Search results for: synthetic dataset
1610 Leveraging Unannotated Data to Improve Question Answering for French Contract Analysis
Authors: Touila Ahmed, Elie Louis, Hamza Gharbi
Abstract:
State of the art question answering models have recently shown impressive performance especially in a zero-shot setting. This approach is particularly useful when confronted with a highly diverse domain such as the legal field, in which it is increasingly difficult to have a dataset covering every notion and concept. In this work, we propose a flexible generative question answering approach to contract analysis as well as a weakly supervised procedure to leverage unannotated data and boost our models’ performance in general, and their zero-shot performance in particular.Keywords: question answering, contract analysis, zero-shot, natural language processing, generative models, self-supervision
Procedia PDF Downloads 1941609 Successful Immobilization of Alcohol Dehydrogenase on Natural and Synthetic Support and Its Reaction on Ethanol
Authors: Hiral D. Trivedi, Dinesh S. Patel, Sachin P. Shukla
Abstract:
We have immobilized alcohol dehydrogenase on k-carrageenan, which is a natural polysaccharide obtained from seaweeds by entrapment and on copolymer of acrylamide and 2-hydroxy ethylmethaacrylate by covalent coupling. We have optimized all the immobilization parameters and also carried the comparison studies of both. In case of copolymer of acrylamide and 2-hydroxy ethylmethaacrylate, we have activated both the amino and hydroxyl group individually and simultaneously using different activating agents and obtained some interesting results. We have found that covalently bound enzyme was found to be better under all tested conditions. The reaction on ethanol was carried out using these immobilized systems.Keywords: alcohol dehydrogenase, acrylamide-co-2-hydroxy ethylmethaacrylate, ethanol, k-carrageenan
Procedia PDF Downloads 1461608 Phenolic Content and Antioxidant Potential of Selected Nigerian Herbs and Spices: A Justification for Consumption and Use in the Food Industry
Authors: Amarachi Delight Onyemachi, Gregory Ikechukwu Onwuka
Abstract:
The growing consumer trend for natural ingredients, functional foods with health benefits and the perceived risk of carcinogenesis associated with synthetic antioxidants have forced food manufacturers to look for alternatives for producing healthy and safe food. Herbs and spices are cheap, natural and harmless sources of antioxidants which can delay and prevent lipid oxidation of food products and also confer its unique organoleptic properties and health benefits to food products. The Nigerian climate has been proven to be conducive for the production of spices and herbs and is blessed bountifully with a wide range of them. Five selected Nigerian herbs and spices Piper guieense, Xylopia aethopica, Gongronema latifolium and Ocimum gratissimum were evaluated for their ability to act as radical scavengers. The spices were extracted with 80% ethanol and evaluated using total phenolic capacity (TPC), DPPH (1,1-diph diphenyl-2-picrylhydrazyl radical) ABTS (2,2’azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)), total antioxidant capacity (TAC), reducing power (RP) assays. The TPC ranged from 5.33 µg GAE/mg (in Gongronema latifolium) to 15.55 µg GAE/mg (in Ocimum gratissimum). The DPPH and ABTS scavenging activity of the extracts ranged from 0.23-0.36 IC50 mg/ml and 2.32-7.25 Trolox equivalent % respectively. The TAC and RP of the extract ranged from 6.73-10.64 µg AAE/mg and 3.52-10.19 µg AAE/mg. The result of percentage yield of the extract ranged from as low as 9.94% in Gongronema latifolium and to as high as 23.85% in Xylopia aethopica. A very strong positive relationship existed between the total antioxidant capacity and total phenolic content of the tested herbs and spices (R2=0.96). All of the extracts exhibited different extent of strong antioxidant activity, high antioxidant activity was found in Ocimum gratissimum and Gongronema latifolium with the least. However, Gongronema latifolium possessed the highest total antioxidant capacity. These data confirm the appreciable antioxidant potentials and high phenolic content of Nigerian herbs and spices, thereby providing justification for their use in dishes and functional foods, prevention of cellular damage caused by free radicals and use as natural antioxidants in the food industry for prevention of lipid oxidation in food products. However, to utilize these natural antioxidants in food products, further analysis and studies of their behaviour in food systems at varying temperature, pH conditions and ionic concentrations should be carried out to displace the use of synthetic antioxidants like BHT and BHA.Keywords: Antioxidant, free radicals, herbs, phenolic, spices
Procedia PDF Downloads 2561607 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity
Authors: Shaan Khosla, Jon Krohn
Abstract:
In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.Keywords: AI, machine learning, NLP, recruiting
