Search results for: tanh method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18589

Search results for: tanh method

12169 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler

Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian

Abstract:

Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.

Keywords: fin wave angle, tube, intercooler, optimum, performance

Procedia PDF Downloads 360
12168 Electrocardiogram Signal Denoising Using a Hybrid Technique

Authors: R. Latif, W. Jenkal, A. Toumanari, A. Hatim

Abstract:

This paper presents an efficient method of electrocardiogram signal denoising based on a hybrid approach. Two techniques are brought together to create an efficient denoising process. The first is an Adaptive Dual Threshold Filter (ADTF) and the second is the Discrete Wavelet Transform (DWT). The presented approach is based on three steps of denoising, the DWT decomposition, the ADTF step and the highest peaks correction step. This paper presents some application of the approach on some electrocardiogram signals of the MIT-BIH database. The results of these applications are promising compared to other recently published techniques.

Keywords: hybrid technique, ADTF, DWT, thresholding, ECG signal

Procedia PDF Downloads 304
12167 Infrared Thermography Applications for Building Investigation

Authors: Hamid Yazdani, Raheleh Akbar

Abstract:

Infrared thermography is a modern non-destructive measuring method for the examination of redeveloped and non-renovated buildings. Infrared cameras provide a means for temperature measurement in building constructions from the inside, as well as from the outside. Thus, heat bridges can be detected. It has been shown that infrared thermography is applicable for insulation inspection, identifying air leakage and heat losses sources, finding the exact position of heating tubes or for discovering the reasons why mold, moisture is growing in a particular area, and it is also used in conservation field to detect hidden characteristics, degradations of building structures. The paper gives a brief description of the theoretical background of infrared thermography.

Keywords: infrared thermography, examination of buildings, emissivity, heat losses sources

Procedia PDF Downloads 500
12166 Sensor Network Routing Optimization by Simulating Eurygaster Life in Wheat Farms

Authors: Fariborz Ahmadi, Hamid Salehi, Khosrow Karimi

Abstract:

A sensor network is set of sensor nodes that cooperate together to perform a predefined tasks. The important problem in this network is power consumption. So, in this paper one algorithm based on the eurygaster life is introduced to minimize power consumption by the nodes of these networks. In this method the search space of problem is divided into several partitions and each partition is investigated separately. The evaluation results show that our approach is more efficient in comparison to other evolutionary algorithm like genetic algorithm.

Keywords: evolutionary computation, genetic algorithm, particle swarm optimization, sensor network optimization

Procedia PDF Downloads 401
12165 Unsteady Reactive Hydromagnetic Fluid Flow of a Two-Step Exothermic Chemical Reaction through a Channel

Authors: J. A. Gbadeyan, R. A. Kareem

Abstract:

In this paper, we investigated the effects of unsteady internal heat generation of a two-step exothermic reactive hydromagnetic fluid flow under different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics through an isothermal wall temperature channel. The resultant modeled nonlinear partial differential equations were simplified and solved using a combined Laplace-Differential Transform Method (LDTM). The solutions obtained were discussed and presented graphically to show the salient features of the fluid flow and heat transfer characteristics.

Keywords: unsteady, reactive, hydromagnetic, couette ow, exothermi creactio

Procedia PDF Downloads 426
12164 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou

Abstract:

Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.

Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity

Procedia PDF Downloads 257
12163 MIMO PID Controller of a Power Plant Boiler–Turbine Unit

Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof

Abstract:

This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.

Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques

Procedia PDF Downloads 308
12162 Simulation of 140 Kv X– Ray Tube by MCNP4C Code

Authors: Amin Sahebnasagh, Karim Adinehvand, Bakhtiar Azadbakht

Abstract:

In this study, we used Monte Carlo code (MCNP4C) that is a general method, for simulation, electron source and electric field, a disc source with 0.05 cm radius in direct of anode are used, radius of disc source show focal spot of x-ray tube that here is 0.05 cm. In this simulation, anode is from tungsten with 18.9 g/cm3 density and angle of anode is 180. we simulated x-ray tube for 140 kv. For increasing of speed data acquisition we use F5 tally. With determination the exact position of F5 tally in program, outputs are acquired. In this spectrum the start point is about 0.02 Mev, the absorption edges are about 0.06 Mev and 0.07 Mev and average energy is about 0.05 Mev.

