Search results for: adaptive thermal comfort model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20768

Search results for: adaptive thermal comfort model

14498 Thermosalient Effect of an Organic Aminonitrile and its Derivatives

Authors: Lukman O. Alimi, Vincent J. Smith, Leonard J. Barbour

Abstract:

The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or a ballistic event1. Thermosalient compounds, colloquially known as ‘jumping crystals’ are promising materials for fabrication of actuators that are also being considered as materials for clean energy conversion because of their capabilities to convert thermal energy into mechanical motion directly. Herein, an organic aminonitrile and its derivatives have been probed by a combination of structural, microscopic and thermoanalytical techniques. Crystals of these compounds were analysed by means of single crystal XRD and hotstage microscopy in the temperature range of 100 to 298 K and found to exhibit the thermosalient effect. We also carried out differential scanning calorimetric analysis at the temperature corresponding to that at which the crystal jumps as observed under a hotstage microscope.

Keywords: aminonitrile, jumping crystal, self actuation, thermosalient effect

Procedia PDF Downloads 438
14497 Evaluation of Flexural Cracking Width of Steel Fibre Reinforced Concrete Beams

Authors: Touhami Tahenni

Abstract:

Excessively wide cracks are harmful to the serviceability of reinforced concrete (RC) beams and may lead to durability problems in the longer term. They also reduce the rigidity of RC sections, rendering the tensile concrete ineffective structurally. To reduce the negative effects of cracks, steel fibers are added to concrete mixes in the same manner as aggregates. In the present work, steel fibers reinforced concrete (SFRC) beams, made of normal strength and high strength concretes, were tested in a four-point bending test using a digital image correlation technique. The beams had different volume fractions of fibres and different aspect ratios (fiber length/fiber diameter). The evaluation of flexural cracking widths was determined using Gom-Aramis software. The experimental crack widths were compared with theoretical values predicted by the technical document of Rilem TC 162-TDF. The model proposed in this document seems to be the only one that considers the efficiency of steel fibres in restraining the crack widths. However, the model of Rilem takes into account only the aspect ratio of steel fibres to predict the crack width of SFRC beams. It has been reported in several pieces of research that the contribution of steel fibres to the limitation of flexural cracking widths is based on three essential parameters namely, the volume fraction, the orientation and the aspect ratio of fibres. Referring to the literature on the flexural cracking behavior of SFRC beams and the experimental observations of the present work, a correction of the Rilem model by the introduction of these parameters in the formula is proposed. The crack widths predicted by the new empirical model were compared with the experimental results and assessed against other test data on SFRC beams taken from the literature. The modified Rilem model gives better results and is found more satisfactory in predicting the crack widths of fibres concrete.

Keywords: stee fibres, reinforced concrete, flexural cracking, tensile strength, crack width

Procedia PDF Downloads 102
14496 Upgrading of Old Large Turbo Generators

Authors: M. Shadmand, T. Enayaty Ahangar, S. Kazemi

Abstract:

Insulation system of electrical machineries is the most critical point for their durability. Depending on generator nominal voltage, its insulation system is designed. In this research, a new stator insulation system is designed by new type of mica tapes which will consequently enables us to decrease the nominal ground-wall insulation thickness for the same voltage level. By keeping constant the slot area, it will be possible to increase the copper value in stator bars which will consequently able us to increase the nominal output current of turbo-generator. This will affect the cooling capability of machinery to some extent. But by considering the thermal conductivity of new insulating system which is improved, it is possible to increase the output power of generator up to 6% more. This research is done practically on a 200 MVA and 15.75 kV turbo-generators which its insulating system is Resin Rich (RR).

Keywords: insulation system, resin rich, VPI, upgrading

Procedia PDF Downloads 507
14495 Design of a Compact Herriott Cell for Heat Flux Measurement Applications

Authors: R. G. Ramírez-Chavarría, C. Sánchez-Pérez, V. Argueta-Díaz

Abstract:

In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle.

Keywords: heat flux, Herriott cell, optical beam deflection, thermal conductivity

Procedia PDF Downloads 662
14494 Co-Integrated Commodity Forward Pricing Model

Authors: F. Boudet, V. Galano, D. Gmira, L. Munoz, A. Reina

Abstract:

Commodities pricing needs a specific approach as they are often linked to each other and so are expectedly doing their prices. They are called co-integrated when at least one stationary linear combination exists between them. Though widespread in economic literature, and even if many equilibrium relations and co-movements exist in the economy, this principle of co-movement is not developed in derivatives field. The present study focuses on the following problem: How can the price of a forward agreement on a commodity be simulated, when it is co-integrated with other ones? Theoretical analysis is developed from Gibson-Schwartz model and an analytical solution is given for short maturities contracts and under risk-neutral conditions. The application has been made to crude oil and heating oil energy commodities and result confirms the applicability of proposed method.

