Search results for: thermal energy storage.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11734

Search results for: thermal energy storage.

11134 Computer Simulation Studies of Spinel LiMn₂O₄ Nanotubes

Authors: D. M. Tshwane, R. R. Maphanga, P. E. Ngoepe

Abstract:

Nanostructured materials are attractive candidates for efficient electrochemical energy storage devices because of their unique physicochemical properties. Nanotubes have drawn a continuous attention because of their unique electrical, optical and magnetic properties contrast to that of bulk system. They have potential application in the field of optical, electronics and energy storage device. Introducing nanotubes structures as electrode materials; represents one of the most attractive strategies that could dramatically enhance the battery performance. Spinel LiMn2O4 is the most promising cathode material for Li-ion batteries. In this work, computer simulation methods are used to generate and investigate properties of spinel LiMn2O4 nanotubes. Molecular dynamic simulation is used to probe the local structure of LiMn2O4 nanotubes and the effect of temperature on these systems. It is found that diameter, Miller indices and size have a direct control on nanotubes morphology. Furthermore, it is noted that stability depends on surface and wrapping of the nanotube. The nanotube structures are described using the radial distribution function and XRD patterns. There is a correlation between calculated XRD and experimentally reported results.

Keywords: LiMn2O4, li-ion batteries, nanotubes, nanostructures

Procedia PDF Downloads 175
11133 Renewable Energy Industry Trends and Its Contributions to the Development of Energy Resilience in an Era of Accelerating Climate Change

Authors: A. T. Asutosh, J. Woo, M. Kouhirostami, M. Sam, A. Khantawang, C. Cuales, W. Ryor, C. Kibert

Abstract:

Climate change and global warming vortex have grown to alarming proportions. Therefore, the need for a shift in the conceptualization of energy production is paramount. Energy practices have been created in the current situation. Fossil fuels continue their prominence, at the expense of renewable sources. Despite this abundance, a large percentage of the world population still has no access to electricity but there have been encouraging signs in global movement from nonrenewable to renewable energy but means to reverse climate change have been elusive. Worldwide, organizations have put tremendous effort into innovation. Conferences and exhibitions act as a platform that allows a broad exchange of information regarding trends in the renewable energy field. The Solar Power International (SPI) conference and exhibition is a gathering of concerned activists, and probably the largest convention of its kind. This study investigates current development in the renewable energy field, analyzing means by which industry is being applied to the issue. In reviewing the 2019 SPI conference, it was found innovations in recycling and assessing the environmental impacts of the solar products that need critical attention. There is a huge movement in the electrical storage but there exists a large gap in the development of security systems. This research will focus on solar energy, but impacts will be relevant to the entire renewable energy market.

Keywords: climate change, renewable energy, solar, trends, research, solar power international, SPI

Procedia PDF Downloads 92
11132 A Theoretical and Experimental Evaluation of a Solar-Powered Off-Grid Air Conditioning System for Residential Buildings

Authors: Adam Y. Sulaiman, Gerard I.Obasi, Roma Chang, Hussein Sayed Moghaieb, Ming J. Huang, Neil J. Hewitt

Abstract:

Residential air-conditioning units are essential for quality indoor comfort in hot climate countries. Nevertheless, because of their non-renewable energy sources and the contribution of ecologically unfriendly working fluids, these units are a major source of CO2 emissions in these countries. The utilisation of sustainable technologies nowadays is essential to reduce the adverse effects of CO2 emissions by replacing conventional technologies. This paper investigates the feasibility of running an off-grid solar-powered air-conditioning bed unit using three low GWP refrigerants (R32, R290, and R600a) to supersede conventional refrigerants.A prototype air conditioning unit was built to supply cold air to a canopy that was connected to it. The assembled unit was designed to distribute cold air to a canopy connected to it. This system is powered by two 400 W photovoltaic panels, with battery storage supplying power to the unit at night-time. Engineering Equation Solver (EES) software is used to mathematically model the vapor compression cycle (VCC) and predict the unit's energetic and exergetic performance. The TRNSYS software was used to simulate the electricity storage performance of the batteries, whereas the IES-VE was used to determine the amount of solar energy required to power the unit. The article provides an analytical design guideline, as well as a comprehensible process system. Combining a renewable energy source to power an AC based-VCC provides an excellent solution to the real problems of high-energy consumption in warm-climate countries.