Keywords: x-spectrum, simulation, Monte Carlo, MCNP4C code

Procedia PDF Downloads 631
12161 Inverse Polynomial Numerical Scheme for the Solution of Initial Value Problems in Ordinary Differential Equations

Authors: Ogunrinde Roseline Bosede

Abstract:

This paper presents the development, analysis and implementation of an inverse polynomial numerical method which is well suitable for solving initial value problems in first order ordinary differential equations with applications to sample problems. We also present some basic concepts and fundamental theories which are vital to the analysis of the scheme. We analyzed the consistency, convergence, and stability properties of the scheme. Numerical experiments were carried out and the results compared with the theoretical or exact solution and the algorithm was later coded using MATLAB programming language.

Keywords: differential equations, numerical, polynomial, initial value problem, differential equation

Procedia PDF Downloads 428
12160 Extraction of Biodiesel from Microalgae Using the Solvent Extraction Process, Typically Soxhlet Extraction Method

Authors: Gracious Tendai Matayaya

Abstract:

The world is facing problems in finding alternative resources to offset the decline in global petroleum reserves. The use of fossil fuels has prompted biofuel development, particularly in the transportation sector. In these circumstances, looking for alternative renewable energy sources makes sense. Petroleum-based fuels also result in a lot of carbon dioxide being released into the environment causing global warming. Replacing petroleum and fossil fuel-based fuels with biofuels has the advantage of reducing undesirable aspects of these fuels, which are mostly the production of greenhouse gas and dependence on unstable foreign suppliers. Algae refer to a group of aquatic microorganisms that produce a lot of lipids up to 60% of their total weight. This project aims to exploit the large amounts of oil produced by these microorganisms in the Soxhlet extraction to make biodiesel. Experiments were conducted to establish the cultivability of algae, harvesting methods, the oil extraction process, and the transesterification process. Although there are various methods for producing algal oil, the Soxhlet extraction method was employed for this particular research. After extraction, the oil was characterized before being used in the transesterification process that used methanol and hydrochloric acid as the process reactants. The properties of the resulting biodiesel were then determined. Because there is a requirement to dry wet algae, the experimental findings showed that Soxhlet extraction was the optimum way to produce a higher yield of microalgal oil. Upon cultivating algae, Compound D fertilizer was added as a source of nutrients (Phosphorous and Nitrogen), and the highest growth of algae was observed at 6 days (using 2 g of fertilizer), after which it started to decrease. Butanol, hexane, heptane and acetone have been experimented with as solvents, and heptane gave the highest amount of oil (89ml of oil) when 300 ml of solvent was used. This was compared to 73.21ml produced by butanol, 81.90 produced by hexane and 69.57ml produced by acetone, and as a result, heptane was used for the rest of the experiments, which included a variation of the mass of dried algae and time of extraction. This meant that the oil composition of algae was higher than other oil sources like peanuts, soybean etc. Algal oil was heated at 150℃ for 150 minutes in the presence of methanol (reactant) and hydrochloric acid (HCl), which was used as a catalyst. A temperature of 200℃ produced 93.64%, and a temperature of 250℃ produced 92.13 of biodiesel at 150 minutes.

Keywords: microalgae, algal oil, biodiesel, soxhlet extraction

Procedia PDF Downloads 61
12159 The Impact of Artificial Intelligence on Medicine Production

Authors: Yasser Ahmed Mahmoud Ali Helal

Abstract:

The use of CAD (Computer Aided Design) technology is ubiquitous in the architecture, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of architecture schools in Nigeria as an important part of the training module. This article examines the ethical issues involved in implementing CAD (Computer Aided Design) content into the architectural education curriculum. Using existing literature, this study begins with the benefits of integrating CAD into architectural education and the responsibilities of different stakeholders in the implementation process. It also examines issues related to the negative use of information technology and the perceived negative impact of CAD use on design creativity. Using a survey method, data from the architecture department of University was collected to serve as a case study on how the issues raised were being addressed. The article draws conclusions on what ensures successful ethical implementation. Millions of people around the world suffer from hepatitis C, one of the world's deadliest diseases. Interferon (IFN) is treatment options for patients with hepatitis C, but these treatments have their side effects. Our research focused on developing an oral small molecule drug that targets hepatitis C virus (HCV) proteins and has fewer side effects. Our current study aims to develop a drug based on a small molecule antiviral drug specific for the hepatitis C virus (HCV). Drug development using laboratory experiments is not only expensive, but also time-consuming to conduct these experiments. Instead, in this in silicon study, we used computational techniques to propose a specific antiviral drug for the protein domains of found in the hepatitis C virus. This study used homology modeling and abs initio modeling to generate the 3D structure of the proteins, then identifying pockets in the proteins. Acceptable lagans for pocket drugs have been developed using the de novo drug design method. Pocket geometry is taken into account when designing ligands. Among the various lagans generated, a new specific for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication

Procedia PDF Downloads 54
12158 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firms

Keywords: aggregate production planning, trial and error, linear programming, furniture industry

Procedia PDF Downloads 531
12157 DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid

Authors: Debanjan Dey, Tamal Banerjee, Kaustubha Mohanty

Abstract:

Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other.

Keywords: coal-ionic liquids cluster, COSMO-RS, DFT method, HOMO-LUMO interaction

Procedia PDF Downloads 278
12156 Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide

Authors: Mandana Amiri, Sima Nouhi, Yashar Azizan-Kalandaragh

Abstract:

Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H2O2. The presented electrode can be employed as sensing element for hydrogen peroxide.

Keywords: electrochemical sensor, electrodeposition, hydrogen peroxide, silver nanostructures

Procedia PDF Downloads 494
12155 Information Extraction Based on Search Engine Results

Authors: Mohammed R. Elkobaisi, Abdelsalam Maatuk

Abstract:

The search engines are the large scale information retrieval tools from the Web that are currently freely available to all. This paper explains how to convert the raw resulted number of search engines into useful information. This represents a new method for data gathering comparing with traditional methods. When a query is submitted for a multiple numbers of keywords, this take a long time and effort, hence we develop a user interface program to automatic search by taking multi-keywords at the same time and leave this program to collect wanted data automatically. The collected raw data is processed using mathematical and statistical theories to eliminate unwanted data and converting it to usable data.

Keywords: search engines, information extraction, agent system

Procedia PDF Downloads 412
12154 Children Asthma; The Role of Molecular Pathways and Novel Saliva Biomarkers Assay

Authors: Seyedahmad Hosseini, Mohammadjavad Sotoudeheian

Abstract:

Introduction: Allergic asthma is a heterogeneous immuno-inflammatory disease based on Th-2-mediated inflammation. Histopathologic abnormalities of the airways characteristic of asthma include epithelial damage and subepithelial collagen deposition. Objectives: Human bronchial epithelial cell genome expression of TNF‑α, IL‑6, ICAM‑1, VCAM‑1, nuclear factor (NF)‑κB signaling pathways up-regulate during inflammatory cascades. Moreover, immunofluorescence assays confirmed the nuclear translocation of NF‑κB p65 during inflammatory responses. An absolute LDH leakage assays suggestedLPS-inducedcells injury, and the associated mechanisms are co-incident events. LPS-induced phosphorylation of ERKand JNK causes inflammation in epithelial cells through inhibition of ERK and JNK activation and NF-κB signaling pathway. Furthermore, the inhibition of NF-κB mRNA expression and the nuclear translocation of NF-κB lead to anti-inflammatory events. Likewise, activation of SUMF2 which inhibits IL-13 and reduces Th2-cytokines, NF-κB, and IgE levels to ameliorate asthma. On the other hand, TNFα-induced mucus production reduced NF-κB activation through inhibition of the activation status of Rac1 and IκBα phosphorylation. In addition, bradykinin B2 receptor (B2R), which mediates airway remodeling, regulates through NF-κB. Bronchial B2R expression is constitutively elevated in allergic asthma. In addition, certain NF-κB -dependent chemokines function to recruit eosinophils in the airway. Besides, bromodomain containing 4 (BRD4) plays a significant role in mediating innate immune response in human small airway epithelial cells as well as transglutaminase 2 (TG2), which is detectable in saliva. So, the guanine nucleotide-binding regulatory protein α-subunit, Gα16, expresses a κB-driven luciferase reporter. This response was accompanied by phosphorylation of IκBα. Furthermore, expression of Gα16 in saliva markedly enhanced TNF-α-induced κB reporter activity. Methods: The applied method to form NF-κB activation is the electromobility shift assay (EMSA). Also, B2R-BRD4-TG2 complex detection by immunoassay method within saliva with EMSA of NF-κB activation may be a novel biomarker for asthma diagnosis and follow up. Conclusion: This concept introduces NF-κB signaling pathway as potential asthma biomarkers and promising targets for the development of new therapeutic strategies against asthma.