Procedia PDF Downloads 841606 Accurate and Repeatable Pressure Control for Critical Testing of Advanced Ceramics Using Proportional and Derivative Controller
Authors: Benchalak Muangmeesri
Abstract:
The purpose of this paper is to discuss how to test the best control performance of a ceramics. Hydraulic press machine (HPM) is the most common shaping of advanced ceramic with products, dimensions, and ceramic products mainly from synthetic powders. A microcontroller can be achieved to control process and has set high standards in the shaping of raw materials in powder form. HPM was proposed to develop a position control system that linked to the embedded controller PIC16F877 via Proportional and Derivative (PD) controller. The model is performed using MATLAB/SIMULINK and the best control performance of an HPM. Finally, PD controller results, showing the best performance as it had the smallest overshoot and highest quality using a microcontroller control.Keywords: ceramics, hydraulic press, microcontroller, PD controller
Procedia PDF Downloads 3561605 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping
Authors: Xiuqin Ma, Hongwu Qin
Abstract:
A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping
Procedia PDF Downloads 5101604 Influence of Chemical Treatment on Elastic Properties of the Band Cotton Crepe 100%
Authors: Bachir Chemani, Rachid Halfaoui, Madani Maalem
Abstract:
The manufacturing technology of band cotton is very delicate and depends to choice of certain parameters such as torsion of warp yarn. The fabric elasticity is achieved without the use of any elastic material, chemical expansion, artificial or synthetic and it’s capable of creating pressures useful for therapeutic treatments.Before use, the band is subjected to treatments of specific preparation for obtaining certain elasticity, however, during its treatment, there are some regression parameters. The dependence of manufacturing parameters on the quality of the chemical treatment was confirmed. The aim of this work is to improve the properties of the fabric through the development of manufacturing technology appropriately. Finally for the treatment of the strip pancake 100% cotton, a treatment method is recommended.Keywords: elastic, cotton, processing, torsion
Procedia PDF Downloads 3871603 Removal of Nitrogen Compounds from Industrial Wastewater Using Sequencing Batch Reactor: The Effects of React Time
Authors: Ali W. Alattabi, Khalid S. Hashim, Hassnen M. Jafer, Ali Alzeyadi
Abstract:
This study was performed to optimise the react time (RT) and study its effects on the removal rates of nitrogen compounds in a sequencing batch reactor (SBR) treating synthetic industrial wastewater. The results showed that increasing the RT from 4 h to 10, 16 and 22 h significantly improved the nitrogen compounds’ removal efficiency, it was increased from 69.5% to 95%, 75.7 to 97% and from 54.2 to 80.1% for NH3-N, NO3-N and NO2-N respectively. The results obtained from this study showed that the RT of 22 h was the optimum for nitrogen compounds removal efficiency.Keywords: ammonia-nitrogen, retention time, nitrate, nitrite, sequencing batch reactor, sludge characteristics
Procedia PDF Downloads 3631602 Evaluating the Effects of a Positive Bitcoin Shock on the U.S Economy: A TVP-FAVAR Model with Stochastic Volatility
Authors: Olfa Kaabia, Ilyes Abid, Khaled Guesmi
Abstract:
This pioneer paper studies whether and how Bitcoin shocks are transmitted to the U.S economy. We employ a new methodology: TVP FAVAR model with stochastic volatility. We use a large dataset of 111 major U.S variables from 1959:m1 to 2016:m12. The results show that Bitcoin shocks significantly impact the U.S. economy. This significant impact is pronounced in a volatile and increasing U.S economy. The Bitcoin has a positive relationship on the U.S real activity, and a negative one on U.S prices and interest rates. Effects on the Monetary Policy exist via the inter-est rates and the Money, Credit and Finance transmission channels.Keywords: bitcoin, US economy, FAVAR models, stochastic volatility
Procedia PDF Downloads 2471601 Opportunities Forensics Biology in the Study of Sperm Traces after Washing
Authors: Saule Musabekova
Abstract:
Achievements of modern science, especially genetics, led to a sharp intensification of the process of proof. Footprints, subjected to destruction-related cause-effect relationships, are sources of evidentiary information on the circumstances it was committed and the persons committed it. Currently, with the overall growth in the number of crimes against sexual inviolability or sexual freedom, and increased the proportion of the crimes where to destroy the traces of the crime perpetrators different detergents are used. A characteristic feature of modern synthetic detergents is the presence of biological additives - enzymes that break down and gradually destroy stains of protein origin. To study the nature of the influence of modern washing powders semen stains were put kinds of fabrics and prepared in advance stained sperm of men of different groups according to ABO system. For research washing machines