Keywords: co-integration, commodities, forward pricing, Gibson-Schwartz

Procedia PDF Downloads 287
14493 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller

Authors: K. Boumediene, S. E. Belhenniche

Abstract:

This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.

Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance

Procedia PDF Downloads 505
14492 Association of Hypoxia-Inducible Factor-1α in Patients with Chronic Obstructive Pulmonary Diseases

Authors: Kriti Upadhyay, Ashraf Ali, Puja Sohal, Randeep Guleria

Abstract:

Background: In Chronic Obstructive Pulmonary diseases (COPD) pathogenesis oxidative stress plays an important role. Hypoxia-Inducible factor (HIF-1α) is a dimeric protein complex which Functions as a master transcriptional regulator of the adaptive response to hypoxiaand is a risk factor that increases when oxidative stress triggers. The role ofHIF-1αin COPD due to smoking is lacking. Aim: This study aims to evaluate the role of HIF-1α in smoker COPD patients comparing its association with diseases severity. Method: In this cross-sectional study, we recruited 87 subjects, 57 were smokers with COPD,15 were smokers without COPD and other 15 were non-smoker healthy controls. The mean age was 54.6± 9.32 (cases 57.08±8.15; controls 50.0± 9.8). There were 62%smokers, 25% non-smokers,7% tobacco chewers and 6% ex-smokers. Enzyme-linked immune sorbent assay (ELISA) method was used for analyzing serum samples wherein HIF-1α was analyzed by Sandwich-ELISA. Results: In smoker COPD patients, a significantly higher HIF-1α level showed positive association with hypoxia, smoking status and severity of disease (p=0.03). The mean value of HIF-1α was not significantly different in smokers without COPD and healthy controls. Conclusion: It is found that HIF-1α level was increased in smoker COPD, but not in smokers without COPD. This suggests that development of COPD drive the HIF-1α pathway and it correlates with the severity of diseases.

Keywords: COPD, chronic obstructive pulmonary diseases, smokers, nonsmokers, hypoxia

Procedia PDF Downloads 151
14491 Boussinesq Model for Dam-Break Flow Analysis

Authors: Najibullah M, Soumendra Nath Kuiry

Abstract:

Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.

Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model

Procedia PDF Downloads 236
14490 Debris Flow Mapping Using Geographical Information System Based Model and Geospatial Data in Middle Himalayas

Authors: Anand Malik

Abstract:

The Himalayas with high tectonic activities poses a great threat to human life and property. Climate change is another reason which triggering extreme events multiple fold effect on high mountain glacial environment, rock falls, landslides, debris flows, flash flood and snow avalanches. One such extreme event of cloud burst along with breach of moraine dammed Chorabri Lake occurred from June 14 to June 17, 2013, triggered flooding of Saraswati and Mandakini rivers in the Kedarnath Valley of Rudraprayag district of Uttrakhand state of India. As a result, huge volume of water with its high velocity created a catastrophe of the century, which resulted into loss of large number of human/animals, pilgrimage, tourism, agriculture and property. Thus a comprehensive assessment of debris flow hazards requires GIS-based modeling using numerical methods. The aim of present study is to focus on analysis and mapping of debris flow movements using geospatial data with flow-r (developed by team at IGAR, University of Lausanne). The model is based on combined probabilistic and energetic algorithms for the assessment of spreading of flow with maximum run out distances. Aster Digital Elevation Model (DEM) with 30m x 30m cell size (resolution) is used as main geospatial data for preparing the run out assessment, while Landsat data is used to analyze land use land cover change in the study area. The results of the study area show that model can be applied with great accuracy as the model is very useful in determining debris flow areas. The results are compared with existing available landslides/debris flow maps. ArcGIS software is used in preparing run out susceptibility maps which can be used in debris flow mitigation and future land use planning.

Keywords: debris flow, geospatial data, GIS based modeling, flow-R

Procedia PDF Downloads 277
14489 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry

Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak

Abstract:

Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.

