Search results for: secure online algorithm
477 Development of Pothole Management Method Using Automated Equipment with Multi-Beam Sensor
Authors: Sungho Kim, Jaechoul Shin, Yujin Baek, Nakseok Kim, Kyungnam Kim, Shinhaeng Jo
Abstract:
The climate change and increase in heavy traffic have been accelerating damages that cause the problems such as pothole on asphalt pavement. Pothole causes traffic accidents, vehicle damages, road casualties and traffic congestion. A quick and efficient maintenance method is needed because pothole is caused by stripping and accelerates pavement distress. In this study, we propose a rapid and systematic pothole management by developing a pothole automated repairing equipment including a volume measurement system of pothole. Three kinds of cold mix asphalt mixture were investigated to select repair materials. The materials were evaluated for satisfaction with quality standard and applicability to automated equipment. The volume measurement system of potholes was composed of multi-sensor that are combined with laser sensor and ultrasonic sensor and installed in front and side of the automated repair equipment. An algorithm was proposed to calculate the amount of repair material according to the measured pothole volume, and the system for releasing the correct amount of material was developed. Field test results showed that the loss of repair material amount could be reduced from approximately 20% to 6% per one point of pothole. Pothole rapid automated repair equipment will contribute to improvement on quality and efficient and economical maintenance by not only reducing materials and resources but also calculating appropriate materials. Through field application, it is possible to improve the accuracy of pothole volume measurement, to correct the calculation of material amount, and to manage the pothole data of roads, thereby enabling more efficient pavement maintenance management. Acknowledgment: The author would like to thank the MOLIT(Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.Keywords: automated equipment, management, multi-beam sensor, pothole
Procedia PDF Downloads 222476 Parameter Estimation of Gumbel Distribution with Maximum-Likelihood Based on Broyden Fletcher Goldfarb Shanno Quasi-Newton
Authors: Dewi Retno Sari Saputro, Purnami Widyaningsih, Hendrika Handayani
Abstract:
Extreme data on an observation can occur due to unusual circumstances in the observation. The data can provide important information that can’t be provided by other data so that its existence needs to be further investigated. The method for obtaining extreme data is one of them using maxima block method. The distribution of extreme data sets taken with the maxima block method is called the distribution of extreme values. Distribution of extreme values is Gumbel distribution with two parameters. The parameter estimation of Gumbel distribution with maximum likelihood method (ML) is difficult to determine its exact value so that it is necessary to solve the approach. The purpose of this study was to determine the parameter estimation of Gumbel distribution with quasi-Newton BFGS method. The quasi-Newton BFGS method is a numerical method used for nonlinear function optimization without constraint so that the method can be used for parameter estimation from Gumbel distribution whose distribution function is in the form of exponential doubel function. The quasi-New BFGS method is a development of the Newton method. The Newton method uses the second derivative to calculate the parameter value changes on each iteration. Newton's method is then modified with the addition of a step length to provide a guarantee of convergence when the second derivative requires complex calculations. In the quasi-Newton BFGS method, Newton's method is modified by updating both derivatives on each iteration. The parameter estimation of the Gumbel distribution by a numerical approach using the quasi-Newton BFGS method is done by calculating the parameter values that make the distribution function maximum. In this method, we need gradient vector and hessian matrix. This research is a theory research and application by studying several journals and textbooks. The results of this study obtained the quasi-Newton BFGS algorithm and estimation of Gumbel distribution parameters. The estimation method is then applied to daily rainfall data in Purworejo District to estimate the distribution parameters. This indicates that the high rainfall that occurred in Purworejo District decreased its intensity and the range of rainfall that occurred decreased.Keywords: parameter estimation, Gumbel distribution, maximum likelihood, broyden fletcher goldfarb shanno (BFGS)quasi newton
Procedia PDF Downloads 323475 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks
Authors: Andrea Hernandez Hurtado
Abstract:
Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks
Procedia PDF Downloads 76474 Risk Assessment of Natural Gas Pipelines in Coal Mined Gobs Based on Bow-Tie Model and Cloud Inference
Authors: Xiaobin Liang, Wei Liang, Laibin Zhang, Xiaoyan Guo
Abstract:
Pipelines pass through coal mined gobs inevitably in the mining area, the stability of which has great influence on the safety of pipelines. After extensive literature study and field research, it was found that there are a few risk assessment methods for coal mined gob pipelines, and there is a lack of data on the gob sites. Therefore, the fuzzy comprehensive evaluation method is widely used based on expert opinions. However, the subjective opinions or lack of experience of individual experts may lead to inaccurate evaluation results. Hence the accuracy of the results needs to be further improved. This paper presents a comprehensive approach to achieve this purpose by combining bow-tie model and cloud inference. The specific evaluation process is as follows: First, a bow-tie model composed of a fault tree and an event tree is established to graphically illustrate the probability and consequence indicators of pipeline failure. Second, the interval estimation method can be scored in the form of intervals to improve the accuracy of the results, and the censored mean algorithm is used to remove the maximum and minimum values of the score to improve the stability of the results. The golden section method is used to determine the weight of the indicators and reduce the subjectivity of index weights. Third, the failure probability and failure consequence scores of the pipeline are converted into three numerical features by using cloud inference. The cloud inference can better describe the ambiguity and volatility of the results which can better describe the volatility of the risk level. Finally, the cloud drop graphs of failure probability and failure consequences can be expressed, which intuitively and accurately illustrate the ambiguity and randomness of the results. A case study of a coal mine gob pipeline carrying natural gas has been investigated to validate the utility of the proposed method. The evaluation results of this case show that the probability of failure of the pipeline is very low, the consequences of failure are more serious, which is consistent with the reality.Keywords: bow-tie model, natural gas pipeline, coal mine gob, cloud inference
Procedia PDF Downloads 249473 Teen Insights into Drugs, Alcohol, and Nicotine: A National Survey of Adolescent Attitudes toward Addictive Substances
Authors: Linda Richter
Abstract:
Background and Significance: The influence of parents on their children’s attitudes and behaviors is immense, even as children grow out of what one might assume to be their most impressionable years and into teenagers. This study specifically examines the potential that parents have to prevent or reduce the risk of adolescent substance use, even in the face of considerable environmental influences to use nicotine, alcohol, or drugs. Methodology: The findings presented are based on a nationally representative survey of 1,014 teens aged 12-17 living in the United States. Data were collected using an online platform in early 2018. About half the sample was female (51%), 49% was aged 12-14, and 51% was aged 15-17. The margin of error was +/- 3.5%. Demographic data on the teens and their families were available through the survey platform. Survey items explored adolescent respondents’ exposure to addictive substances; the extent to which their sources of information about these substances are reliable or credible; friends’ and peers’ substance use; their own intentions to try substances in the future; and their relationship with their parents. Key Findings: Exposure to nicotine, alcohol, or other drugs and misinformation about these substances were associated with a greater likelihood that adolescents have friends who use drugs and that they have intentions to try substances in the future, which are known to directly predict actual teen substance use. In addition, teens who reported a positive relationship with their parents and having parents who are involved in their lives had a lower likelihood of having friends who use drugs and of having intentions to try substances in the future. This relationship appears to be mediated by parents’ ability to reduce the extent to which their children are exposed to substances in their environment and to misinformation about them. Indeed, the findings indicated that teens who reported a good relationship with their parents and those who reported higher levels of parental monitoring had significantly higher odds of reporting a lower number of risk factors than teens with a less positive relationship with parents or less monitoring. There also were significantly greater risk factors associated with substance use among older teens relative to younger teens. This shift appears to coincide directly with the tendency of parents to pull back in their monitoring and their involvement in their adolescent children’s lives. Conclusion: The survey findings underscore the importance of resisting the urge to completely pull back as teens age and demand more independence since that is exactly when the risks for teen substance use spike and young people need their parents and other trusted adults to be involved more than ever. Particularly through the cultivation of a healthy, positive, and open relationship, parents can help teens receive accurate and credible information about substance use and also monitor their whereabouts and exposure to addictive substances. These findings, which come directly from teens themselves, demonstrate the importance of continued parental engagement throughout children’s lives, regardless of their age and the disincentives to remaining involved and connected.Keywords: adolescent, parental monitoring, prevention, substance use
Procedia PDF Downloads 145472 AI/ML Atmospheric Parameters Retrieval Using the “Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN)”
Authors: Thomas Monahan, Nicolas Gorius, Thanh Nguyen
Abstract:
Exoplanet atmospheric parameters retrieval is a complex, computationally intensive, inverse modeling problem in which an exoplanet’s atmospheric composition is extracted from an observed spectrum. Traditional Bayesian sampling methods require extensive time and computation, involving algorithms that compare large numbers of known atmospheric models to the input spectral data. Runtimes are directly proportional to the number of parameters under consideration. These increased power and runtime requirements are difficult to accommodate in space missions where model size, speed, and power consumption are of particular importance. The use of traditional Bayesian sampling methods, therefore, compromise model complexity or sampling accuracy. The Atmospheric Retrievals conditional Generative Adversarial Network (ARcGAN) is a deep convolutional generative adversarial network that improves on the previous model’s speed and accuracy. We demonstrate the efficacy of artificial intelligence to quickly and reliably predict atmospheric parameters and present it as a viable alternative to slow and computationally heavy Bayesian methods. In addition to its broad applicability across instruments and planetary types, ARcGAN has been designed to function on low power application-specific integrated circuits. The application of edge computing to atmospheric retrievals allows for real or near-real-time quantification of atmospheric constituents at the instrument level. Additionally, edge computing provides both high-performance and power-efficient computing for AI applications, both of which are critical for space missions. With the edge computing chip implementation, ArcGAN serves as a strong basis for the development of a similar machine-learning algorithm to reduce the downlinked data volume from the Compact Ultraviolet to Visible Imaging Spectrometer (CUVIS) onboard the DAVINCI mission to Venus.Keywords: deep learning, generative adversarial network, edge computing, atmospheric parameters retrieval
Procedia PDF Downloads 168471 Improving Patient and Clinician Experience of Oral Surgery Telephone Clinics
Authors: Katie Dolaghan, Christina Tran, Kim Hamilton, Amanda Beresford, Vicky Adams, Jamie Toole, John Marley
Abstract:
During the Covid 19 pandemic routine outpatient appointments were not possible face to face. That resulted in many branches of healthcare starting virtual clinics. These clinics have continued following the return to face to face patient appointments. With these new types of clinic it is important to ensure that a high standard of patient care is maintained. In order to improve patient and clinician experience of the telephone clinics a quality improvement project was carried out to ensure the patient and clinician experience of these clinics was enhanced whilst remaining a safe, effective and an efficient use of resources. The project began by developing a process map for the consultation process and agreed on the design of a driver diagram and tests of change. In plan do study act (PDSA) cycle1 a single consultant completed an online survey after every patient encounter over a 5 week period. Baseline patient responses were collected using a follow-up telephone survey for each patient. Piloting led to several iterations of both survey designs. Salient results of PDSA1 included; patients not receiving appointment letters, patients feeling more anxious about a virtual appointment and many would prefer a face to face appointment. The initial clinician data showed a positive response with a provisional diagnosis being reached in 96.4% of encounters. PDSA cycle 2 included provision of a patient information sheet and information leaflets relevant to the patients’ conditions were developed and sent following new patient telephone clinics with follow-up survey analysis as before to monitor for signals of change. We also introduced the ability for patients to send an images of their lesion prior to the consultation. Following the changes implemented we noted an improvement in patient satisfaction and, in fact, many patients preferring virtual clinics as it lead to less disruption of their working lives. The extra reading material both before and after the appointments eased patients’ anxiety around virtual clinics and helped them to prepare for their appointment. Following the patient feedback virtual clinics are now used for review patients as well, with all four consultants within the department continuing to utilise virtual clinics. During this presentation the progression of these clinics and the reasons that these clinics are still operating following the return to face to face appointments will be explored. The lessons that have been gained using a QI approach have helped to deliver an optimal service that is valid and reliable as well as being safe, effective and efficient for the patient along with helping reduce the pressures from ever increasing waiting lists. In summary our work in improving the quality of virtual clinics has resulted in improved patient satisfaction along with reduced pressures on the facilities of the health trust.Keywords: clinic, satisfaction, telephone, virtual