of known manufacturers of household appliances have been used with different production characteristics, in which the test was performed and the washing of various kinds of fabrics with semen stains. After washing the tissue with spots were tested for the presence of semen stains visually preserved, establishing in them surviving sperm or their elements, we studied the possibilities of the group diagnostics on the system ABO or molecular-genetic identification. The subsequent study of these spots by morphological method showed that 100% detection of morphological sperm cells - sperm is not possible. As a result, in 30% of further studies of these traces gave weakly positive results are obtained with an immunoassay test PSA SEMIQUANT. It is noted that the percentage of positive results obtained in the study of semen traces disposed on natural fiber fabrics is higher than sperm traces disposed on synthetic fabrics. Study traces of semen, confirmed by PSA - test 3% possible to establish a genetic profile of the person and obtain any positive findings of the molecular genetic examination. In other cases, it was not a sufficient amount of material for DNA identification. Results of research and the practical expert study found, in most cases, the conclusions of the identification of sperm traces do not seem possible. This a consequence of exposure to semen traces on the material evidence of biological additives contained in modern detergents and further the influence of other effective methods. Resulting in DNA has undergone irreversible changes (degradation) under the influence of external human factors. Using molecular genetic methods can partially solve the problems arising in the study of unlaundered physical evidence for the disclosure and investigation of crimes.Keywords: study of sperm, modern detergents, washing powders, forensic medicine
Procedia PDF Downloads 2981600 Intelligent Prediction System for Diagnosis of Heart Attack
Authors: Oluwaponmile David Alao
Abstract:
Due to an increase in the death rate as a result of heart attack. There is need to develop a system that can be useful in the diagnosis of the disease at the medical centre. This system will help in preventing misdiagnosis that may occur from the medical practitioner or the physicians. In this research work, heart disease dataset obtained from UCI repository has been used to develop an intelligent prediction diagnosis system. The system is modeled on a feedforwad neural network and trained with back propagation neural network. A recognition rate of 86% is obtained from the testing of the network.Keywords: heart disease, artificial neural network, diagnosis, prediction system
Procedia PDF Downloads 4501599 Synthesis of MIPs towards Precursors and Intermediates of Illicit Drugs and Their following Application in Sensing Unit
Authors: K. Graniczkowska, N. Beloglazova, S. De Saeger
Abstract:
The threat of synthetic drugs is one of the most significant current drug problems worldwide. The use of drugs of abuse has increased dramatically during the past three decades. Among others, Amphetamine-Type Stimulants (ATS) are globally the second most widely used drugs after cannabis, exceeding the use of cocaine and heroin. ATS are potent central nervous system (CNS) stimulants, capable of inducing euphoric static similar to cocaine. Recreational use of ATS is widespread, even though warnings of irreversible damage of the CNS were reported. ATS pose a big problem and their production contributes to the pollution of the environment by discharging big volumes of liquid waste to sewage system. Therefore, there is a demand to develop robust and sensitive sensors that can detect ATS and their intermediates in environmental water samples. A rapid and simple test is required. Analysis of environmental water samples (which sometimes can be a harsh environment) using antibody-based tests cannot be applied. Therefore, molecular imprinted polymers (MIPs), which are known as synthetic antibodies, have been chosen for that approach. MIPs are characterized with a high mechanical and thermal stability, show chemical resistance in a broad pH range and various organic or aqueous solvents. These properties make them the preferred type of receptors for application in the harsh conditions imposed by environmental samples. To the best of our knowledge, there are no existing MIPs-based sensors toward amphetamine and its intermediates. Also not many commercial MIPs for this application are available. Therefore, the aim of this study was to compare different techniques to obtain MIPs with high specificity towards ATS and characterize them for following use in a sensing unit. MIPs against amphetamine and its intermediates were synthesized using a few different techniques, such as electro-, thermo- and UV-initiated polymerization. Different monomers, cross linkers and initiators, in various ratios, were tested to obtain the best sensitivity and polymers properties. Subsequently, specificity and selectivity were compared with commercially available MIPs against amphetamine. Different linkers, such as lipoic acid, 3-mercaptopioponic acid and tyramine were examined, in combination with several immobilization techniques, to select the best procedure for attaching particles on sensor surface. Performed experiments allowed choosing an optimal method for the intended sensor application. Stability of MIPs in extreme conditions, such as highly acidic or basic was determined. Obtained results led to the conclusion about MIPs based sensor applicability in sewage system testing.Keywords: amphetamine type stimulants, environment, molecular imprinted polymers, MIPs, sensor
