridization, GRASP, CRO

Procedia PDF Downloads 410
2341 Iris Feature Extraction and Recognition Based on Two-Dimensional Gabor Wavelength Transform

Authors: Bamidele Samson Alobalorun, Ifedotun Roseline Idowu

Abstract:

Biometrics technologies apply the human body parts for their unique and reliable identification based on physiological traits. The iris recognition system is a biometric–based method for identification. The human iris has some discriminating characteristics which provide efficiency to the method. In order to achieve this efficiency, there is a need for feature extraction of the distinct features from the human iris in order to generate accurate authentication of persons. In this study, an approach for an iris recognition system using 2D Gabor for feature extraction is applied to iris templates. The 2D Gabor filter formulated the patterns that were used for training and equally sent to the hamming distance matching technique for recognition. A comparison of results is presented using two iris image subjects of different matching indices of 1,2,3,4,5 filter based on the CASIA iris image database. By comparing the two subject results, the actual computational time of the developed models, which is measured in terms of training and average testing time in processing the hamming distance classifier, is found with best recognition accuracy of 96.11% after capturing the iris localization or segmentation using the Daughman’s Integro-differential, the normalization is confined to the Daugman’s rubber sheet model.

Keywords: Daugman rubber sheet, feature extraction, Hamming distance, iris recognition system, 2D Gabor wavelet transform

Procedia PDF Downloads 63
2340 ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency

Authors: Afsheen Aman, Zainab Bibi, Shah Ali Ul Qader

Abstract:

Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose.

Keywords: immobilization, reusability, thermozymes, xylanase

Procedia PDF Downloads 373
2339 Applying And Connecting The Microgrid Of Artificial Intelligence In The Form Of A Spiral Model To Optimize Renewable Energy Sources

Authors: PR

Abstract:

Renewable energy is a sustainable substitute to fossil fuels, which are depleting and attributing to global warming as well as greenhouse gas emissions. Renewable energy innovations including solar, wind, and geothermal have grown significantly and play a critical role in meeting energy demands recently. Consequently, Artificial Intelligence (AI) could further enhance the benefits of renewable energy systems. The combination of renewable technologies and AI could facilitate the development of smart grids that can better manage energy distribution and storage. AI thus has the potential to optimize the efficiency and reliability of renewable energy systems, reduce costs, and improve their overall performance. The conventional methods of using smart micro-grids are to connect these micro-grids in series or parallel or a combination of series and parallel. Each of these methods has its advantages and disadvantages. In this study, the proposal of using the method of connecting microgrids in a spiral manner is investigated. One of the important reasons for choosing this type of structure is the two-way reinforcement and exchange of each inner layer with the outer and upstream layer. With this model, we have the ability to increase energy from a small amount to a significant amount based on exponential functions. The geometry used to close the smart microgrids is based on nature.This study provides an overview of the applications of algorithms and models of AI as well as its advantages and challenges in renewable energy systems.

Keywords: artificial intelligence, renewable energy sources, spiral model, optimize

Procedia PDF Downloads 7
2338 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding

Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez

Abstract:

Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.

Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement

Procedia PDF Downloads 194
2337 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 221
2336 Attachment Patterns in a Sample of South African Children at Risk in Middle Childhood

Authors: Renate Gericke, Carol Long

Abstract:

Despite the robust empirical support of attachment, advancement in the description and conceptualization of attachment has been slow and has not significantly advanced beyond the identification of attachment security or type (namely, secure, avoidant, ambivalent and disorganized). This has continued despite papers arguing for theoretical refinement in the classification of attachment presentations. For thinking and practice to advance, it is critically important that these categories and their assessment be interrogated in different contexts and across developmental age. To achieve this, a quantitative design was used with descriptive and inferential statistics, and general linear models were employed to analyze the data. The Attachment Story Completion Test (ASCT) was administered to 105 children between the ages of eight and twelve from socio-economically deprived contexts with high exposure to trauma. A staggering 93% of the children had insecure attachments (specifically, avoidant 37%, disorganized 34% and ambivalent 22%) and attachment was more complex than currently conceptualized in the attachment literature. Primary attachment did not only present as one of four discreet categories, but 70% of the sample had a complex attachment with more than one type of maternal attachment style. Attachment intensity also varied along a continuum (between 1 and 5). The findings have implications for a) research that has not considered the potential complexity of attachment or attachment intensity, b) policy to more actively support mother-infant dyads, particularly in high-risk contexts and c) question the applicability of a western conceptualization of a primary maternal attachment figure in non-western collectivist societies.