Procedia PDF Downloads 56470 Determining the Distance Consumers Are Willing to Travel to a Store: A Structural Equation Model Approach
Authors: Fuseina Mahama, Lieselot Vanhaverbeke
Abstract:
This research investigates the impact of patronage determinants on the distance consumers are willing to travel to patronize a tire shop. Although store patronage has been acknowledged as an important domain and has received substantial research interest, most of the studies so far conducted focus on grocery retail, leaving other categories of goods widely unexplored. In this study, we focus on car tires and provide a new perspective to the specific factors that influence tire shop patronage. An online survey of consumers’ tyre purchasing behaviour was conducted among private car owners in Belgium. A sample of 864 respondents was used in the study, with almost four out of five of them being male. 84% of the respondents had purchased a car tyre in the last 24 months and on average travelled 22.4kms to patronise a tyre shop. We tested the direct and mediated effects of store choice determinants on distance consumers are willing to travel. All hypotheses were tested using Structural Equation Modelling (SEM). Our findings show that with an increase in the consumer’s age the distance they were willing to travel to a tire shop decreased. Similarly, consumers who deemed proximity an important determinant of a tire shop our findings confirmed a negative effect on willingness to travel. On the other hand, the determinants price, personal contact and professionalism all had a positive effect on distance. This means that consumers actively sought out tire shops with these characteristics and were willing to travel longer distances in order to visit them. The indirect effects of the determinants flexible opening hours, family recommendation, dealer reputation, receiving auto service at home and availability of preferred brand on distance are mediated by dealer trust. Gender had a minimal effect on distance, with females exhibiting a stronger relation in terms of dealer trust as compared to males. Overall, we found that market relevant factors were better predictors of distance; and proximity, dealer trust and professionalism have the most profound effects on distance that consumers are willing to travel. This is related to the fact that the nature of shopping goods (among which are car tires) typically reinforces consumers to be more engaged in the shopping process, therefore factors that have to do with the store (e.g. location) and shopping process play a key role in store choice decision. These findings are very specific to shopping goods and cannot be generalized to other categories of goods. For marketers and retailers these findings can have direct implications on their location strategies. The factors found to be relevant to tire shop patronage will be used in our next study to calibrate a location model to be utilised to identify the optimum location for siting new tyre shop outlets and service centres.Keywords: dealer trust, distance to store, tire store patronage, willingness to travel
Procedia PDF Downloads 253469 Diagnosis of Intermittent High Vibration Peaks in Industrial Gas Turbine Using Advanced Vibrations Analysis
Authors: Abubakar Rashid, Muhammad Saad, Faheem Ahmed
Abstract:
This paper provides a comprehensive study pertaining to diagnosis of intermittent high vibrations on an industrial gas turbine using detailed vibrations analysis, followed by its rectification. Engro Polymer & Chemicals Limited, a Chlor-Vinyl complex located in Pakistan has a captive combined cycle power plant having two 28 MW gas turbines (make Hitachi) & one 15 MW steam turbine. In 2018, the organization faced an issue of high vibrations on one of the gas turbines. These high vibration peaks appeared intermittently on both compressor’s drive end (DE) & turbine’s non-drive end (NDE) bearing. The amplitude of high vibration peaks was between 150-170% on the DE bearing & 200-300% on the NDE bearing from baseline values. In one of these episodes, the gas turbine got tripped on “High Vibrations Trip” logic actuated at 155µm. Limited instrumentation is available on the machine, which is monitored with GE Bently Nevada 3300 system having two proximity probes installed at Turbine NDE, Compressor DE &at Generator DE & NDE bearings. Machine’s transient ramp-up & steady state data was collected using ADRE SXP & DSPI 408. Since only 01 key phasor is installed at Turbine high speed shaft, a derived drive key phasor was configured in ADRE to obtain low speed shaft rpm required for data analysis. By analyzing the Bode plots, Shaft center line plot, Polar plot & orbit plots; rubbing was evident on Turbine’s NDE along with increased bearing clearance of Turbine’s NDE radial bearing. The subject bearing was then inspected & heavy deposition of carbonized coke was found on the labyrinth seals of bearing housing with clear rubbing marks on shaft & housing covering at 20-25 degrees on the inner radius of labyrinth seals. The collected coke sample was tested in laboratory & found to be the residue of lube oil in the bearing housing. After detailed inspection & cleaning of shaft journal area & bearing housing, new radial bearing was installed. Before assembling the bearing housing, cleaning of bearing cooling & sealing air lines was also carried out as inadequate flow of cooling & sealing air can accelerate coke formation in bearing housing. The machine was then taken back online & data was collected again using ADRE SXP & DSPI 408 for health analysis. The vibrations were found in acceptable zone as per ISO standard 7919-3 while all other parameters were also within vendor defined range. As a learning from subject case, revised operating & maintenance regime has also been proposed to enhance machine’s reliability.Keywords: ADRE, bearing, gas turbine, GE Bently Nevada, Hitachi, vibration
Procedia PDF Downloads 145468 COVID Prevention and Working Environmental Risk Prevention and Buisness Continuety among the Sme’s in Selected Districts in Sri Lanka
Authors: Champika Amarasinghe
Abstract:
Introduction: Covid 19 pandemic was badly hit to the Sri Lankan economy during the year 2021. More than 65% of the Sri Lankan work force is engaged with small and medium scale businesses which no doubt that they had to struggle for their survival and business continuity during the pandemic. Objective: To assess the association of adherence to the new norms during the Covid 19 pandemic and maintenance of healthy working environmental conditions for business continuity. A cross sectional study was carried out to assess the OSH status and adequacy of Covid 19 preventive strategies among the 200 SME’S in selected two districts in Sri Lanka. These two districts were selected considering the highest availability of SME’s. Sample size was calculated, and probability propionate to size was used to select the SME’s which were registered with the small and medium scale development authority. An interviewer administrated questionnaire was used to collect the data, and OSH risk assessment was carried out by a team of experts to assess the OSH status in these industries. Results: According to the findings, more than 90% of the employees in these industries had a moderate awareness related to COVID 19 disease and preventive strategies such as the importance of Mask use, hand sainting practices, and distance maintenance, but the only forty percent of them were adhered to implementation of these practices. Furthermore, only thirty five percent of the employees and employers in these SME’s new the reasons behind the new norms, which may be the reason for reluctance to implement these strategies and reluctance to adhering to the new norms in this sector. The OSH risk assessment findings revealed that the working environmental organization while maintaining the distance between two employees was poor due to the inadequacy of space in these entities. More than fifty five percent of the SME’s had proper ventilation and lighting facilities. More than eighty five percent of these SME’s had poor electrical safety measures. Furthermore, eighty two percent of them had not maintained fire safety measures. Eighty five percent of them were exposed to heigh noise levels and chemicals where they were not using any personal protectives nor any other engineering controls were not imposed. Floor conditions were poor, and they were not maintaining the occupational accident nor occupational disease diseases. Conclusions: Based on the findings, proper awareness sessions were carried out by NIOSH. Six physical training sessions and continues online trainings were carried out to overcome these issues, which made a drastic change in their working environments and ended up with hundred percent implementation of the Covid 19 preventive strategies, which intern improved the worker participation in the businesses. Reduced absentees and improved business opportunities, and continued their businesses without any interruption during the third episode of Covid 19 in Sri Lanka.Keywords: working environment, Covid 19, occupational diseases, occupational accidents
Procedia PDF Downloads 86467 The M Health Paradigm for the Chronic Care Management of Obesity: New Opportunities in Clinical Psychology and Medicine
Authors: Gianluca Castelnuovo, Gian Mauro Manzoni, Giada Pietrabissa, Stefania Corti, Emanuele Giusti, Roberto Cattivelli, Enrico Molinari, Susan Simpson
Abstract:
Obesity is currently an important public health problem of epidemic proportions (globesity). Moreover Binge Eating Disorder (BED) is typically connected with obesity, even if not occurring exclusively in conjunction with overweight conditions. Typically obesity with BED requires a longer term treatment in comparison with simple obesity. Rehabilitation interventions that aim at improving weight-loss, reducing obesity-related complications and changing dysfunctional behaviors, should ideally be carried out in a multidisciplinary context with a clinical team composed of psychologists, dieticians, psychiatrists, endocrinologists, nutritionists, physiotherapists, etc. Long-term outpatient multidisciplinary treatments are likely to constitute an essential aspect of rehabilitation, due to the growing costs of a limited inpatient approach. Internet-based technologies can improve long-term obesity rehabilitation within a collaborative approach. The new m health (m-health, mobile health) paradigm, defined as clinical practices supported by up to date mobile communication devices, could increase compliance- engagement and contribute to a significant cost reduction in BED and obesity rehabilitation. Five psychological components need to be considered for successful m Health-based obesity rehabilitation in order to facilitate weight-loss.1) Self-monitoring. Portable body monitors, pedometers and smartphones are mobile and, therefore, can be easily used, resulting in continuous self-monitoring. 2) Counselor feedback and communication. A functional approach is to provide online weight-loss interventions with brief weekly or monthly counselor or psychologist visits. 3) Social support. A group treatment format is typically preferred for behavioral weight-loss interventions. 4) Structured program. Technology-based weight-loss programs incorporate principles of behavior therapy and change with structured weekly protocolos including nutrition, exercise, stimulus control, self-regulation strategies, goal-setting. 5) Individually tailored program. Interventions specifically designed around individual’s goals typically record higher rates of adherence and weight loss. Opportunities and limitations of m health approach in clinical psychology for obesity and BED are discussed, taking into account future research directions in this promising area.Keywords: obesity, rehabilitation, out-patient, new technologies, tele medicine, tele care, m health, clinical psychology, psychotherapy, chronic care management
Procedia PDF Downloads 473466 Bio-Oil Compounds Sorption Enhanced Steam Reforming
Authors: Esther Acha, Jose Cambra, De Chen
Abstract:
Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.Keywords: CO2 sorbent, enhanced steam reforming, hydrogen
Procedia PDF Downloads 577465 Biosensor: An Approach towards Sustainable Environment
Authors: Purnima Dhall, Rita Kumar
Abstract:
Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna
Procedia PDF Downloads 278464 The Use of Social Stories and Digital Technology as Interventions for Autistic Children; A State-Of-The-Art Review and Qualitative Data Analysis
Authors: S. Hussain, C. Grieco, M. Brosnan
Abstract:
Background and Aims: Autism is a complex neurobehavioural disorder, characterised by impairments in the development of language and communication skills. The study involved a state-of-art systematic review, in addition to qualitative data analysis, to establish the evidence for social stories as an intervention strategy for autistic children. An up-to-date review of the use of digital technologies in the delivery of interventions to autistic children was also carried out; to propose the efficacy of digital technologies and the use of social stories to improve intervention outcomes for autistic children. Methods: Two student researchers reviewed a range of randomised control trials and observational studies. The aim of the review was to establish if there was adequate evidence to justify recommending social stories to autistic patients. Students devised their own search strategies to be used across a range of search engines, including Ovid-Medline, Google Scholar and PubMed. Students then critically appraised the generated literature. Additionally, qualitative data obtained from a comprehensive online questionnaire on social stories was also thematically analysed. The thematic analysis was carried out independently by each researcher, using a ‘bottom-up’ approach, meaning contributors read and analysed responses to questions and devised semantic themes from reading the responses to a given question. The researchers then placed each response into a semantic theme or sub-theme. The students then joined to discuss the merging of their theme headings. The Inter-rater reliability (IRR) was calculated before and after theme headings were merged, giving IRR for pre- and post-discussion. Lastly, the thematic analysis was assessed by a third researcher, who is a professor of psychology and the director for the ‘Centre for Applied Autism Research’ at the University of Bath. Results: A review of the literature, as well as thematic analysis of qualitative data found supporting evidence for social story use. The thematic analysis uncovered some interesting themes from the questionnaire responses, relating to the reasons why social stories were used and the factors influencing their effectiveness in each case. However, overall, the evidence for digital technologies interventions was limited, and the literature could not prove a causal link between better intervention outcomes for autistic children and the use of technologies. However, they did offer valid proposed theories for the suitability of digital technologies for autistic children. Conclusions: Overall, the review concluded that there was adequate evidence to justify advising the use of social stories with autistic children. The role of digital technologies is clearly a fast-emerging field and appears to be a promising method of intervention for autistic children; however, it should not yet be considered an evidence-based approach. The students, using this research, developed ideas on social story interventions which aim to help autistic children.Keywords: autistic children, digital technologies, intervention, social stories