Procedia PDF Downloads 2501598 Comparing the Durability of Saudi Silica Sands for Use in Foundry Processing
Authors: Mahdi Alsagour, Sam Ramrattan
Abstract:
This paper was developed to investigate two types of sands from the Kingdom of Saudi Arabia (KSA) for potential use in the global metal casting industry. Four types of sands were selected for study, two of the sand systems investigated are natural sands from the KSA. The third sand sample is a heat processed synthetic sand and the last sample is commercially available US silica sand that is used as a control in the study. The purpose of this study is to define the durability of the four sand systems selected for foundry usage. Additionally, chemical analysis of the sand systems is presented before and after elevated temperature exposure. Results show that Saudi silica sands are durable and can be used in foundry processing.Keywords: alternative molding media, foundry sand, reclamation, silica sand, specialty sand
Procedia PDF Downloads 1371597 Do the Health Benefits of Oil-Led Economic Development Outweigh the Potential Health Harms from Environmental Pollution in Nigeria?
Authors: Marian Emmanuel Okon
Abstract:
Introduction: The Niger Delta region of Nigeria has a vast reserve of oil and gas, which has globally positioned the nation as the sixth largest exporter of crude oil. Production rapidly rose following oil discovery. In most oil producing nations of the world, the wealth generated from oil production and export has propelled economic advancement, enabling the development of industries and other relevant infrastructures. Therefore, it can be assumed that majority of the oil resource such as Nigeria’s, has the potential to improve the health of the population via job creation and derived revenues. However, the health benefits of this economic development might be offset by the environmental consequences of oil exploitation and production. Objective: This research aims to evaluate the balance between the health benefits of oil-led economic development and harmful environmental consequences of crude oil exploitation in Nigeria. Study Design: A pathway has been designed to guide data search and this study. The model created will assess the relationship between oil-led economic development and population health development via job creation, improvement of education, development of infrastructure and other forms of development as well as through harmful environmental consequences from oil activities. Data/Emerging Findings: Diverse potentially suitable datasets which are at different geographical scales have been identified, obtained or applied for and the dataset from the World Bank has been the most thoroughly explored. This large dataset contains information that would enable the longitudinal assessment of both the health benefits and harms from oil exploitation in Nigeria as well as identify the disparities that exist between the communities, states and regions. However, these data do not extend far back enough in time to capture the start of crude oil production. Thus, it is possible that the maximum economic benefits and health harms could be missed. To deal with this shortcoming, the potential for a comparative study with countries like United Kingdom, Morocco and Cote D’ivoire has also been taken into consideration, so as to evaluate the differences between these countries as well as identify the areas of improvement in Nigeria’s environmental and health policies. Notwithstanding, these data have shown some differences in each country’s economic, environmental and health state over time as well as a corresponding summary statistics. Conclusion: In theory, the beneficial effects of oil exploitation to the health of the population may be substantial as large swaths of the ‘wider determinants’ of population heath are influenced by the wealth of a nation. However, if uncontrolled, the consequences from environmental pollution and degradation may outweigh these benefits. Thus, there is a need to address this, in order to improve environmental and population health in Nigeria.Keywords: environmental pollution, health benefits, oil-led economic development, petroleum exploitation
Procedia PDF Downloads 3391596 Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity
Authors: Supriyono, Sumardiyono, Puti Pertiwi
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene.Keywords: antioxidant, , beta carotene, , crude palm oil, , DPPH, , tocopherol