Keywords: attachment, children at risk, middle childhood, non-western context

Procedia PDF Downloads 190
2335 Proposing a New Design Method for Added Viscoelastic Damper’s Application in Steel Moment-Frame

Authors: Saeed Javaherzadeh, Babak Dindar Safa

Abstract:

Structure, given its ductility, can depreciate significant amount of seismic energy in the form of hysteresis behavior; the amount of energy depreciation depends on the structure ductility rate. So in seismic guidelines such as ASCE7-10 code, to reduce the number of design forces and using the seismic energy dissipation capacity of structure, when entering non-linear behavior range of the materials, the response modification factor is used. Various parameters such as ductility modification factor, overstrength factor and reliability factor, are effective in determining the value of this factor. Also, gradually, energy dissipation systems, especially added dampers, have become an inseparable part of the seismic design. In this paper, in addition to reviewing of previous studies, using the response modification factor caused by using more added viscoelastic dampers, a new design method has introduced for steel moment-frame with added dampers installed. To do this, in addition to using bilinear behavior models and quick ways such as using the equivalent lateral force method and capacity spectrum method for the proposed design methodology, the results has been controlled with non-linear time history analysis for a number of structural. The analysis is done by Opensees Software.

Keywords: added viscoelastic damper, design base shear, response modification factor, non-linear time history

Procedia PDF Downloads 440
2334 Akt: Isoform-Specific Regulation of Cellular Signaling in Cancer

Authors: Bhumika Wadhwa, Fayaz Malik

Abstract:

The serine/threonine protein kinase B (PKB) also known as Akt, is one of the multifaceted kinase in human kinome, existing in three isoforms. Akt plays a vital role in phosphoinositide 3-kinase (PI3K) mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. The functional significance of an individual isoform of Akt is not redundant in cancer cell proliferation and metastasis instead Akt isoforms play distinct roles during metastasis; thereby regulating EMT. This study aims to determine isoform specific functions of Akt in cancer. The results obtained suggest that Akt1 restrict tumor invasion, whereas Akt2 promotes cell migration and invasion by various techniques like MTT, wound healing and invasion assay. Similarly, qRT-PCR also revealed that Akt3 has shown promising results in promoting cancer cell migration. Contrary to pro-oncogenic properties attributed to Akt, it is to be understood how various isoforms of Akt compensates each other in the regulation of common pathways during cancer progression and drug resistance. In conclusion, this study aims to target selective isoforms which is essential to inhibit cancer. However, the question now is whether, and how much, Akt inhibition will be tolerated in the clinic remains to be answered and the experiments will have to address the question of which combinations of newly devised Akt isoform specific inhibitors exert a favourable therapeutic effect in in vivo models of cancer to provide the therapeutic window with minimal toxicity.

Keywords: Akt isoforms, cancer, drug resistance, epithelial mesenchymal transition

Procedia PDF Downloads 255
2333 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 278
2332 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration

Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan

Abstract:

Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.

Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins

Procedia PDF Downloads 118
2331 Seismic Integrity Determination of Dams in Urban Areas

Authors: J. M. Mayoral, M. Anaya

Abstract:

The urban and economic development of cities demands the construction of water use and flood control infrastructure. Likewise, it is necessary to determine the safety level of the structures built with the current standards and if it is necessary to define the reinforcement actions. The foregoing is even more important in structures of great importance, such as dams, since they imply a greater risk for the population in case of failure or undesirable operating conditions (e.g., seepage, cracks, subsidence). This article presents a methodology for determining the seismic integrity of dams in urban areas. From direct measurements of the dynamic properties using geophysical exploration and ambient seismic noise measurements, the seismic integrity of the concrete-faced rockfill dam selected as a case of study is evaluated. To validate the results, two accelerometer stations were installed (e.g., free field and crest of the dam). Once the dynamic properties were determined, three-dimensional finite difference models were developed to evaluate the dam seismic performance for different intensities of movement, considering the site response and soil-structure interaction effects. The seismic environment was determined from the uniform hazard spectra for several return periods. Based on the results obtained, the safety level of the dam against different seismic actions was determined, and the effectiveness of ambient seismic noise measurements in dynamic characterization and subsequent evaluation of the seismic integrity of urban dams was evaluated.