Keywords: bone by-products, bone sludge, calcination, hydroxyapatite

Procedia PDF Downloads 290
14488 Developing a Translator Career Path: Based on the Dreyfus Model of Skills Acquisition

Authors: Noha A. Alowedi

Abstract:

This paper proposes a Translator Career Path (TCP) which is based on the Dreyfus Model of Skills Acquisition as the conceptual framework. In this qualitative study, the methodology to collect and analyze the data takes an inductive approach that draws upon the literature to form the criteria for the different steps in the TCP. This path is based on descriptors of expert translator performance and best employees’ practice documented in the literature. Each translator skill will be graded as novice, advanced beginner, competent, proficient, and expert. Consequently, five levels of translator performance are identified in the TCP as five ranks. The first rank is the intern translator, which is equivalent to the novice level; the second rank is the assistant translator, which is equivalent to the advanced beginner level; the third rank is the associate translator, which is equivalent to the competent level; the fourth rank is the translator, which is equivalent to the proficient level; finally, the fifth rank is the expert translator, which is equivalent to the expert level. The main function of this career path is to guide the processes of translator development in translation organizations. Although it is designed primarily for the need of in-house translators’ supervisors, the TCP can be used in academic settings for translation trainers and teachers.

Keywords: Dreyfus model, translation organization, translator career path, translator development, translator evaluation, translator promotion

Procedia PDF Downloads 377
14487 Analysis on Greenhouse Gas Emissions Potential by Deploying the Green Cars in Korean Road Transport Sector

Authors: Sungjun Hong, Yanghon Chung, Nyunbae Park, Sangyong Park

Abstract:

South Korea, as the 7th largest greenhouse gas emitting country in 2011, announced that the national reduction target of greenhouse gas emissions was 30% based on BAU (Business As Usual) by 2020. And the reduction rate of the transport sector is 34.3% which is the highest figure among all sectors. This paper attempts to analyze the environmental effect on deploying the green cars in Korean road transport sector. In order to calculate the greenhouse gas emissions, the LEAP model is applied in this study.

Keywords: green car, greenhouse gas, LEAP model, road transport sector

Procedia PDF Downloads 619
14486 Book Recommendation Using Query Expansion and Information Retrieval Methods

Authors: Ritesh Kumar, Rajendra Pamula

Abstract:

In this paper, we present our contribution for book recommendation. In our experiment, we combine the results of Sequential Dependence Model (SDM) and exploitation of book information such as reviews, tags and ratings. This social information is assigned by users. For this, we used CLEF-2016 Social Book Search Track Suggestion task. Finally, our proposed method extensively evaluated on CLEF -2015 Social Book Search datasets, and has better performance (nDCG@10) compared to other state-of-the-art systems. Recently we got the good performance in CLEF-2016.

Keywords: sequential dependence model, social information, social book search, query expansion

Procedia PDF Downloads 291
14485 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 455
14484 The Effect of Support Program Based on The Health Belief Model on Reproductive Health Behavior in Women with Orthopedic Disabled

Authors: Eda Yakit Ak, Ergül Aslan

Abstract:

The study was conducted using the quasi-experimental design to determine the influence of the nursing support program prepared according to the Health Belief Model on reproductive health behaviors of orthopedically disabled women in the physical therapy and rehabilitation clinic at a university hospital between August 2019-October, 2020. The research sample included 50 women (35 in the control group and 15 in the experimental group with orthopedic disability). A 3-week nursing support program was applied to the experimental group of women. To collect the data, Introductory Information Form and Scale for Determining the Protective Attitudes of Married Women towards Reproductive Health (SDPAMW) were applied. The evaluation was made with a follow-up form for four months. In the first evaluation, the total SDPAMW scores were 119.93±20.59 for the experimental group and 122.20±16.71 for the control group. In the final evaluation, the total SDPAMW scores were 144.27±11.95 for the experimental group and 118.00±16.43 for the control group. The difference between the groups regarding the first and final evaluations for the total SDPAMW scores was statistically significant (p<0.01). In the experimental group, between the first and final evaluations regarding the sub-dimensions of SDPAMW, an increase was found in the behavior of seeing the doctor on reproductive health issues, protection from reproductive organ and breast cancer, general health behaviors to protect reproductive health, and protection from genital tract infections (p<0.05). Consequently, the nursing support program based on the Health Belief Model applied to orthopedically disabled women positively affected reproductive health behaviors.