Keywords: air-conditioning, refrigerants, PV panel, energy storages, VCC, exergy

Procedia PDF Downloads 160
11131 Preserved Relative Differences between Regions of Different Thermal Scans

Authors: Tahir Majeed, Michael Handschuh, René Meier

Abstract:

Rheumatoid arthritis patients have swelling and pain at the joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the disease progression of rheumatoid arthritis patients, they must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation between the images between different visits must be established. It has been observed that by using low-cost thermal cameras, the thermal measurements do not remain the same over time, even within a single scanning. In some situations, temperatures can vary as much as 2°C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between the different regions remains similar. Results have been computed over four scanning sequences and are presented.

Keywords: relative thermal difference, rheumatoid arthritis, thermal imaging, thermal sensors

Procedia PDF Downloads 179
11130 Cyclic Heating Effect on Hardness of Copper

Authors: Tahany W. Sadak

Abstract:

Presented work discusses research results concerning the effect of the heat treatment process. Thermal fatigue which expresses repeated heating and cooling processes affect the ductility or the brittleness of the material. In this research, 70 specimens of copper (1.5 mm thickness, 85 mm length, 32 mm width) are subjected to thermal fatigue at different conditions. Heating temperatures Th are 100, 300 and 500 °C. Number of repeated cycles N is from 1 to 100. Heating time th =600 Sec, and Cooling time; tC= 900 Sec.  Results are evaluated and then compared to each other and to that of specimens without subjected to thermal fatigue.

Keywords: copper, thermal analysis, heat treatment, hardness, thermal fatigue

Procedia PDF Downloads 416
11129 Enhancing Efficiency of Building through Translucent Concrete

Authors: Humaira Athar, Brajeshwar Singh

Abstract:

Generally, the brightness of the indoor environment of buildings is entirely maintained by the artificial lighting which has consumed a large amount of resources. It is reported that lighting consumes about 19% of the total generated electricity which accounts for about 30-40% of total energy consumption. One possible way is to reduce the lighting energy by exploiting sunlight either through the use of suitable devices or energy efficient materials like translucent concrete. Translucent concrete is one such architectural concrete which allows the passage of natural light as well as artificial light through it. Several attempts have been made on different aspects of translucent concrete such as light guiding materials (glass fibers, plastic fibers, cylinder etc.), concrete mix design and manufacturing methods for use as building elements. Concerns are, however, raised on various related issues such as poor compatibility between the optical fibers and cement paste, unaesthetic appearance due to disturbance occurred in the arrangement of fibers during vibration and high shrinkage in flowable concrete due to its high water/cement ratio. Need is felt to develop translucent concrete to meet the requirement of structural safety as OPC concrete with the maximized saving in energy towards the power of illumination and thermal load in buildings. Translucent concrete was produced using pre-treated plastic optical fibers (POF, 2mm dia.) and high slump white concrete. The concrete mix was proportioned in the ratio of 1:1.9:2.1 with a w/c ratio of 0.40. The POF was varied from 0.8-9 vol.%. The mechanical properties and light transmission of this concrete were determined. Thermal conductivity of samples was measured by a transient plate source technique. Daylight illumination was measured by a lux grid method as per BIS:SP-41. It was found that the compressive strength of translucent concrete increased with decreasing optical fiber content. An increase of ~28% in the compressive strength of concrete was noticed when fiber was pre-treated. FE-SEM images showed little-debonded zone between the fibers and cement paste which was well supported with pull-out bond strength test results (~187% improvement over untreated). The light transmission of concrete was in the range of 3-7% depending on fiber spacing (5-20 mm). The average daylight illuminance (~75 lux) was nearly equivalent to the criteria specified for illumination for circulation (80 lux). The thermal conductivity of translucent concrete was reduced by 28-40% with respect to plain concrete. The thermal load calculated by heat conduction equation was ~16% more than the plain concrete. Based on Design-Builder software, the total annual illumination energy load of a room using one side translucent concrete was 162.36 kW compared with the energy load of 249.75 kW for a room without concrete. The calculated energy saving on an account of the power of illumination was ~25%. A marginal improvement towards thermal comfort was also noticed. It is concluded that the translucent concrete has the advantages of the existing concrete (load bearing) with translucency and insulation characteristics. It saves a significant amount of energy by providing natural daylight instead of artificial power consumption of illumination.