Keywords: risk, seismic, soil-structure interaction, urban dams

Procedia PDF Downloads 117
2330 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)

Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo

Abstract:

High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.

Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound

Procedia PDF Downloads 534
2329 Enhancing Information Technologies with AI: Unlocking Efficiency, Scalability, and Innovation

Authors: Abdal-Hafeez Alhussein

Abstract:

Artificial Intelligence (AI) has become a transformative force in the field of information technologies, reshaping how data is processed, analyzed, and utilized across various domains. This paper explores the multifaceted applications of AI within information technology, focusing on three key areas: automation, scalability, and data-driven decision-making. We delve into how AI-powered automation is optimizing operational efficiency in IT infrastructures, from automated network management to self-healing systems that reduce downtime and enhance performance. Scalability, another critical aspect, is addressed through AI’s role in cloud computing and distributed systems, enabling the seamless handling of increasing data loads and user demands. Additionally, the paper highlights the use of AI in cybersecurity, where real-time threat detection and adaptive response mechanisms significantly improve resilience against sophisticated cyberattacks. In the realm of data analytics, AI models—especially machine learning and natural language processing—are driving innovation by enabling more precise predictions, automated insights extraction, and enhanced user experiences. The paper concludes with a discussion on the ethical implications of AI in information technologies, underscoring the importance of transparency, fairness, and responsible AI use. It also offers insights into future trends, emphasizing the potential of AI to further revolutionize the IT landscape by integrating with emerging technologies like quantum computing and IoT.

Keywords: artificial intelligence, information technology, automation, scalability

Procedia PDF Downloads 16
2328 Impact of Climate on Sugarcane Yield Over Belagavi District, Karnataka Using Statistical Mode

Authors: Girish Chavadappanavar

Abstract:

The impact of climate on agriculture could result in problems with food security and may threaten the livelihood activities upon which much of the population depends. In the present study, the development of a statistical yield forecast model has been carried out for sugarcane production over Belagavi district, Karnataka using weather variables of crop growing season and past observed yield data for the period of 1971 to 2010. The study shows that this type of statistical yield forecast model could efficiently forecast yield 5 weeks and even 10 weeks in advance of the harvest for sugarcane within an acceptable limit of error. The performance of the model in predicting yields at the district level for sugarcane crops is found quite satisfactory for both validation (2007 and 2008) as well as forecasting (2009 and 2010).In addition to the above study, the climate variability of the area has also been studied, and hence, the data series was tested for Mann Kendall Rank Statistical Test. The maximum and minimum temperatures were found to be significant with opposite trends (decreasing trend in maximum and increasing in minimum temperature), while the other three are found in significant with different trends (rainfall and evening time relative humidity with increasing trend and morning time relative humidity with decreasing trend).

Keywords: climate impact, regression analysis, yield and forecast model, sugar models

Procedia PDF Downloads 69
2327 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 257
2326 Relationship between the Ability of Accruals and Non-Systematic Risk of Shares for Companies Listed in Stock Exchange: Case Study, Tehran

Authors: Lina Najafian, Hamidreza Vakilifard

Abstract:

The present study focused on the relationship between the quality of accruals and non-systematic risk. The independent study variables included the ability of accruals, the information content of accruals, and amount of discretionary accruals considered as accruals quality measures. The dependent variable was non-systematic risk based on the Fama and French Three Factor model (FFTFM) and the capital asset pricing model (CAPM). The control variables were firm size, financial leverage, stock return, cash flow fluctuations, and book-to-market ratio. The data collection method was based on library research and document mining including financial statements. Multiple regression analysis was used to analyze the data. The study results showed that there is a significant direct relationship between financial leverage and discretionary accruals and non-systematic risk based on FFTFM and CAPM. There is also a significant direct relationship between the ability of accruals, information content of accruals, firm size, and stock return and non-systematic based on both models. It was also found that there is no relationship between book-to-market ratio and cash flow fluctuations and non-systematic risk.