Keywords: orthopedically disabled, woman, reproductive health, nursing support program, health belief model

Procedia PDF Downloads 152
14483 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters

Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava

Abstract:

Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predicted

Keywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)

Procedia PDF Downloads 647
14482 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 160
14481 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads

Authors: Erhan Çetin, Ali Kurşun, Şafak Aksoy, Merve Tunay Çetin

Abstract:

The closed form study deal with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and termomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.

Keywords: bi-material discs, elastic stress analysis, mechanical loads, rotating discs

Procedia PDF Downloads 331
14480 An Optimal Control Model to Determine Body Forces of Stokes Flow

Authors: Yuanhao Gao, Pin Lin, Kees Weijer

Abstract:

In this paper, we will determine the external body force distribution with analysis of stokes fluid motion using mathematical modelling and numerical approaching. The body force distribution is regarded as the unknown variable and could be determined by the idea of optimal control theory. The Stokes flow motion and its velocity are generated by given forces in a unit square domain. A regularized objective functional is built to match the numerical result of flow velocity with the generated velocity data. So that the force distribution could be determined by minimizing the value of objective functional, which is also the difference between the numerical and experimental velocity. Then after utilizing the Lagrange multiplier method, some partial differential equations are formulated consisting the optimal control system to solve. Finite element method and conjugate gradient method are used to discretize equations and deduce the iterative expression of target body force to compute the velocity numerically and body force distribution. Programming environment FreeFEM++ supports the implementation of this model.

Keywords: optimal control model, Stokes equation, finite element method, conjugate gradient method

Procedia PDF Downloads 411
14479 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa

Abstract:

In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 188
14478 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification

Authors: Rebecca Angeles

Abstract:

This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.

Keywords: Internet of Things (IOT), radio frequency identification (RFID), structurational model of technology (Orlikowski), supply chain management

Procedia PDF Downloads 234
14477 A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress

Authors: H. Sakamoto, J. Tochimoto, S. Kurosawa, M. Suzuki, S. Oguri

Abstract:

Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.

Keywords: germination, ankyrin repeat, arabidopsis, salt tolerance

Procedia PDF Downloads 403
14476 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 297
14475 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 580
14474 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste

Authors: Maciej Szelag

Abstract:

The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.

Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS

Procedia PDF Downloads 358
14473 Formulating Model of Green Supply Chain Impact on Chain Operational Performance, Case Study: Rahbaran Foolad Aria, Steel Industry

Authors: Seyedeh Mersedeh Banijamali, Ali Rajabzadeh

Abstract:

Industrial development in recent centuries has been replaced by a sustainable development. The industry executives, particularly in the development countries are looking for procedures to protect the environment, improve their organization's performance. One of these approaches is the green supply chain management. Green supply chain management approach as a comprehensive approach to environmental management that contains all flows from suppliers to producers and ultimately to consumers, in many industries, particularly in the Steel industry, which has a strategic role in the country's industrial and economic development, has been receiving significant attention. The purpose of this study is examining the impact of green supply chain on chain operational performance in the Steel industry and formulating model for it. In this way, first the components of green supply chain (in 5 dimensions, planning, sourcing, making, delivery and return) have been prioritized through TOPSIS decision technique and then impact of these components on operational performance has been modeled with model dynamic systems and Vensim software. This research shows that green supply chain has a positive impact on operational performance and improve it.

Keywords: green supply chain, the dimensions of the green supply chain, operational performance, steel industry, dynamical systems

Procedia PDF Downloads 577
14472 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 141
14471 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 208
14470 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia

Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri

Abstract:

Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.

Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model

Procedia PDF Downloads 318
14469 An Accurate Brain Tumor Segmentation for High Graded Glioma Using Deep Learning

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

Gliomas are most challenging and aggressive type of tumors which appear in different sizes, locations, and scattered boundaries. CNN is most efficient deep learning approach with outstanding capability of solving image analysis problems. A fully automatic deep learning based 2D-CNN model for brain tumor segmentation is presented in this paper. We used small convolution filters (3 x 3) to make architecture deeper. We increased convolutional layers for efficient learning of complex features from large dataset. We achieved better results by pushing convolutional layers up to 16 layers for HGG model. We achieved reliable and accurate results through fine-tuning among dataset and hyper-parameters. Pre-processing of this model includes generation of brain pipeline, intensity normalization, bias correction and data augmentation. We used the BRATS-2015, and Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.81 for complete, 0.79 for core, 0.80 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, HGG

Procedia PDF Downloads 259