Search results for: penalized logistic regression
2829 Higher Consumption of White Rice Increase the Risk of Metabolic Syndrome in Adults with Abdominal Obesity
Authors: Zahra Bahadoran, Parvin Mirmiran, Fereidoun Azizi
Abstract:
Background: Higher consumption of white rice has been suggested as a risk factor for development of metabolic abnormalities. In this study we investigated the association between consumption of white rice and the 3-year occurrence of metabolic syndrome (MetS) in adults with and without abdominal obesity. Methods: This longitudinal study was conducted within the framework of the Tehran Lipid and Glucose Study on 1476 adults, aged 19-70 years. Dietary intakes were measured, using a 168-food items validated semi-quantitative food frequency questionnaire at baseline. Biochemical and anthropometric measurements were evaluated at both baseline (2006-2008) and after 3-year follow-up (2009-2011). MetS and its components were defined according to the diagnostic criteria proposed by NCEP ATP III, and the new cutoff points of waist circumference for Iranian adults. Multiple logistic regression models were used to estimate the occurrence of the MetS in each quartile of white rice consumption. Results: The mean age of participants was 37.8±12.3 y, and mean BMI was 26.0±4.5 kg/m2 at baseline. The prevalence of MetS in subjects with abdominal obesity was significantly higher (40.9 vs. 16.2%, P<0.01). There was no significant difference in white rice consumption between the two groups. Mean daily intake of white rice was 93±59, 209±58, 262±60 and 432±224 g/d, in the first to fourth quartiles of white rice, respectively. Stratified analysis by categories of waist circumference showed that higher consumption of white rice was more strongly related to the risk of metabolic syndrome in participants who had abdominal obesity (OR: 2.34, 95% CI:1.14-4.41 vs. OR:0.99, 95% CI:0.60-1.65) Conclusion: We demonstrated that higher consumption of white rice may be a risk for development of metabolic syndrome in adults with abdominal obesity.Keywords: white rice, abdominal obesity, metabolic syndrome, food science, triglycerides
Procedia PDF Downloads 4472828 Factors Affecting Nutritional Status of Elderly People of Rural Nepal: A Community-Based Cross-Sectional Study
Authors: Man Kumar Tamang, Uday Narayan Yadav
Abstract:
Background and objectives: Every country in the world is facing a demographic challenge due to drastic growth of population over 60 years. Adequate diet and nutritional status are important determinants of health in elderly populations. This study aimed to assess the nutritional status among the elderly population and factors associated with malnutrition at the community setting in rural Nepal. Methods: This is a community-based cross-sectional study among elderly of age 60 years or above in the three randomly selected VDCs of Morang district in eastern Nepal, between August and November, 2016. A multi stage cluster sampling was adopted with sample size of 345 of which 339 participated in the study. Nutritional status was assessed by MNA tool and associated socio-economic, demographic, psychological and nutritional factors were checked by binary logistic regression analysis. Results: Among 339 participants, 24.8% were found to be within normal nutritional status, 49.6% were at risk of malnutrition and 24.8% were malnourished. Independent factors associated with malnutrition status among the elderly people after controlling the cofounders in the bivariate analysis were: elderly who were malnourished were those who belonged to backward caste according to traditional Hindu caste system [OR=2.69, 95% CI: 1.17-6.21), being unemployed (OR=3.23, 95% CI: 1.63-6.41),who experienced any mistreatment from caregivers (OR=4.05, 95% CI: 1.90-8.60), being not involved in physical activity (OR=4.67, 95% CI: 1.87-11.66) and those taking medication for any co-morbidities. Conclusion: Many socio-economic, psychological and physiological factors affect nutritional status in our sample population and these issues need to be addressed for bringing improvement in elderly nutrition and health status.Keywords: elderly, eastern Nepal, malnutrition, nutritional status
Procedia PDF Downloads 2992827 Bayesian Reliability of Weibull Regression with Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator.Keywords: non-informative prior, Bayesian method, type-I censoring, Gauss quardature
Procedia PDF Downloads 5042826 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 1492825 Educational Attainment of Owner-Managers and Performance of Micro- and Small Informal Businesses in Nigeria
Authors: Isaiah Oluranti Olurinola, Michael Kayode Bolarinwa, Ebenezer Bowale, Ifeoluwa Ogunrinola
Abstract:
Abstract - While much literature exists on microfinancing and its impact on the development of micro, small and medium-scale enterprises (MSME), yet little is known in respect of the impact of different types of education of owner-managers on the performances as well as innovative possibilities of such enterprises. This paper aims at contributing to the understanding of the impact of different types of education (academic, technical, apprenticeship, etc) that influence the performance of micro, small and medium-sized enterprise (MSME). This study utilises a recent and larger data-set collected in six states and FCT Abuja, Nigeria in the year 2014. Furthermore, the study carries out a comparative analysis of business performance among the different geo-political zones in Nigeria, given the educational attainment of the owner-managers. The data set were enterprise-based and were collected by the Nigerian Institute for Social and Economic Research (NISER) in the year 2014. Six hundred and eighty eight enterprises were covered in the survey. The method of data analysis for this study is the use of basic descriptive statistics in addition to the Logistic Regression model used in the prediction of the log of odds of business performance in relation to any of the identified educational attainment of the owner-managers in the sampled enterprises. An OLS econometric technique is also used to determine the effects of owner-managers' different educational types on the performance of the sampled MSME. Policy measures that will further enhance the contributions of education to MSME performance will be put forward.Keywords: Business Performance, Education, Microfinancing, Micro, Small and Medium Scale Enterprises