Keywords: accruals quality, non-systematic risk, CAPM, FFTFM

Procedia PDF Downloads 159
2325 BIM-Based Tool for Sustainability Assessment and Certification Documents Provision

Authors: Taki Eddine Seghier, Mohd Hamdan Ahmad, Yaik-Wah Lim, Samuel Opeyemi Williams

Abstract:

The assessment of building sustainability to achieve a specific green benchmark and the preparation of the required documents in order to receive a green building certification, both are considered as major challenging tasks for green building design team. However, this labor and time-consuming process can take advantage of the available Building Information Modeling (BIM) features such as material take-off and scheduling. Furthermore, the workflow can be automated in order to track potentially achievable credit points and provide rating feedback for several design options by using integrated Visual Programing (VP) to handle the stored parameters within the BIM model. Hence, this study proposes a BIM-based tool that uses Green Building Index (GBI) rating system requirements as a unique input case to evaluate the building sustainability in the design stage of the building project life cycle. The tool covers two key models for data extraction, firstly, a model for data extraction, calculation and the classification of achievable credit points in a green template, secondly, a model for the generation of the required documents for green building certification. The tool was validated on a BIM model of residential building and it serves as proof of concept that building sustainability assessment of GBI certification can be automatically evaluated and documented through BIM.

Keywords: green building rating system, GBRS, building information modeling, BIM, visual programming, VP, sustainability assessment

Procedia PDF Downloads 325
2324 Time Delayed Susceptible-Vaccinated-Infected-Recovered-Susceptible Epidemic Model along with Nonlinear Incidence and Nonlinear Treatment

Authors: Kanica Goel, Nilam

Abstract:

Infectious diseases are a leading cause of death worldwide and hence a great challenge for every nation. Thus, it becomes utmost essential to prevent and reduce the spread of infectious disease among humans. Mathematical models help to better understand the transmission dynamics and spread of infections. For this purpose, in the present article, we have proposed a nonlinear time-delayed SVIRS (Susceptible-Vaccinated-Infected-Recovered-Susceptible) mathematical model with nonlinear type incidence rate and nonlinear type treatment rate. Analytical study of the model shows that model exhibits two types of equilibrium points, namely, disease-free equilibrium and endemic equilibrium. Further, for the long-term behavior of the model, stability of the model is discussed with the help of basic reproduction number R₀ and we showed that disease-free equilibrium is locally asymptotically stable if the basic reproduction number R₀ is less than one and unstable if the basic reproduction number R₀ is greater than one for the time lag τ≥0. Furthermore, when basic reproduction number R₀ is one, using center manifold theory and Casillo-Chavez and Song theorem, we showed that the model undergoes transcritical bifurcation. Moreover, numerical simulations are being carried out using MATLAB 2012b to illustrate the theoretical results.

Keywords: nonlinear incidence rate, nonlinear treatment rate, stability, time delayed SVIRS epidemic model

Procedia PDF Downloads 148
2323 Development of Partial Discharge Defect Recognition and Status Diagnosis System with Adaptive Deep Learning

Authors: Chien-kuo Chang, Bo-wei Wu, Yi-yun Tang, Min-chiu Wu

Abstract:

This paper proposes a power equipment diagnosis system based on partial discharge (PD), which is characterized by increasing the readability of experimental data and the convenience of operation. This system integrates a variety of analysis programs of different data formats and different programming languages and then establishes a set of interfaces that can follow and expand the structure, which is also helpful for subsequent maintenance and innovation. This study shows a case of using the developed Convolutional Neural Networks (CNN) to integrate with this system, using the designed model architecture to simplify the complex training process. It is expected that the simplified training process can be used to establish an adaptive deep learning experimental structure. By selecting different test data for repeated training, the accuracy of the identification system can be enhanced. On this platform, the measurement status and partial discharge pattern of each equipment can be checked in real time, and the function of real-time identification can be set, and various training models can be used to carry out real-time partial discharge insulation defect identification and insulation state diagnosis. When the electric power equipment entering the dangerous period, replace equipment early to avoid unexpected electrical accidents.

Keywords: partial discharge, convolutional neural network, partial discharge analysis platform, adaptive deep learning

Procedia PDF Downloads 77
2322 Antidiabetic and Admet Pharmacokinetic Properties of Grewia Lasiocarpa E. Mey. Ex Harv. Stem Bark Extracts: An in Vitro and in Silico Study

Authors: Akwu N. A., Naidoo Y., Salau V. F., Olofinsan K. A.