Keywords: energy saving, light transmission, microstructure, plastic optical fibers, translucent concrete

Procedia PDF Downloads 108
11128 Increasing Toughness of Oriented Polyvinyl Alcohol (PVA)/Fe3O4 Nanocomposite

Authors: Mozhgan Chaichi, Farhad Sharif, Saeede Mazinani

Abstract:

Polymer nanocomposites are a new class of materials for fabricating future multifunctional and lightweight structures. To obtain good mechanical, thermal and electrical properties, it is essential to achieve uniform dispersion of nanoparticles in polymer matrix. Alignment of nanoparticles in matrix can enhance mechanical, thermal, electrical and barrier properties of nanocomposites in oriented direction. Fe3O4 nanoparticles have generated huge activity in many areas of science and engineering due to its magnetic properties. Magnetic nanoparticles have been investigated for a wide range of applications in sensors, magnetic energy storage, environmental remediation, heterogeneous catalysts and drug delivery. The magnetic response from the Fe3O4 nanoparticles can facilitate with the alignment of nanofillers in a polymer matrix under magnetic field, aiming at fabricating composites with directional properties and functions. Here we report oriented nanocomposites based on Fe3O4 nanoparticles and poly (vinyl alcohol) (PVA), which prepared via a facile aqueous solution by applying a low external magnetic field (750 G). A significant enhancement of mechanical properties, and especially toughness of nanofilms, of oriented PVA/ Fe3O4 nanocomposites is obtained at low nanoparticles loading. Orientation of nanoparticles can align polymer chains and enhance mechanical properties. For example, orientation of 0.1 wt. % Fe3O4 nanoparticles increase 31% toughness and 23% modulus of oriented nanocomposite in compare of pure films, which indicate good dispersion of nanoparticles and efficient load transfer between nanoparticles and matrix.

Keywords: magnetic nanoparticles, nanocomposites, toughness, orientation

Procedia PDF Downloads 309
11127 A Comparative Study of Microstructure, Thermal and Mechanical Properties of A359 Composites Reinforced with SiC, Si3N4 and AlN Particles

Authors: Essam Shalaby, Alexander Churyumov, Malak Abou El-Khair, Atef Daoud

Abstract:

A comparative study of the thermal and mechanical behavior of squeezed A359 composites containing 5, 10 and 15 wt.% SiC, (SiC+ Si3N4) and AlN particulates was investigated. Stir followed by squeeze casting techniques are used to produce A359 composites. It was noticed that, A359/AlN composites have high thermal conductivity as compared to A359 alloy and even to A359/SiC or A359/(SiC+Si3N4) composites. Microstructures of the composites have shown homogeneous and even distribution of reinforcements within the matrix. Interfacial reactions between particles and matrix were investigated using X-ray diffraction and energy dispersive X-ray analysis. The presence of particles led not only to increase peak hardness of the composites but also to accelerate the aging kinetics. As compared with A359 matrix alloy, compression test of the composites has exhibited a significant increase in the yield and the ultimate compressive strengths with a relative reduction in the failure strain. Those light weight composites have a high potential to be used for automotive and aerospace applications.

Keywords: metal-matrix composite, squeeze, microstructure, thermal conductivity, compressive properties

Procedia PDF Downloads 363
11126 Thermal Transformation and Structural on Se90Te7Cu3 Chalcogenide Glass

Authors: Farid M. Abdel-Rahim

Abstract:

In this study, Se90Te7Cu3 chalcogenide glass was prepared using the melt quenching technique. The amorphous nature of the as prepared samples was confirmed by scanning electron microscope (SEM). Result of differential scanning calorimetric (DSC) under nonisothermal condition on composition bulk materials are reported and discussed. It shows that these glasses exhibit a single-stage glass transition and a single-stage crystallization on heating rates. The glass transition temperature (Tg), the onset crystallization (Tc), the crystallization temperature (Tp), were found by dependent on the composition and heating rates. Activation energy for glass transition (Et), activation energy of the amorphous –crystalline transformation (Ec), crystallization reaction rate constant (Kp), (n) and (m) are constants related to crystallization mechanism of the bulk samples have been determined by different formulations.

Keywords: chalcogenides, heat treatment, DSC, SEM, glass transition, thermal analysis

Procedia PDF Downloads 377
11125 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application

Authors: Sadeep Sasidharan, T. B. Isha

Abstract:

Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.

Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis

Procedia PDF Downloads 207
11124 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 358
11123 A First-Principles Investigation of Magnesium-Hydrogen System: From Bulk to Nano

Authors: Paramita Banerjee, K. R. S. Chandrakumar, G. P. Das

Abstract:

Bulk MgH2 has drawn much attention for the purpose of hydrogen storage because of its high hydrogen storage capacity (~7.7 wt %) as well as low cost and abundant availability. However, its practical usage has been hindered because of its high hydrogen desorption enthalpy (~0.8 eV/H2 molecule), which results in an undesirable desorption temperature of 3000C at 1 bar H2 pressure. To surmount the limitations of bulk MgH2 for the purpose of hydrogen storage, a detailed first-principles density functional theory (DFT) based study on the structure and stability of neutral (Mgm) and positively charged (Mgm+) Mg nanoclusters of different sizes (m = 2, 4, 8 and 12), as well as their interaction with molecular hydrogen (H2), is reported here. It has been found that due to the absence of d-electrons within the Mg atoms, hydrogen remained in molecular form even after its interaction with neutral and charged Mg nanoclusters. Interestingly, the H2 molecules do not enter into the interstitial positions of the nanoclusters. Rather, they remain on the surface by ornamenting these nanoclusters and forming new structures with a gravimetric density higher than 15 wt %. Our observation is that the inclusion of Grimme’s DFT-D3 dispersion correction in this weakly interacting system has a significant effect on binding of the H2 molecules with these nanoclusters. The dispersion corrected interaction energy (IE) values (0.1-0.14 eV/H2 molecule) fall in the right energy window, that is ideal for hydrogen storage. These IE values are further verified by using high-level coupled-cluster calculations with non-iterative triples corrections i.e. CCSD(T), (which has been considered to be a highly accurate quantum chemical method) and thereby confirming the accuracy of our ‘dispersion correction’ incorporated DFT calculations. The significance of the polarization and dispersion energy in binding of the H2 molecules are confirmed by performing energy decomposition analysis (EDA). A total of 16, 24, 32 and 36 H2 molecules can be attached to the neutral and charged nanoclusters of size m = 2, 4, 8 and 12 respectively. Ab-initio molecular dynamics (AIMD) simulation shows that the outermost H2 molecules are desorbed at a rather low temperature viz. 150 K (-1230C) which is expected. However, complete dehydrogenation of these nanoclusters occur at around 1000C. Most importantly, the host nanoclusters remain stable up to ~500 K (2270C). All these results on the adsorption and desorption of molecular hydrogen with neutral and charged Mg nanocluster systems indicate towards the possibility of reducing the dehydrogenation temperature of bulk MgH2 by designing new Mg-based nano materials which will be able to adsorb molecular hydrogen via this weak Mg-H2 interaction, rather than the strong Mg-H bonding. Notwithstanding the fact that in practical applications, these interactions will be further complicated by the effect of substrates as well as interactions with other clusters, the present study has implications on our fundamental understanding to this problem.

Keywords: density functional theory, DFT, hydrogen storage, molecular dynamics, molecular hydrogen adsorption, nanoclusters, physisorption

Procedia PDF Downloads 405
11122 Analyzing Water Waves in Underground Pumped Storage Reservoirs: A Combined 3D Numerical and Experimental Approach

Authors: Elena Pummer, Holger Schuettrumpf

Abstract:

By today underground pumped storage plants as an outstanding alternative for classical pumped storage plants do not exist. They are needed to ensure the required balance between production and demand of energy. As a short to medium term storage pumped storage plants have been used economically over a long period of time, but their expansion is limited locally. The reasons are in particular the required topography and the extensive human land use. Through the use of underground reservoirs instead of surface lakes expansion options could be increased. Fulfilling the same functions, several hydrodynamic processes result in the specific design of the underground reservoirs and must be implemented in the planning process of such systems. A combined 3D numerical and experimental approach leads to currently unknown results about the occurring wave types and their behavior in dependence of different design and operating criteria. For the 3D numerical simulations, OpenFOAM was used and combined with an experimental approach in the laboratory of the Institute of Hydraulic Engineering and Water Resources Management at RWTH Aachen University, Germany. Using the finite-volume method and an explicit time discretization, a RANS-Simulation (k-ε) has been run. Convergence analyses for different time discretization, different meshes etc. and clear comparisons between both approaches lead to the result, that the numerical and experimental models can be combined and used as hybrid model. Undular bores partly with secondary waves and breaking bores occurred in the underground reservoir. Different water levels and discharges change the global effects, defined as the time-dependent average of the water level as well as the local processes, defined as the single, local hydrodynamic processes (water waves). Design criteria, like branches, directional changes, changes in cross-section or bottom slope, as well as changes in roughness have a great effect on the local processes, the global effects remain unaffected. Design calculations for underground pumped storage plants were developed on the basis of existing formulae and the results of the hybrid approach. Using the design calculations reservoirs heights as well as oscillation periods can be determined and lead to the knowledge of construction and operation possibilities of the plants. Consequently, future plants can be hydraulically optimized applying the design calculations on the local boundary conditions.