Procedia PDF Downloads 119463 Examining the Critical Factors for Success and Failure of Common Ticketing Systems
Authors: Tam Viet Hoang
Abstract:
With a plethora of new mobility services and payment systems found in our cities and across modern public transportation systems, several cities globally have turned to common ticketing systems to help navigate this complexity. Helping to create time and space-differentiated fare structures and tariff schemes, common ticketing systems can optimize transport utilization rates, achieve cost efficiencies, and provide key incentives to specific target groups. However, not all cities and transportation systems have enjoyed a smooth journey towards the adoption, roll-out, and servicing of common ticketing systems, with both the experiences of success and failure being attributed to a wide variety of critical factors. Using case study research as a methodology and cities as the main unit of analysis, this research will seek to address the fundamental question of “what are the critical factors for the success and failure of common ticketing systems?” Using rail/train systems as the entry point for this study will start by providing a background to the evolution of transport ticketing and justify the improvements in operational efficiency that can be achieved through common ticketing systems. Examining the socio-economic benefits of common ticketing, the research will also help to articulate the value derived for different key identified stakeholder groups. By reviewing case studies of the implementation of common ticketing systems in different cities, the research will explore lessons learned from cities with the aim to elicit factors to ensure seamless connectivity integrated e-ticketing platforms. In an increasingly digital age and where cities are now coming online, this paper seeks to unpack these critical factors, undertaking case study research drawing from literature and lived experiences. Offering us a better understanding of the enabling environment and ideal mixture of ingredients to facilitate the successful roll-out of a common ticketing system, interviews will be conducted with transport operators from several selected cities to better appreciate the challenges and strategies employed to overcome those challenges in relation to common ticketing systems. Meanwhile, as we begin to see the introduction of new mobile applications and user interfaces to facilitate ticketing and payment as part of the transport journey, we take stock of numerous policy challenges ahead and implications on city-wide and system-wide urban planning. It is hoped that this study will help to identify the critical factors for the success and failure of common ticketing systems for cities set to embark on their implementation while serving to fine-tune processes in those cities where common ticketing systems are already in place. Outcomes from the study will help to facilitate an improved understanding of common pitfalls and essential milestones towards the roll-out of a common ticketing system for railway systems, especially for emerging countries where mass rapid transit transport systems are being considered or in the process of construction.Keywords: common ticketing, public transport, urban strategies, Bangkok, Fukuoka, Sydney
Procedia PDF Downloads 87462 Climate Change and Perceived Socialization: The Role of Parents’ Climate Change Coping Style and Household Communication
Authors: Estefanya Vazquez-Casaubon, Veroline Cauberghe, Dieneke Van de Sompel, Hayley Pearce
Abstract:
Working together to reduce the anthropogenic impact should be a collective action, including effort within the household. In the matter, children are considered to have an important role in influencing the household to reduce the environmental impact through reversed socialization where children motivate and increase the concern of the parents towards environmental protection. Previous studies reveal that communication between parents and kids is key for effective reversed socialization. However, multiple barriers have been identified in the literature, such as the acceptance of the influence from the kids, the properties of the communication, among other factors. Based on the previous evidence, the present study aims to assess barriers and facilitators of communication at the household level that have an impact on reversed socialization. More precisely, the study examines how parents’ climate change coping strategy (problem-focused, meaning-focused, disregarding) influences the valence and the type of the communication related to climate change, and eventually the extent to which they report their beliefs and behaviours to be influenced by the pro-environmental perspectives of their children; i.e. reversed socialization. Via an online survey, 723 Belgian parents self-reported on communication about environmental protection and risk within their household (such as the frequency of exchange about topics related to climate change sourced from school, the household rules, imparting knowledge to the children, and outer factors like media or peer pressure, the emotional valence of the communication), their perceived socialization, and personal factors (coping mechanisms towards climate change). The results, using structural equation modelling, revealed that parents applying a problem-solving coping strategy related to climate change, appear to communicate more often in a positive than in a negative manner. Parents with a disregarding coping style towards climate change appear to communicate less often in a positive way within the household. Parents that cope via meaning-making of climate change showed to communicate less often in either a positive or negative way. Moreover, the perceived valence of the communication (positive or negative) influenced the frequency and type of household communication. Positive emotions increased the frequency of the communication overall. However, the direct effect of neither of the coping mechanisms on the reversed socialization was significant. High frequency of communication about the media, environmental views of the household members among other external topics had a positive impact on the perceived socialization, followed by discussions school-related; while parental instructing had a negative impact on the perceived socialization. Moreover, the frequency of communication was strongly affected by the perceived valence of the communication (positive or negative). The results go in line with previous evidence that a higher frequency of communication facilitates reversed socialization. Hence the results outstand how the coping mechanisms of the parents can be either a facilitator when they cope via problem-solving, while parents that disregard might avert frequent communication about climate change at the household.Keywords: communication, parents’ coping mechanisms, environmental protection, household, perceived socialization
Procedia PDF Downloads 83461 The 'Toshi-No-Sakon' Phenomenon: A Trend in Japanese Family Formations
Authors: Franco Lorenzo D. Morales