Abstract:

Grewia lasiocarpa E. Mey. ex Harv. (Malvaceae) is a Southern African medicinal plant indigenously used with other plants for birthing problems. The anti-diabetic properties of the hexane, chloroform, and methanol extracts of Grewia lasiocarpa stem bark were assessed using in vitro α-glucosidase enzyme inhibition assay. The predictive in silico drug-likeness and toxicity properties of the phytocompounds were conducted using the pKCSM, ADMElab, and SwissADME computer-aided online tools. The highest α-glucosidase percentage inhibition was observed in the hexane extract (86.76%, IC50= 0.24 mg/mL), followed by chloroform (63.08%, IC50= 4.87 mg/mL) and methanol (53.22%, IC50= 9.41 mg/mL); while acarbose, the standard anti-diabetic drug was (84.54%, IC50= 1.96 mg/mL). The α-glucosidase assay revealed that the hexane extract exhibited the strongest carbohydrate inhibiting capacity and is a better inhibitor than the standard reference drug-acarbose. The computational studies also affirm the results observed in the in vitroα-glucosidaseassay. Thus, the extracts of G. lasiocarpa may be considered a potential plant-sourced compound for treating type 2 diabetes mellitus. This is the first study on the anti-diabetic properties of Grewia lasiocarpa hexane, chloroform, and methanol extracts using in vitro and in silico models.

Keywords: grewia lasiocarpa, α-glucosidase inhibition, anti-diabetes, ADMET

Procedia PDF Downloads 102
2321 Linguistic Cyberbullying, a Legislative Approach

Authors: Simona Maria Ignat

Abstract:

Bullying online has been an increasing studied topic during the last years. Different approaches, psychological, linguistic, or computational, have been applied. To our best knowledge, a definition and a set of characteristics of phenomenon agreed internationally as a common framework are still waiting for answers. Thus, the objectives of this paper are the identification of bullying utterances on Twitter and their algorithms. This research paper is focused on the identification of words or groups of words, categorized as “utterances”, with bullying effect, from Twitter platform, extracted on a set of legislative criteria. This set is the result of analysis followed by synthesis of law documents on bullying(online) from United States of America, European Union, and Ireland. The outcome is a linguistic corpus with approximatively 10,000 entries. The methods applied to the first objective have been the following. The discourse analysis has been applied in identification of keywords with bullying effect in texts from Google search engine, Images link. Transcription and anonymization have been applied on texts grouped in CL1 (Corpus linguistics 1). The keywords search method and the legislative criteria have been used for identifying bullying utterances from Twitter. The texts with at least 30 representations on Twitter have been grouped. They form the second corpus linguistics, Bullying utterances from Twitter (CL2). The entries have been identified by using the legislative criteria on the the BoW method principle. The BoW is a method of extracting words or group of words with same meaning in any context. The methods applied for reaching the second objective is the conversion of parts of speech to alphabetical and numerical symbols and writing the bullying utterances as algorithms. The converted form of parts of speech has been chosen on the criterion of relevance within bullying message. The inductive reasoning approach has been applied in sampling and identifying the algorithms. The results are groups with interchangeable elements. The outcomes convey two aspects of bullying: the form and the content or meaning. The form conveys the intentional intimidation against somebody, expressed at the level of texts by grammatical and lexical marks. This outcome has applicability in the forensic linguistics for establishing the intentionality of an action. Another outcome of form is a complex of graphemic variations essential in detecting harmful texts online. This research enriches the lexicon already known on the topic. The second aspect, the content, revealed the topics like threat, harassment, assault, or suicide. They are subcategories of a broader harmful content which is a constant concern for task forces and legislators at national and international levels. These topic – outcomes of the dataset are a valuable source of detection. The analysis of content revealed algorithms and lexicons which could be applied to other harmful contents. A third outcome of content are the conveyances of Stylistics, which is a rich source of discourse analysis of social media platforms. In conclusion, this corpus linguistics is structured on legislative criteria and could be used in various fields.