Keywords: energy storage, experimental approach, hybrid approach, undular and breaking Bores, 3D numerical approach

Procedia PDF Downloads 199
11121 Production of Premium Quality Cinnamon Bark Powder Using Cryogenic Grinding

Authors: Monika R. Bhoi, R. F. Sutar, Bhaumik B. Patel

Abstract:

The objective of this research paper is to obtain the premium quality of cinnamon bark powder through cryogenic grinding technology. The effect of grinding temperature (0, -20, -40, -60, -80 and -100˚C), feed rate (8, 9 and 10 kg/h), and sieve size (0.8, 1.0 and 1.5 mm) were evaluated with respect to grinding time, volatile oil content, particle size, energy consumption, and liquid nitrogen consumption. Cryogenic grinding process parameters were optimized to obtain premium quality cinnamon bark powder was carried out using three factorial completely randomized design. The optimization revealed that grinding of cinnamon bark at -80⁰C temperature using 0.8 mm sieve size and 10 kg/h feed rate resulted in premium quality cinnamon bark powder containing volatile oil 3.01%. In addition, volatile oil retention in cryogenically ground powder was 88.23%, whereas control (ambient grinding) had 33.11%. Storage study of premium quality cryogenically ground powder was carried out under accelerated storage conditions (38˚C & 90% R.H). Accelerated storage of cryoground powder was found to be advantageous over the conventional ground for extended storage of the ground cinnamon powder with retention of its nutritional quality. Hence, grinding of spices at optimally low cryogenic temperature is a promising technology for the production of its premium quality powder economically.

Keywords: cinnamon bark, cryogenic grinding, feed rate, volatile oil

Procedia PDF Downloads 149
11120 Fuzzy Adaptive Control of an Intelligent Hybrid HPS (Pvwindbat), Grid Power System Applied to a Dwelling

Authors: A. Derrouazin, N. Mekkakia-M, R. Taleb, M. Helaimi, A. Benbouali

Abstract:

Nowadays the use of different sources of renewable energy for the production of electricity is the concern of everyone, as, even impersonal domestic use of the electricity in isolated sites or in town. As the conventional sources of energy are shrinking, a need has arisen to look for alternative sources of energy with more emphasis on its optimal use. This paper presents design of a sustainable Hybrid Power System (PV-Wind-Storage) assisted by grid as supplementary sources applied to case study residential house, to meet its entire energy demand. A Fuzzy control system model has been developed to optimize and control flow of power from these sources. This energy requirement is mainly fulfilled from PV and Wind energy stored in batteries module for critical load of a residential house and supplemented by grid for base and peak load. The system has been developed for maximum daily households load energy of 3kWh and can be scaled to any higher value as per requirement of individual /community house ranging from 3kWh/day to 10kWh/day, as per the requirement. The simulation work, using intelligent energy management, has resulted in an optimal yield leading to average reduction in cost of electricity by 50% per day.

Keywords: photovoltaic (PV), wind turbine, battery, microcontroller, fuzzy control (FC), Matlab

Procedia PDF Downloads 630
11119 Comparing the Experimental Thermal Conductivity Results Using Transient Methods

Authors: Sofia Mylona, Dale Hume

Abstract:

The main scope of this work is to compare the experimental thermal conductivity results of fluids between devices using transient techniques. A range of different liquids within a range of viscosities was measured with two or more devices, and the results were compared between the different methods and the reference equations wherever it was available. The liquids selected are the most commonly used in academic or industrial laboratories to calibrate their thermal conductivity instruments having a variety of thermal conductivity, viscosity, and density. Three transient methods (Transient Hot Wire, Transient Plane Source, and Transient Line Source) were compared for the thermal conductivity measurements taken by using them. These methods have been chosen as the most accurate and because they all follow the same idea; as a function of the logarithm of time, the thermal conductivity is calculated from the slope of a plot of sensor temperature rise. For all measurements, the selected temperature range was at the atmospheric level from 10 to 40 ° C. Our results are coming with an agreement with the objections of several scientists over the reliability of the results of a few popular devices. The observation was surprising that the device used in many laboratories for fast measurements of liquid thermal conductivity display deviations of 500 percent which can be very poorly reproduced.