Procedia PDF Downloads 2911595 Static Charge Control Plan for High-Density Electronics Centers
Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda
Abstract:
Ensuring a safe environment for sensitive electronics boards in places with high limitations in size poses two major difficulties: the control of charge accumulation in floating floors and the prevention of excess charge generation due to air cooling flows. In this paper, we discuss these mechanisms and possible solutions to prevent them. An experiment was made in the control room of a Cherenkov Telescope, where six racks of 2x1x1 m size and independent cooling units are located. The room is 10x4x2.5 m, and the electronics include high-speed digitizers, trigger circuits, etc. The floor used in this room was antistatic, but it was a raised floor mounted in floating design to facilitate the handling of the cables and maintenance. The tests were made by measuring the contact voltage acquired by a person who was walking along the room with different footwear qualities. In addition, we took some measurements of the voltage accumulated in a person in other situations like running or sitting up and down on an office chair. The voltages were taken in real time with an electrostatic voltage meter and dedicated control software. It is shown that peak voltages as high as 5 kV were measured with ambient humidity of more than 30%, which are within the range of a class 3A according to the HBM standard. In order to complete the results, we have made the same experiment in different spaces with alternative types of the floor like synthetic floor and earthenware floor obtaining peak voltages much lower than the ones measured with the floating synthetic floor. The grounding quality one achieves with this kind of floors can hardly beat the one typically encountered in standard floors glued directly on a solid substrate. On the other hand, the air ventilation used to prevent the overheating of the boards probably contributed in a significant way to the charge accumulated in the room. During the assessment of the quality of the static charge control, it is necessary to guarantee that the tests are made under repeatable conditions. One of the major difficulties which one encounters during these assessments is the fact the electrostatic voltmeters might provide different values depending on the humidity conditions and ground resistance quality. In addition, the use of certified antistatic footwear might mask deficiencies in the charge control. In this paper, we show how we defined protocols to guarantee that electrostatic readings are reliable. We believe that this can be helpful not only to qualify the static charge control in a laboratory but also to asses any procedure oriented to minimize the risk of electrostatic discharge events.Keywords: electrostatics, ESD protocols, HBM, static charge control
Procedia PDF Downloads 1291594 Empirical Study of Partitions Similarity Measures
Authors: Abdelkrim Alfalah, Lahcen Ouarbya, John Howroyd
Abstract:
This paper investigates and compares the performance of four existing distances and similarity measures between partitions. The partition measures considered are Rand Index (RI), Adjusted Rand Index (ARI), Variation of Information (VI), and Normalised Variation of Information (NVI). This work investigates the ability of these partition measures to capture three predefined intuitions: the variation within randomly generated partitions, the sensitivity to small perturbations, and finally the independence from the dataset scale. It has been shown that the Adjusted Rand Index performed well overall, with regards to these three intuitions.Keywords: clustering, comparing partitions, similarity measure, partition distance, partition metric, similarity between partitions, clustering comparison.
Procedia PDF Downloads 2021593 Research on Reflectors for Detecting Fishing Nets with Synthetic Aperture Radar Satellites
Authors: Toshiyuki Miyazaki, Fumihiro Takahashi, Takashi Hosokawa
Abstract:
Fishing nets and floating buoys used in fishing can be washed away by typhoons and storms. The spilled fishing nets become marine debris and hinder the navigation of ships. In this study, we report a method of attaching a retroreflective structure to afloat in order to discover fishing nets using SAR satellites. We prototyped an omnidirectional (all-around) corner reflector as a retroreflective structure that can be mounted on a float and analyzed its reflection characteristics. As a result, it was clarified that the reflection could be sufficiently larger than the backscattering of the sea surface. In order to further improve the performance, we worked on the design and trial production of the Luneberg lens.Keywords: retroreflective structure, spherical corner reflector, Luneberg lens, SAR satellite, maritime floating buoy
Procedia PDF Downloads 1601592 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 541591 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 381590 Deepfake Detection for Compressed Media
Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande
Abstract:
The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation
Procedia PDF Downloads 81589 Causal Relationship between Corporate Governance and Financial Information Transparency: A Simultaneous Equations Approach
Authors: Maali Kachouri, Anis Jarboui
Abstract:
We focus on the causal relationship between governance and information transparency as well as interrelation among the various governance mechanisms. This paper employs a simultaneous equations approach to show this relationship in the Tunisian context. Based on an 8-year dataset, our sample covers 28 listed companies over 2006-2013. Our findings suggest that internal and external governance mechanisms are interdependent. Moreover, in order to analyze the causal effect between information transparency and governance mechanisms, we found evidence that information transparency tends to increase good corporate governance practices.Keywords: simultaneous equations approach, transparency, causal relationship, corporate governance
Procedia PDF Downloads 3531588 Phytochemistry and Alpha-Amylase Inhibitory Activities of Rauvolfia vomitoria (Afzel) Leaves and Picralima nitida (Stapf) Seeds
Authors: Oseyemi Omowunmi Olubomehin, Olufemi Michael Denton
Abstract:
Diabetes mellitus is a disease that is related to the digestion of carbohydrates, proteins and fats and how this affects the blood glucose levels. Various synthetic drugs employed in the management of the disease work through different mechanisms. Keeping postprandial blood glucose levels within acceptable range is a major factor in the management of type 2 diabetes and its complications. Thus, the inhibition of carbohydrate-hydrolyzing enzymes such as α-amylase is an important strategy in lowering postprandial blood glucose levels, but synthetic inhibitors have undesirable side effects like flatulence, diarrhea, gastrointestinal disorders to mention a few. Therefore, it is necessary to identify and explore the α-amylase inhibitors from plants due to their availability, safety, and low costs. In the present study, extracts from the leaves of Rauvolfia vomitoria and seeds of Picralima nitida which are used in the Nigeria traditional system of medicine to treat diabetes were tested for their α-amylase inhibitory effect. The powdered plant samples were subjected to phytochemical screening using standard procedures. The leaves and seeds macerated successively using n-hexane, ethyl acetate and methanol resulted in the crude extracts which at different concentrations (0.1, 0.5 and 1 mg/mL) alongside the standard drug acarbose, were subjected to α-amylase inhibitory assay using the Benfield and Miller methods, with slight modification. Statistical analysis was done using ANOVA, SPSS version 2.0. The phytochemical screening results of the leaves of Rauvolfia vomitoria and the seeds of Picralima nitida showed the presence of alkaloids, tannins, saponins and cardiac glycosides while in addition Rauvolfia vomitoria had phenols and Picralima nitida had terpenoids. The α-amylase assay results revealed that at 1 mg/mL the methanol, hexane, and ethyl acetate extracts of the leaves of Rauvolfia vomitoria gave (15.74, 23.13 and 26.36 %) α-amylase inhibitions respectively, the seeds of Picralima nitida gave (15.50, 30.68, 36.72 %) inhibitions which were not significantly different from the control at p < 0.05, while acarbose gave a significant 56 % inhibition at p < 0.05. The presence of alkaloids, phenols, tannins, steroids, saponins, cardiac glycosides and terpenoids in these plants are responsible for the observed anti-diabetic activity. However, the low percentages of α-amylase inhibition by these plant samples shows that α-amylase inhibition is not the major way by which both plants exhibit their anti-diabetic effect.Keywords: alpha-amylase, Picralima nitida, postprandial hyperglycemia, Rauvolfia vomitoria
Procedia PDF Downloads 1911587 Deep Learning to Enhance Mathematics Education for Secondary Students in Sri Lanka
Authors: Selvavinayagan Babiharan
Abstract:
This research aims to develop a deep learning platform to enhance mathematics education for secondary students in Sri Lanka. The platform will be designed to incorporate interactive and user-friendly features to engage students in active learning and promote their mathematical skills. The proposed platform will be developed using TensorFlow and Keras, two widely used deep learning frameworks. The system will be trained on a large dataset of math problems, which will be collected from Sri Lankan school curricula. The results of this research will contribute to the improvement of mathematics education in Sri Lanka and provide a valuable tool for teachers to enhance the learning experience of their students.Keywords: information technology, education, machine learning, mathematics
Procedia PDF Downloads 831586 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)
Authors: Wafa' Slaibi Alsharafat
Abstract:
Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection
Procedia PDF Downloads 4741585 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 3201584 The Effect of Alternative Organic Fertilizer and Chemical Fertilizer on Nitrogen and Yield of Peppermint (Mentha peperita)