Keywords: NF-κB, asthma, saliva, T-helper

Procedia PDF Downloads 82
12153 Used MATLAB Code to Study the Vehicle Bridge Coupling Vibration Based On the Method of Newmark-β

Authors: Saidi Abdelkrim, Hamouine Abdelmadjid, Abdellatif Megnounif

Abstract:

The study of interaction between vehicles and bridge structures has become extremely important. Large deflections and vibration induced by heavy and high-speed vehicles affect significantly the safety and efficiency of bridge. The vibration of a bridge caused by passage of vehicles is one of the most imperative considerations in the design of a bridge as a common sort of transportation structure. A major goal of this study is to create a simplified model of a vehicle bridge system in MATLAB. The model will then be used to study the influence of parameters to vehicle-bridge vibrations.

Keywords: vehicle-bridge interaction, Newmark-β, MATLAB code

Procedia PDF Downloads 583
12152 Social Studies Teaching Methods: Approaches and Techniques in Teaching History in Primary Education

Authors: Tonguc Basaran

Abstract:

History is a record of a people’s past based on a critical examination of documents and other facts. The essentials of this historical method are not beyond the grasp of even young children. Concrete examples, such as the story of the Rosetta stone, which enabled Champollion to establish the first principles of the deciphering of Egyptian hieroglyphics, vividly illustrate the fundamental processes involved. This search for the facts can be used to illustrate one side of the search for historic truth. The other side is the truth of historic interpretation. The facts cannot be changed, but the interpretation of them can and does change.

Keywords: history, primary education, teaching methods, social studies

Procedia PDF Downloads 287
12151 Miniaturizing the Volumetric Titration of Free Nitric Acid in U(vi) Solutions: On the Lookout for a More Sustainable Process Radioanalytical Chemistry through Titration-On-A-Chip

Authors: Jose Neri, Fabrice Canto, Alastair Magnaldo, Laurent Guillerme, Vincent Dugas

Abstract:

A miniaturized and automated approach for the volumetric titration of free nitric acid in U(VI) solutions is presented. Free acidity measurement refers to the acidity quantification in solutions containing hydrolysable heavy metal ions such as U(VI), U(IV) or Pu(IV) without taking into account the acidity contribution from the hydrolysis of such metal ions. It is, in fact, an operation having an essential role for the control of the nuclear fuel recycling process. The main objective behind the technical optimization of the actual ‘beaker’ method was to reduce the amount of radioactive substance to be handled by the laboratory personnel, to ease the instrumentation adjustability within a glove-box environment and to allow a high-throughput analysis for conducting more cost-effective operations. The measurement technique is based on the concept of the Taylor-Aris dispersion in order to create inside of a 200 μm x 5cm circular cylindrical micro-channel a linear concentration gradient in less than a second. The proposed analytical methodology relies on the actinide complexation using pH 5.6 sodium oxalate solution and subsequent alkalimetric titration of nitric acid with sodium hydroxide. The titration process is followed with a CCD camera for fluorescence detection; the neutralization boundary can be visualized in a detection range of 500nm- 600nm thanks to the addition of a pH sensitive fluorophore. The operating principle of the developed device allows the active generation of linear concentration gradients using a single cylindrical micro channel. This feature simplifies the fabrication and ease of use of the micro device, as it does not need a complex micro channel network or passive mixers to generate the chemical gradient. Moreover, since the linear gradient is determined by the liquid reagents input pressure, its generation can be fully achieved in faster intervals than one second, being a more timely-efficient gradient generation process compared to other source-sink passive diffusion devices. The resulting linear gradient generator device was therefore adapted to perform for the first time, a volumetric titration on a chip where the amount of reagents used is fixed to the total volume of the micro channel, avoiding an important waste generation like in other flow-based titration techniques. The associated analytical method is automated and its linearity has been proven for the free acidity determination of U(VI) samples containing up to 0.5M of actinide ion and nitric acid in a concentration range of 0.5M to 3M. In addition to automation, the developed analytical methodology and technique greatly improves the standard off-line oxalate complexation and alkalimetric titration method by reducing a thousand fold the required sample volume, forty times the nuclear waste per analysis as well as the analysis time by eight-fold. The developed device represents, therefore, a great step towards an easy-to-handle nuclear-related application, which in the short term could be used to improve laboratory safety as much as to reduce the environmental impact of the radioanalytical chain.