Keywords: accurate data, liquids, thermal conductivity, transient methods.

Procedia PDF Downloads 139
11118 Synthesis and Electrochemical Characterization of a Copolymer (PANI/PEDOT:PSS) for Application in Supercapacitors

Authors: Naima Boudieb, Mohamed Loucif Seaid, Imad Rati, Imane Benammane

Abstract:

The aim of this study is to synthesis of a copolymer PANI/PEDOT:PSS by electrochemical means to apply in supercapacitors. Polyaniline (PANI) is a conductive polymer; it was synthesized by electrochemical polymerization. It exhibits very stable properties in different environments, whereas PEDOT:PSS is a conductive polymer based on poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(styrene sulfonate)(PSS). It is commonly used with polyaniline to improve its electrical conductivity. Several physicochemical and electrochemical techniques were used for the characterization of PANI/PEDOT:PSS: cyclic voltammetry (VC), electrochemical impedance spectroscopy (EIS), open circuit potential, SEM, X-ray diffraction, etc. The results showed that the PANI/PEDOT:PSS composite is a promising material for supercapacitors due to its high electrical conductivity and high porosity. Electrochemical and physicochemical characterization tests have shown that the composite has high electrical and structural performances, making it a material of choice for high-performance energy storage applications.

Keywords: energy storage, supercapacitors, SIE, VC, PANI, poly(3, 4-ethylenedioxythiophene, PEDOT, polystyrene sulfonate

Procedia PDF Downloads 43
11117 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 160
11116 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology

Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury

Abstract:

An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.

Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin

Procedia PDF Downloads 73
11115 Evaluation of Soil Thermal-Entropy Properties with a Single-Probe Heat-Pulse Technique

Authors: Abdull Halim Abdull, Nasiman Sapari, Mohammad Haikal Asyraf Bin Anuar

Abstract:

Although soil thermal properties are required in many areas to improve oil recovery, they are seldom measured on a routine basis. Reasons for this are unclear, but may be related to a lack of suitable instrumentation and entropy theory. We integrate single probe thermal gradient for the radial conduction of a short-duration heat pulse away from a single electrode source, and compared it with the theory for an instantaneously heated line source. By measuring the temperature response at a short distance from the line source, and applying short-duration heat-pulse theory, we can extract all the entropy properties, the thermal diffusivity, heat capacity, and conductivity, from a single heat-pulse measurement. Results of initial experiments carried out on air-dry sand and clay materials indicate that this heat-pulse method yields soil thermal properties that compare well with thermal properties measured by single electrode.

Keywords: entropy, single probe thermal gradient, soil thermal, probe heat

Procedia PDF Downloads 424
11114 Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth

Authors: Elham Soltani Dehnavi

Abstract:

In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process.

Keywords: occupant experience, office buildings, space depth, thermal comfort, visual comfort

Procedia PDF Downloads 167
11113 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel

Authors: V. Karthickeyan

Abstract:

The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.

Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine

Procedia PDF Downloads 136
11112 Effect of Fibres-Chemical Treatment on the Thermal Properties of Natural Composites

Authors: J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, M. D. Banea

Abstract:

In the last decade, investments in sustainable processes and products have gained space in several segments, such as in the civil, automobile, textile and other industries. In addition to increasing concern about the development of environmentally friendly materials that reduce, energy costs and reduces environmental impact in the production of these products, as well as reducing CO2 emissions. Natural fibers offer a great alternative to replace synthetic fibers, totally or partially, because of their low cost and their renewable source. The purpose of this research is to study the effect of surface chemical treatment on the thermal properties of hybrid fiber reinforced natural fibers (NFRC), jute + ramie, jute + sisal, jute + curauá, and jute fiber in polymer matrices. Two types of chemical treatment: alkalinization and silanization were employed, besides the condition without treatment. Differential scanning calorimetry (DSC), thermogravimetry (TG) and dynamic-mechanical analysis (DMA) were performed to explore the thermal stability and weight loss in the natural fiber reinforced composite as a function of chemical treatment.