Authors: Seyed Ali Mohammad, Modarres Sanavy, Hamed Keshavarz, Ali Mokhtassi-Bidgoli
Abstract:
One of the biggest challenges for the current and future generations is to produce sufficient food for the world population with the existing limited available water resources. Peppermint is a specialty crop used for food and medicinal purposes. Its main component is menthol. It is used predominantly for oral hygiene, pharmaceuticals, and foods. Although drought stress is considered as a negative factor in agriculture, being responsible for severe yield losses; medicinal plants grown under semi-arid conditions usually produce higher concentrations of active substances than same species grown under moderate climates. Nitrogen (N) fertilizer management is central to the profitability and sustainability of forage crop production. Sub-optimal N supply will result in poor yields, and excess N application can lead to nitrate leaching and environmental pollution. In order to determine the response of peppermint to drought stress and different fertilizer treatments, a field experiment with peppermint was conducted in a sandy loam soil at a site of the Tarbiat Modares University, Agriculture Faculty, Tehran, Iran. The experiment used a complete randomized block design, with six rates of fertilizer strategies (F1: control, F2: Urea, F3: 75% urea + 25% vermicompost, F4: 50% urea + 50% vermicompost, F5: 25% urea + 75% vermicompost and F6: vermicompost) and three irrigation regime (S1: 45%, S2: 60% and S3: 75% FC) with three replication. The traits such as nitrogen, chlorophyll, carotenoids, anthocyanin, flavonoid and fresh biomass were studied. The results showed that the treatments had a significant effect on the studied traits as drought stress reduced photosynthetic pigment concentration. Also, drought stress reduced fresh yield of peppermint. Non stress condition had the greater amount of chlorophyll and fresh yield more than other irrigation treatments. The highest concentration of chlorophyll and the fresh biomass was obtained in F2 fertilizing treatments. Sever water stress (S1) produced decreased photosynthetic pigment content fresh yield of peppermint. Supply of N could improve photosynthetic capacity by enhancing photosynthetic pigment content. Perhaps application of vermicompost significantly improved the organic carbon, available N, P and K content in soil over urea fertilization alone. To get sustainable production of peppermint, application of vermicompost along with N through synthetic fertilizer is recommended for light textured sandy loam soils.Keywords: fresh yield, peppermint, synthetic nitrogen, vermicompost, water stress
Procedia PDF Downloads 2171583 Urdu Text Extraction Method from Images
Authors: Samabia Tehsin, Sumaira Kausar
Abstract:
Due to the vast increase in the multimedia data in recent years, efficient and robust retrieval techniques are needed to retrieve and index images/ videos. Text embedded in the images can serve as the strong retrieval tool for images. This is the reason that text extraction is an area of research with increasing attention. English text extraction is the focus of many researchers but very less work has been done on other languages like Urdu. This paper is focusing on Urdu text extraction from video frames. This paper presents a text detection feature set, which has the ability to deal up with most of the problems connected with the text extraction process. To test the validity of the method, it is tested on Urdu news dataset, which gives promising results.Keywords: caption text, content-based image retrieval, document analysis, text extraction
Procedia PDF Downloads 5161582 Generalized Mean-Field Theory of Phase Unwrapping via Multiple Interferograms
Authors: Yohei Saika
Abstract:
On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, multiple interferograms, statistical mechanics
Procedia PDF Downloads 4791581 Copolymers of Pyrrole and α,ω-Dithienyl Terminated Poly(ethylene glycol)
Authors: Nesrin Köken, Esin A. Güvel, Nilgün Kızılcan
Abstract:
This work presents synthesis of α,ω-dithienyl terminated poly(ethylene glycol) (PEGTh) capable for further chain extension by either chemical or electrochemical polymerization. PEGTh was characterized by FTIR and 1H-NMR. Further, copolymerization of PEGTh and pyrrole (Py) was performed by chemical oxidative polymerization using ceric (IV) salt as an oxidant (PPy-PEGTh). PEG without end group modification was used directly to prepare copolymers with Py by Ce (IV) salt (PPy-PEG). Block copolymers with mole ratio of pyrrole to PEGTh (PEG) 50:1 and 10:1 were synthesized. The electrical conductivities of copolymers PPy-PEGTh and PPy-PEG were determined by four-point probe technique. Influence of the synthetic route and content of the insulating segment on conductivity and yield of the copolymers were investigated.Keywords: chemical oxidative polymerization, conducting polymer, poly(ethylene glycol), polypyrrole
Procedia PDF Downloads 360