Keywords: free acidity, lab-on-a-chip, linear concentration gradient, Taylor-Aris dispersion, volumetric titration

Procedia PDF Downloads 375
12150 Growth Nanostructured CdO Thin Film via Solid-Vapor Deposition

Authors: A. S. Obaid, K. H. T. Hassan, A. M. Asij, B. M. Salih, M. Bououdina

Abstract:

Cadmium Oxide (CdO) thin films have been prepared by vacuum evaporation method on Si (111) substrate at room temperature using CdCl2 as a source of Cd. Detailed structural properties of the films are presented using XRD and SEM. The films was pure polycrystalline CdO phase with high crystallinity. The lattice constant average crystallite size of the nanocrystalline CdO thin films were calculated. SEM image confirms the formation nanostructure. Energy dispersive X-ray analysis spectra of CdO thin films shows the presence of Cd and O peaks only, no additional peaks attributed to impurities or contamination are observed.

Keywords: nanostructured CdO, solid-vapor deposition, quantum size effect, cadmium oxide

Procedia PDF Downloads 647
12149 Creating an Inclusive Classroom: Country Case Studies Analysis on Mainstream Teachers' Teaching-Efficacy and Attitudes towards Inclusive Education in Japan and Singapore

Authors: Yei Mian Adrian Yap

Abstract:

This study aims to assess the Japanese and Singaporean mainstream teachers’ attitudes and teaching-efficacy towards the inclusion of students with special needs in the regular classrooms by investigating what kind of key variables influence their attitudes and teaching-efficacy. It also further investigates how they strategize to address their challenges to include their students with special needs in their regular classrooms. In order to understand the nature of teachers’ attitudes and teaching-efficacy towards the inclusive education, a mixed-method research methodology was carried out in Japan and Singapore; it involved an explanatory sequential method of employing quantitative research first before qualitative research. In the quantitative research, 189 Japanese and 183 Singaporean teachers were invited to participate in the questionnaires and out of these participants, 38 Japanese and 15 Singaporean teachers shared their views during their semi-structured interviews. Based on the empirical findings, Japanese teachers’ attitudes and teaching-efficacy were more likely to be influenced by their experiences in teaching students with special needs, knowledge about disability legislation, presence of their disabled family members and level of confidence to teach students with special needs. On the other hand, Singaporean teachers’ attitudes and teaching-efficacy were affected by gender, educational level, received trainings in special needs education, knowledge about disability legislation and level of confidence to teach students with special needs. Both country results also demonstrated that there was a positive correlation between their teaching-efficacy and attitude. Narrative findings further expanded the reasons behind these quantitative factors that shaped teachers’ attitudes and teaching-efficacy. Also, it discussed the various problems faced by Japanese and Singaporean teachers and how they identified their coping strategies to circumvent their challenges in including their students with special needs in their regular classrooms. The significance of this research manifests in necessary educational reforms in both countries especially in the context of inclusive education. These findings may not be as definitive as expected but it is believed that it could provide useful information on the current situation about teachers’ concerns towards the inclusive education. In conclusion, this research could potentially make its positive contribution to the body of literature on teachers’ attitudes and teaching-efficacy in the context of Asian developed countries. Further, these findings could posit that regular teachers’ positive attitudes and strong sense of teaching self-efficacy could directly improve the success rate of inclusion of students with special needs in the regular classrooms.