Keywords: corpus linguistics, cyberbullying, legislation, natural language processing, twitter

Procedia PDF Downloads 85
2320 Peer-Mediated Interventions as a High-Leverage Practice in Inclusive General Education Classrooms

Authors: Daniel Pyle, Nicole Pyle, Ben Lignugaris-Kraft, Lawrence Maheady

Abstract:

Students with disabilities are not included in general education at the same rate as their peers without disabilities. There are multiple reasons cited for why inclusion rates vary, such as teachers' lack of knowledge of the successful delivery of inclusive practices to students with the most extensive support needs. However, decades of research document effective inclusive practices associated with benefits across domains for students with disabilities. One effective inclusive practice that teachers use to improve outcomes for students with disabilities is flexible grouping. Teachers can use flexible grouping to facilitate students working collaboratively by using peer-mediated interventions (PMIs). This article describes PMIs as a flexible grouping of High Leverage Practices (HLP). There are variations of PMIs to select from when using flexible grouping. PMIs are described by varied grouping arrangements and different instructional procedures to clarify the flexibility of grouping students and students’ roles within those groupings. In support of teachers’ use of flexible grouping in inclusive general education classrooms, we identify different PMI formats teachers can use depending on the preferred grouping arrangement, explain the distinctive characteristics of PMI models to distinguish expected procedures with peers, highlight outcomes associated with PMIs, and provide an overview of evaluating PMIs effectiveness.

Keywords: peer-mediated interventions, high leverage practices, flexible grouping, general education, special education

Procedia PDF Downloads 76
2319 Influence of Dietary Boron on Gut Absorption of Nutrients, Blood Metabolites and Tissue Pathology

Authors: T. Vijay Bhasker, N. K. S Gowda, P. Krishnamoorthy, D. T. Pal, A. K. Pattanaik, A. K. Verma

Abstract:

Boron (B) is a newer trace element and its biological importance and dietary essentiality is unclear in animals. The available literature suggests its putative role in bone mineralization, antioxidant status and steroid hormone synthesis. A feeding trial was conducted in Wister strain (Rattus norvegicus) albino rats for duration of 90 days. A total of 84 healthy weaned (3-4 weeks) experimental rats were randomly divided into 7 dietary groups (4 replicates of three each) viz., A (Basal diet/ Control), B (Basal diet + 5 ppm B), C (Basal diet + 10 ppm B), D (Basal diet + 20 ppm B), E (Basal diet + 40 ppm B), F (Basal diet-Ca 50%), G (Basal diet-Ca 50% + 40 ppm B). Dietary level of calcium (Ca) was maintained at two levels, 100% and 50% of requirement. Sodium borate was used as source of boron along with other ingredients of basal diet while preparing the pelletized diets. All the rats were kept in proper ventilated laboratory animal house maintained at temperature (23±2º C) and humidity (50 to 70%). At the end of experiment digestibility trial was conducted for 5 days to estimate nutrient digestibility and gut absorption of minerals. Eight rats from each group were sacrificed to collect the vital organs (liver, kidney and spleen) to study histopathology. Blood sample was drawn by heart puncture to determine biochemical profile. The average daily feed intake (g/rat/day), water intake (ml/rat/day) and body weight gain (g/rat/day) were similar among the dietary groups. The digestibility (%) of organic matter and crude fat were significantly improved (P < 0.05) was by B supplementation. The gut absorption (%) Ca was significantly increased (P < 0.01) in B supplemented groups compared to control. However, digestibility of dry matter and crude protein, gut absorption of magnesium and phosphorus showed a non-significant increasing trend with B supplementation. The gut absorption (%) of B (P < 0.01) was significantly lowered (P<0.05) in supplemented groups compared to un-supplemented ones. The serum level of triglycerides (mg/dL), HDL-cholesterol (mg/dL) and alanine transaminase (IU/L) were significantly lowered (P < 0.05) in B supplemented groups. While serum level of glucose (mg/dL) and alkaline phosphatase (KA units) showed a non-significant decreasing trend with B supplementation. However the serum levels of total cholesterol (mg/dL) and aspartate transaminase (IU/L) were similar among dietary groups. The histology sections of kidney and spleen revealed no significant changes among the dietary groups and were observed to be normal in anatomical architecture. However, the liver histology revealed cell degenerative changes with vacuolar degeneration and nuclear condensation in Ca deficient groups. But the comparative degenerative changes were mild in 40 ppm B supplemented Ca deficient group. In conclusion, dietary supplementation of graded levels of boron in rats had a positive effect on metabolism and health by improving nutrient digestibility and gut absorption of Ca. This indicates the beneficial role of dietary boron supplementation.

Keywords: boron, calcium, nutrient utilization, histopathology

Procedia PDF Downloads 317
2318 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 661