Keywords: chemical treatment, hybrid composite, jute, thermal

Procedia PDF Downloads 297
11111 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area

Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo

Abstract:

Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.

Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine

Procedia PDF Downloads 339
11110 SWOT Analysis of Renewable Energy

Authors: Bahadır Aydın

Abstract:

Being one of the most important elements of social evolution, energy has a vital role for a sustainable economy and development. Energy has great importance to level up the welfare. By this importance, countries having rich resources can apply energy as an political instrument. While needs of energy is increasing, sources to respond this need is very limited. Therefore, countries seek for alternative resources to meet their needs. Renewable energy sources have firstly taken into consideration. Being clean and belonging to countries own sources, renewable energy resources have been widely applied during the last decades. However, renewable energy cannot meet all the expectation of energy needs. In this respect, energy efficiency can be seen as an alternative. Energy efficiency can minimize energy consumption without degrading standard of living, lessening quality of products and without increasing energy bills. In this article, energy resources, SWOT analysis of renewable sources, and energy efficiency topics are mainly discussed.

Keywords: energy efficiency, renewable energy, energy regulations, oil, international relations

Procedia PDF Downloads 438
11109 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology

Authors: Edison A. Bonifaz

Abstract:

In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.

Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler

Procedia PDF Downloads 48
11108 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 281
11107 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia

Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah

Abstract:

The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.

Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin

Procedia PDF Downloads 335
11106 Parametric and Analysis Study of the Melting in Slabs Heated by a Laminar Heat Transfer Fluid in Downward and Upward Flows

Authors: Radouane Elbahjaoui, Hamid El Qarnia

Abstract:

The present work aims to investigate numerically the thermal and flow characteristics of a rectangular latent heat storage unit (LHSU) during the melting process of a phase change material (PCM). The LHSU consists of a number of vertical and identical plates of PCM separated by rectangular channels. The melting process is initiated when the LHSU is heated by a heat transfer fluid (HTF: water) flowing in channels in a downward or upward direction. The proposed study is motivated by the need to optimize the thermal performance of the LHSU by accelerating the charging process. A mathematical model is developed and a fixed-grid enthalpy formulation is adopted for modeling the melting process coupling with convection-conduction heat transfer. The finite volume method was used for discretization. The obtained numerical results are compared with experimental, analytical and numerical ones found in the literature and reasonable agreement is obtained. Thereafter, the numerical investigations were carried out to highlight the effects of the HTF flow direction and the aspect ratio of the PCM slabs on the heat transfer characteristics and thermal performance enhancement of the LHSU.

Keywords: PCM, TES, LHSU, melting

Procedia PDF Downloads 246
11105 Bio-Grouting Applications in Caprock Sealing for Geological CO2 Storage

Authors: Guijie Sang, Geo Davis, Momchil Terziev

Abstract:

Geological CO2 storage has been regarded as a promising strategy to mitigate the emission of greenhouse gas generated from traditional power stations and energy-intensive industry. Caprocks with very low permeability and ultra-fine pores create viscous and capillary barriers to guarantee CO2 sealing efficiency. However, caprock fractures, either naturally existing or artificially induced due to injection, could provide preferential paths for CO₂ escaping. Seeking an efficient technique to seal and strengthen caprock fractures is crucial. We apply microbial-induced-calcite-precipitation (MICP) technique for sealing and strengthening caprock fractures in the laboratory scale. The MICP bio-grouting technique has several advantages over conventional cement grouting methods, including its low viscosity, micron-size microbes (accessible to fine apertures), and low carbon footprint, among others. Different injection strategies are tested to achieve relatively homogenous calcite precipitation along the fractures, which is monitored dynamically based on laser ultrasonic technique. The MICP process in caprock fractures, which integrates the coupled flow and bio-chemical precipitation, is also modeled and validated through the experiment. The study could provide an effective bio-mediated grouting strategy for caprock sealing and thus ensuring a long-term safe geological CO2 storage.

Keywords: caprock sealing, geological CO2 storage, grouting strategy, microbial induced calcite precipitation

Procedia PDF Downloads 169