Keywords: attitudes, inclusive education, special education, teaching-efficacy

Procedia PDF Downloads 314
12148 Diversity of Bird Species and Conservation of Two Lacustrine Wetlands of the Upper Benue Basin, Adamawa, Nigeria

Authors: D. l. David, J. A. Wahedi, U. Buba, R. Zakariya

Abstract:

Between January, 2004 to December, 2005, studies were carried out on the bird species diversity and relative abundance of two lakes, Kiri and Gyawana near Numan using the “Timed Species Count (TSC)” method. 163 species in 53 bird families and 160 species in 55 bird families were recorded at Kiri and Gyawana lakes respectively. There was no significant difference in species diversity within bird families between the two lakes (p > 0.05), whereas in Gyawana Lake, one of the sites qualified as Ramsar site, none strongly qualified as an Important Bird Area (IBA). The significance of these findingsare also discussed.

Keywords: conservation, diversity, lacustrine, wetlands

Procedia PDF Downloads 659
12147 Positive Thinking Reexamined: The Reality of the Role of Negativity & Emotions in the Pursuit of Goals

Authors: Lindsay Foreman

Abstract:

Introduction: Goals have become synonymous with the quest for the good life and the pursuit of happiness, with coaching and positive psychology gaining popularity as an approach in recent decades. And yet mental health is on the rise and the leading cause of disability, wellbeing is on the decline, stress is leading to 50-60% of workday absences and the need for action is indisputable and urgent. Purpose: The purpose of this study is to better understand two things we cannot see, but that play the most significant role in these outcomes - what we think and how we feel. With many working on the assumption that positive thinking and an optimistic outlook are necessary or valuable components of goal pursuit, this study uncovers the reality of the ‘inner-game’ from the coachees perspective. Method: With a mixed methods design using a Q Method study of subjectivity to ‘make the unseen seen’. First, a wide-ranging universe of subjective thoughts and feelings experienced during goal pursuit are explored.. These are generated from literature and a Qualtrics survey to create a Q-Set of 40 statements. Then 19 participants in professional and organisational settings offer their perspectives on these 40 Q-Set statements. Each rank them in a semi-forced distribution from ‘most like me’ to ‘least like me’ using Q-Sort software. From these individual perspectives, clusters of perspectives are identified using factor analysis and four distinct viewpoints, have emerged. Findings: These Goal Pursuit Viewpoints offer insight into the states and self-talk experienced by coachees and may not reflect the assumption of positive thinking associated with achieving goals. The four Viewpoints are 1) the Positive View, 2) the Realistic View 3) The Dreamer View and 4) The Conflicted View. With only a quarter of the Dreamer View, and a third of the Positive view going on to achieve their goals, these assumptions need review. And with all the Realistic View going on to achieve their goals, the role of self-doubt, overwhelm and anxiousness in goal achievement cannot be overlooked. Contribution: This study offers greater insight and understanding of people's inner experiences as they pursue goals and highlights the necessary and normal negative states associated with goal achievement. It also offers a practical tool of 40 ‘Clarity Card’ Q-set statements to help coaches and coachees explore the current state and help navigate the journey towards goal achievement. It calls into question whether goals should always be part of coaching, and if values, identity, and purpose may play a greater role than goals

Keywords: self-talk, mental health, inner critic, inner coach

Procedia PDF Downloads 43
12146 Performance Analysis of MATLAB Solvers in the Case of a Quadratic Programming Generation Scheduling Optimization Problem

Authors: Dávid Csercsik, Péter Kádár

Abstract:

In the case of the proposed method, the problem is parallelized by considering multiple possible mode of operation profiles, which determine the range in which the generators operate in each period. For each of these profiles, the optimization is carried out independently, and the best resulting dispatch is chosen. For each such profile, the resulting problem is a quadratic programming (QP) problem with a potentially negative definite Q quadratic term, and constraints depending on the actual operation profile. In this paper we analyze the performance of available MATLAB optimization methods and solvers for the corresponding QP.

Keywords: optimization, MATLAB, quadratic programming, economic dispatch

Procedia PDF Downloads 531
12145 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu

Abstract:

An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 296
12144 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour

Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche

Abstract:

In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.

Keywords: biopolymers, composites, mechanical properties, poly(lactic acid)

Procedia PDF Downloads 220
12143 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond

Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu

Abstract:

Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.

Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density

Procedia PDF Downloads 422
12142 Future Research on the Resilience of Tehran’s Urban Areas Against Pandemic Crises Horizon 2050

Authors: Farzaneh Sasanpour, Saeed Amini Varaki

Abstract:

Resilience is an important goal for cities as urban areas face an increasing range of challenges in the 21st century; therefore, according to the characteristics of risks, adopting an approach that responds to sensitive conditions in the risk management process is the resilience of cities. In the meantime, most of the resilience assessments have dealt with natural hazards and less attention has been paid to pandemics.In the covid-19 pandemic, the country of Iran and especially the metropolis of Tehran, was not immune from the crisis caused by its effects and consequences and faced many challenges. One of the methods that can increase the resilience of Tehran's metropolis against possible crises in the future is future studies. This research is practical in terms of type. The general pattern of the research will be descriptive-analytical and from the point of view that it is trying to communicate between the components and provide urban resilience indicators with pandemic crises and explain the scenarios, its future studies method is exploratory. In order to extract and determine the key factors and driving forces effective on the resilience of Tehran's urban areas against pandemic crises (Covid-19), the method of structural analysis of mutual effects and Micmac software was used. Therefore, the primary factors and variables affecting the resilience of Tehran's urban areas were set in 5 main factors, including physical-infrastructural (transportation, spatial and physical organization, streets and roads, multi-purpose development) with 39 variables based on mutual effects analysis. Finally, key factors and variables in five main areas, including managerial-institutional with five variables; Technology (intelligence) with 3 variables; economic with 2 variables; socio-cultural with 3 variables; and physical infrastructure, were categorized with 7 variables. These factors and variables have been used as key factors and effective driving forces on the resilience of Tehran's urban areas against pandemic crises (Covid-19), in explaining and developing scenarios. In order to develop the scenarios for the resilience of Tehran's urban areas against pandemic crises (Covid-19), intuitive logic, scenario planning as one of the future research methods and the Global Business Network (GBN) model were used. Finally, four scenarios have been drawn and selected with a creative method using the metaphor of weather conditions, which is indicative of the general outline of the conditions of the metropolis of Tehran in that situation. Therefore, the scenarios of Tehran metropolis were obtained in the form of four scenarios: 1- solar scenario (optimal governance and management leading in smart technology) 2- cloud scenario (optimal governance and management following in intelligent technology) 3- dark scenario (optimal governance and management Unfavorable leader in intelligence technology) 4- Storm scenario (unfavorable governance and management of follower in intelligence technology). The solar scenario shows the best situation and the stormy scenario shows the worst situation for the Tehran metropolis. According to the findings obtained in this research, city managers can, in order to achieve a better tomorrow for the metropolis of Tehran, in all the factors and components of urban resilience against pandemic crises by using future research methods, a coherent picture with the long-term horizon of 2050, from the path Provide urban resilience movement and platforms for upgrading and increasing the capacity to deal with the crisis. To create the necessary platforms for the realization, development and evolution of the urban areas of Tehran in a way that guarantees long-term balance and stability in all dimensions and levels.

Keywords: future research, resilience, crisis, pandemic, covid-19, Tehran

Procedia PDF Downloads 56
12141 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 227
12140 Studying the Effect of Nanoclays on the Mechanical Properties of Polypropylene/Polyamide Nanocomposites

Authors: Benalia Kouini, Aicha Serier

Abstract:

Nanocomposites based on polypropylene/polyamide 66 (PP/PA66) nanoblends containing organophilic montmorillonite (OMMT) and maleic anhydride grafted polypropylene (PP-g-MAH) were prepared by melt compounding method followed by injection molding. Two different types of nanoclays were used in this work. DELLITE LVF is the untreated nanoclay and DELLITE 67G is the treated one. The morphology of the nanocomposites was studied using the XR diffraction (XRD). The results indicate that the incorporation of treated nanoclay has a significant effect on the impact strength of PP/PA66 nanocomposites. Furthermore, it was found that XRD results revealed the intercalation, exfoliation of nanaclays of nanocomposites.

Keywords: nNanoclay, Nanocomposites, Polypropylene, Polyamide, melt processing, mechanical properties.

Procedia PDF Downloads 335