Abstract:
‘Toshi-no-sakon,’ which translates to as ‘age gap marriage,’ is a term that has been popularized by celebrity couples in the Japanese entertainment industry. Japan is distinct for a developed nation for its rapidly aging population, declining marital and fertility rates, and the reinforcement of traditional gender roles. Statistical data has shown that the average age of marriage in Japan is increasing every year, showing a growing tendency for late marriage. As a result, the government has been trying to curb the declining trends by encouraging marriage and childbirth among the populace. This graduate thesis seeks to analyze the ‘toshi-no-sakon’ phenomenon in lieu of Japan’s current economic and social situation, and to see what the implications are for these kinds of married couples. This research also seeks to expound more on age gaps within married couples, which is a factor rarely-touched upon in Japanese family studies. A literature review was first performed in order to provide a framework to study ‘toshi-no-sakon’ from the perspective of four fields of study—marriage, family, aging, and gender. Numerous anonymous online statements by ‘toshi-no-sakon’ couples were then collected and analyzed, which brought to light a number of concerns. Couples wherein the husband is the older partner were prioritized in order to narrow down the focus of the research, and ‘toshi-no-sakon’ is only considered when the couple’s age gap is ten years or more. Current findings suggest that one of the perceived merits for a woman to marry an older man is that financial security would be guaranteed. However, this has been shown to be untrue as a number of couples express concern regarding their financial situation, which could be attributed to their husband’s socio-economic status. Having an older husband who is approaching the age of retirement presents another dilemma as the wife would be more obliged to provide care for her aging husband. This notion of the wife being a caregiver likely stems from an arrangement once common in Japanese families in which the wife must primarily care for her husband’s elderly parents. Childbearing is another concern as couples would be pressured to have a child right away due to the age of the husband, in addition to limiting the couple’s ideal number of children. This is another problematic aspect as the husband would have to provide income until his child has finished their education, implying that retirement would have to be delayed indefinitely. It is highly recommended that future studies conduct face-to-face interviews with couples and families who fall under the category of ‘toshi-no-sakon’ in order to gain a more in-depth perspective into the phenomenon and to reveal any undiscovered trends. Cases wherein the wife is the older partner in the relationship should also be given focus in future studies involving ‘toshi-no-sakon’.Keywords: age gap, family structure, gender roles, marriage trends
Procedia PDF Downloads 362460 Children's Literature with Mathematical Dialogue for Teaching Mathematics at Elementary Level: An Exploratory First Phase about Students’ Difficulties and Teachers’ Needs in Third and Fourth Grade
Authors: Goulet Marie-Pier, Voyer Dominic, Simoneau Victoria
Abstract:
In a previous research project (2011-2019) funded by the Quebec Ministry of Education, an educational approach was developed based on the teaching and learning of place value through children's literature. Subsequently, the effect of this approach on the conceptual understanding of the concept among first graders (6-7 years old) was studied. The current project aims to create a series of children's literature to help older elementary school students (8-10 years old) in developing a conceptual understanding of complex mathematical concepts taught at their grade level rather than a more typical procedural understanding. Knowing that there are no educational material or children's books that exist to achieve our goals, four stories, accompanied by mathematical activities, will be created to support students, and their teachers, in the learning and teaching of mathematical concepts that can be challenging within their mathematic curriculum. The stories will also introduce a mathematical dialogue into the characters' discourse with the aim to address various mathematical foundations for which there are often erroneous statements among students and occasionally among teachers. In other words, the stories aim to empower students seeking a real understanding of difficult mathematical concepts, as well as teachers seeking a way to teach these difficult concepts in a way that goes beyond memorizing rules and procedures. In order to choose the concepts that will be part of the stories, it is essential to understand the current landscape regarding the main difficulties experienced by students in third and fourth grade (8-10 years old) and their teacher’s needs. From this perspective, the preliminary phase of the study, as discussed in the presentation, will provide critical insight into the mathematical concepts with which the target grade levels struggle the most. From this data, the research team will select the concepts and develop their stories in the second phase of the study. Two questions are preliminary to the implementation of our approach, namely (1) what mathematical concepts are considered the most “difficult to teach” by teachers in the third and fourth grades? and (2) according to teachers, what are the main difficulties encountered by their students in numeracy? Self-administered online questionnaires using the SimpleSondage software will be sent to all third and fourth-grade teachers in nine school service centers in the Quebec region, representing approximately 300 schools. The data that will be collected in the fall of 2022 will be used to compare the difficulties identified by the teachers with those prevalent in the scientific literature. Considering that this ensures consistency between the proposed approach and the true needs of the educational community, this preliminary phase is essential to the relevance of the rest of the project. It is also an essential first step in achieving the two ultimate goals of the research project, improving the learning of elementary school students in numeracy, and contributing to the professional development of elementary school teachers.Keywords: children’s literature, conceptual understanding, elementary school, learning and teaching, mathematics
Procedia PDF Downloads 88459 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 321458 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy
Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane
Abstract:
Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging
Procedia PDF Downloads 76457 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 88456 Self-Supervised Learning for Hate-Speech Identification
Authors: Shrabani Ghosh
Abstract:
Automatic offensive language detection in social media has become a stirring task in today's NLP. Manual Offensive language detection is tedious and laborious work where automatic methods based on machine learning are only alternatives. Previous works have done sentiment analysis over social media in different ways such as supervised, semi-supervised, and unsupervised manner. Domain adaptation in a semi-supervised way has also been explored in NLP, where the source domain and the target domain are different. In domain adaptation, the source domain usually has a large amount of labeled data, while only a limited amount of labeled data is available in the target domain. Pretrained transformers like BERT, RoBERTa models are fine-tuned to perform text classification in an unsupervised manner to perform further pre-train masked language modeling (MLM) tasks. In previous work, hate speech detection has been explored in Gab.ai, which is a free speech platform described as a platform of extremist in varying degrees in online social media. In domain adaptation process, Twitter data is used as the source domain, and Gab data is used as the target domain. The performance of domain adaptation also depends on the cross-domain similarity. Different distance measure methods such as L2 distance, cosine distance, Maximum Mean Discrepancy (MMD), Fisher Linear Discriminant (FLD), and CORAL have been used to estimate domain similarity. Certainly, in-domain distances are small, and between-domain distances are expected to be large. The previous work finding shows that pretrain masked language model (MLM) fine-tuned with a mixture of posts of source and target domain gives higher accuracy. However, in-domain performance of the hate classifier on Twitter data accuracy is 71.78%, and out-of-domain performance of the hate classifier on Gab data goes down to 56.53%. Recently self-supervised learning got a lot of attention as it is more applicable when labeled data are scarce. Few works have already been explored to apply self-supervised learning on NLP tasks such as sentiment classification. Self-supervised language representation model ALBERTA focuses on modeling inter-sentence coherence and helps downstream tasks with multi-sentence inputs. Self-supervised attention learning approach shows better performance as it exploits extracted context word in the training process. In this work, a self-supervised attention mechanism has been proposed to detect hate speech on Gab.ai. This framework initially classifies the Gab dataset in an attention-based self-supervised manner. On the next step, a semi-supervised classifier trained on the combination of labeled data from the first step and unlabeled data. The performance of the proposed framework will be compared with the results described earlier and also with optimized outcomes obtained from different optimization techniques.Keywords: attention learning, language model, offensive language detection, self-supervised learning
Procedia PDF Downloads 103455 Austrian Secondary School Teachers’ Perspectives on Character Education and Life Skills: First Quantitative Insights from a Mixed Methods Study
Authors: Evelyn Kropfreiter, Roland Bernhard
Abstract:
There has been an increased interest in school-based whole-child development in the Austrian education system in the last few years. Although there is a consensus among academics that teachers' beliefs are an essential component of their professional competence, there are hardly any studies in the German-speaking world examining teachers' beliefs about school-based character education. To close this gap, we are conducting a mixed methods study combining qualitative interviews and a questionnaire in Austria (doctoral thesis at the University of Salzburg). In this paper, we present preliminary insights into the quantitative strand of the project. In contrast to German-speaking countries, the Anglo-Saxon world has a long tradition of explicit character education in schools. There has been a rising interest in approaches focusing on a neo-Aristotelian form of character education in England. The Jubilee Centre strongly influences the "renaissance" of papers on neo-Aristotelian character education for Character and Virtues, founded in 2012. The quantitative questionnaire study (n = 264) is an online survey of teachers and school principals conducted in four different federal states in spring 2023. Most respondents (n = 264) from lower secondary schools (AHS-Unterstufe and Mittelschule) believe that character education in schools for 10-14-year-olds is more important for society than good exam results. Many teachers state that they consider themselves prepared to promote their students' personal development and life skills through their education and to attend further training courses. However, there are many obstacles in the education system to ensure that a comprehensive education reaches the students. Many teachers state that they consider themselves prepared to promote their students' character strengths and life skills through their education and to attend further training courses. However, there are many obstacles in the education system to ensure that a comprehensive education reaches the students. Among the most cited difficulties, teachers mention the time factor associated with an overcrowded curriculum and a strong focus on performance, which often leaves them needing more time to keep an eye on nurturing the whole person. The fact that character education is not a separate subject, and its implementation needs to be monitored also makes it challenging to implement it in everyday school life. Austrian teachers prioritize moral virtues such as compassion and honesty as character strengths in everyday school life and resilience and commitment in the next place. Our results are like those reported in other studies on teacher's beliefs about character education. They indicate that Austrian teachers want to teach character in their schools but see systemic constraints such as the curriculum, in which personality roles play a subordinate role, and the focus on performance testing in the school system and the associated lack of time as obstacles to fostering more character development in students.Keywords: character education, life skills, teachers' beliefs, virtues
Procedia PDF Downloads 81454 Cognition in Context: Investigating the Impact of Persuasive Outcomes across Face-to-Face, Social Media and Virtual Reality Environments
Authors: Claire Tranter, Coral Dando
Abstract:
Gathering information from others is a fundamental goal for those concerned with investigating crime, and protecting national and international security. Persuading an individual to move from an opposing to converging viewpoint, and an understanding on the cognitive style behind this change can serve to increase understanding of traditional face-to-face interactions, as well as synthetic environments (SEs) often used for communication across varying geographical locations. SEs are growing in usage, and with this increase comes an increase in crime being undertaken online. Communication technologies can allow people to mask their real identities, supporting anonymous communication which can raise significant challenges for investigators when monitoring and managing these conversations inside SEs. To date, the psychological literature concerning how to maximise information-gain in SEs for real-world interviewing purposes is sparse, and as such this aspect of social cognition is not well understood. Here, we introduce an overview of a novel programme of PhD research which seeks to enhance understanding of cross-cultural and cross-gender communication in SEs for maximising information gain. Utilising a dyadic jury paradigm, participants interacted with a confederate who attempted to persuade them to the opposing verdict across three distinct environments: face-to-face, instant messaging, and a novel virtual reality environment utilising avatars. Participants discussed a criminal scenario, acting as a two-person (male; female) jury. Persuasion was manipulated by the confederate claiming an opposing viewpoint (guilty v. not guilty) to the naïve participants from the outset. Pre and post discussion data, and observational digital recordings (voice and video) of participant’ discussion performance was collected. Information regarding cognitive style was also collected to ascertain participants need for cognitive closure and biases towards jumping to conclusions. Findings revealed that individuals communicating via an avatar in a virtual reality environment reacted in a similar way, and thus equally persuasive, when compared to individuals communicating face-to-face. Anonymous instant messaging however created a resistance to persuasion in participants, with males showing a significant decline in persuasive outcomes compared to face to face. The findings reveal new insights particularly regarding the interplay of persuasion on gender and modality, with anonymous instant messaging enhancing resistance to persuasion attempts. This study illuminates how varying SE can support new theoretical and applied understandings of how judgments are formed and modified in response to advocacy.Keywords: applied cognition, persuasion, social media, virtual reality
Procedia PDF Downloads 142453 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2
Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk
Abstract:
Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.Keywords: ecosystem services, grassland management, machine learning, remote sensing
Procedia PDF Downloads 218452 Constructing a Semi-Supervised Model for Network Intrusion Detection
Authors: Tigabu Dagne Akal
Abstract:
While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.Keywords: intrusion detection, data mining, computer science, data mining
Procedia PDF Downloads 294451 ISIS and Social Media
Authors: Neda Jebellie
Abstract:
New information and communication technologies (ICT) not only has revolutionized the world of communication but has also strongly impacted the state of international terrorism. Using the potential of social media, the new wave of terrorism easily can recruit new jihadi members, spread their violent ideology and garner financial support. IS (Islamic State) as the most dangerous terrorist group has already conquered a great deal of social media space and has deployed sophisticated web-based strategies to promote its extremist doctrine. In this respect the vastly popular social media are the perfect tools for IS to establish its virtual Caliphate (e-caliphate) and e-Ommah (e-citizen).Using social media to release violent videos of beheading journalists, burning their hostages alive and mass killing of prisoners are IS strategies to terrorize and subjugate its enemies. Several Twitter and Facebook accounts which are IS affiliations have targeted young generation of Muslims all around the world. In fact IS terrorists use modern resources of communication not only to share information and conduct operations but also justify their violent acts. The strict Wahhabi doctrine of ISIS is based on a fundamental interpretation of Islam in which religious war against non Muslims (Jihad) and killing infidels (Qatal) have been praised and recommended. Via social media IS disseminates its propaganda to inspire sympathizers across the globe. Combating this new wave of terrorism which is exploiting new communication technologies is the most significant challenge for authorities. Before the rise of internet and social media governments had to control only mosques and religious gathering such as Friday sermons(Jamaah Pray) to prevent spreading extremism among Muslims community in their country. ICT and new communication technologies have heighten the challenge of dealing with Islamic radicalism and have amplified its threat .According to the official reports even some of the governments such as UK have created a special force of Facebook warriors to engage in unconventional warfare in digital age. In compare with other terrorist groups, IS has effectively grasped social media potential. Their horrifying released videos on YouTube easily got viral and were re-twitted and shared by thousands of social media users. While some of the social media such as Twitter and Facebook have shut down many accounts alleged to IS but new ones create immediately so only blocking their websites and suspending their accounts cannot solve the problem as terrorists recreate new accounts. To combat cyber terrorism focusing on disseminating counter narrative strategies can be a solution. Creating websites and providing online materials to propagate peaceful and moderate interpretation of Islam can provide a cogent alternative to extremist views.Keywords: IS-islamic state, cyber terrorism, social media, terrorism, information, communication technologies
Procedia PDF Downloads 487450 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites
Authors: B. Yaman, G. Acikbas, N. Calis Acikbas
Abstract:
Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties
Procedia PDF Downloads 194449 Understanding Project Failures in Construction: The Critical Impact of Financial Capacity
Authors: Nnadi Ezekiel Oluwaseun Ejiofor
Abstract:
This research investigates the effects of poor cost estimation, material cost variations, and payment punctuality on the financial health and execution of construction projects in Nigeria. To achieve the objectives of the study, a quantitative research approach was employed, and data was gathered through an online survey of 74 construction industry professionals consisting of quantity surveyors, contractors, and other professionals. The study surveyed input on cost estimation errors, price fluctuations, and payment delays, among other factors. The responses of the respondents were analyzed using a five-point Likert scale and the Relative Importance Index (RII). The findings demonstrated that the errors in cost estimating in the Bill of Quantity (BOQ) have a high degree of negative impact on the reputation and image of the participants in the projects. The greatest effect was experienced on the likelihood of obtaining future endeavors for contractors (mean value = 3.42), followed by the likelihood of obtaining new commissions by quantity surveyors (mean value = 3.40). The level of inaccuracy in costing that undershoots exposes them to risks was most serious in terms of easement of construction and effects of shortage of funds to pursue bankruptcy (hence fears of mean value = 3.78). There was also considerable financial damage as a result of cost underestimation, whereby contractors suffered the worst loss in profit (mean value = 3.88). Every expense comes with its own peculiar risk and uncertainty. Pressure on the cost of materials and every other expense attributed to the building and completion of a structure adds risks to the performance figures of a project. The greatest weight (mean importance score = 4.92) was attributed to issues like market inflation in building materials, while the second greatest weight (mean importance score = 4.76) was due to increased transportation charges. On the other hand, delays in payments arising from issues of the clients like poor availability of funds (RII=0.71) and contracting issues such as disagreements on the valuation of works done (RII=0.72) or other reasons were also found to lead to project delays and additional costs. The results affirm the importance of proper cost estimation on the health of organization finances and project risks and finishes within set time limits. As for the suggestions, it is proposed to progress on the methods of costing, engender better communications with the stakeholders, and manage the delays by way of contracting and financial control. This study enhances the existing literature on construction project management by suggesting ways to deal with adverse cost inaccuracies and availability of materials due to delays in payments which, if addressed, would greatly improve the economic performance of the construction business.Keywords: cost estimation, construction project management, material price fluctuations, payment delays, financial impact
Procedia PDF Downloads 5448 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support
Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz
Abstract:
The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.
Procedia PDF Downloads 126