Procedia PDF Downloads 5242824 Determinants of Teenage Pregnancy: The Case of School Adolescents of Arba Minch Town, Southern Ethiopia
Authors: Aleme Mekuria, Samuel Mathewos
Abstract:
Background: Teenage pregnancy has long been a worldwide social, economic and educational concern for the developed, developing and underdeveloped countries. Studies on adolescent sexuality and pregnancy are very limited in our country. Therefore, this study aims at assessing the prevalence of teenage pregnancy and its determinants among school adolescents of Arba Minch town. Methods: Institution- based, cross-sectional study was conducted from 20-30 March 2014. Systematic sampling technique was used to select a total of 578 students from four schools of the town. Data were collected by trained data collectors using a pre-tested, self-administered structured questionnaire. The analysis was made using the software SPSS version 20.0 statistical packages. Multivariate logistic regression was used to identify the predictors of teenage pregnancy. Results: The prevalence of teenage pregnancy among school adolescents of Arba Minch town was 7.7%. Being grade11(AOR=4.6;95%CI:1.4,9.3) and grade12 student (AOR=5.8;95% CI:1.3,14.4), not knowing the correct time to take emergency contraceptives(AOR=3.3;95%CI:1.4,7.4), substance use(AOR=3.1;95%CI:1.1,8.8), living with either of biological parents (AOR=3.3;95%CI:1.1,8.7) and poor parent-daughter interaction (AOR=3.1;95%CI:1.1,8.7) were found to be significant predictors of teenage pregnancy. Conclusion: This study revealed a high level of teenage pregnancy among school adolescents of Arba Minch town. A significant number of adolescent female school students were at risk of facing the challenges of teenage pregnancy in the study area. School-based reproductive health education and strong parent-daughter relationships should be strengthened.Keywords: adolescent, Arba minch, risk factors, school, southern Ethiopia, teenage pregnancy
Procedia PDF Downloads 3492823 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro
Authors: Rafael Zhindon Almeida
Abstract:
Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models
Procedia PDF Downloads 1002822 Analysis of Ferroresonant Overvoltages in Cable-fed Transformers
Authors: George Eduful, Ebenezer A. Jackson, Kingsford A. Atanga
Abstract:
This paper investigates the impacts of cable length and capacity of transformer on ferroresonant overvoltage in cable-fed transformers. The study was conducted by simulation using the EMTP RV. Results show that ferroresonance can cause dangerous overvoltages ranging from 2 to 5 per unit. These overvoltages impose stress on insulations of transformers and cables and subsequently result in system failures. Undertaking Basic Multiple Regression Analysis (BMR) on the results obtained, a statistical model was obtained in terms of cable length and transformer capacity. The model is useful for ferroresonant prediction and control in cable-fed transformers.Keywords: ferroresonance, cable-fed transformers, EMTP RV, regression analysis
Procedia PDF Downloads 5332821 Waterborne Platooning: Cost and Logistic Analysis of Vessel Trains
Authors: Alina P. Colling, Robert G. Hekkenberg
Abstract:
Recent years have seen extensive technological advancement in truck platooning, as reflected in the literature. Its main benefits are the improvement of traffic stability and the reduction of air drag, resulting in less fuel consumption, in comparison to using individual trucks. Platooning is now being adapted to the waterborne transport sector in the NOVIMAR project through the development of a Vessel Train (VT) concept. The main focus of VT’s, as opposed to the truck platoons, is the decrease in manning on board, ultimately working towards autonomous vessel operations. This crew reduction can prove to be an important selling point in achieving economic competitiveness of the waterborne approach when compared to alternative modes of transport. This paper discusses the expected benefits and drawbacks of the VT concept, in terms of the technical logistic performance and generalized costs. More specifically, VT’s can provide flexibility in destination choices for shippers but also add complexity when performing special manoeuvres in VT formation. In order to quantify the cost and performances, a model is developed and simulations are carried out for various case studies. These compare the application of VT’s in the short sea and inland water transport, with specific sailing regimes and technologies installed on board to allow different levels of autonomy. The results enable the identification of the most important boundary conditions for the successful operation of the waterborne platooning concept. These findings serve as a framework for future business applications of the VT.Keywords: autonomous vessels, NOVIMAR, vessel trains, waterborne platooning
Procedia PDF Downloads 2242820 The Overlooked Problem Among Surgical Patients: Preoperative Anxiety at Ethiopian University Hospital
Authors: Yohtahe Woldegerima Berhe, Tadesse Belayneh Melkie, Girmay Fitiwi Lema, Marye Getnet, Wubie Birlie Chekol
Abstract:
Introduction: Anxiety was repeatedly reported as the worst aspect of the perioperative time. The objective of this study was to assess the prevalence of preoperative anxiety among adult surgical patients at the University of Gondar Comprehensive Specialized Hospital (UoGCSH), Northwest Ethiopia. Methodology: Hospital-based cross-sectional study was conducted among surgical patients at the university hospital. After obtaining ethical approval, 407 surgical patients were approached during the preoperative period. Preoperative anxiety was assessed by the State-Trait Anxiety Inventory. The association between variables was determined by using binary logistic regression analysis. The strength of association was described in adjusted odds ratio (AOR) and a p-value < 0.05 at a 95% confidence interval which was considered statistically significant. Results: A total of 400 patients were included in this study, with a 98.3% response rate. Preoperative anxiety was observed among 237 (59.3%) patients, and the median (IQR) STAI score was 50 (40 – 56.7). age ≥ 60 years (AOR: 5.7, CI: 1.6 – 20.4, P: 0.007), emergency surgery (AOR: 2.5, CI: 1.3 – 4.7, P: 0.005), preoperative pain (AOR: 2.6, CI: 1.2 – 5.4, P: 0.005), and rural residency (AOR: 1.8, CI: 1.1 – 2.9, P: 0.031) were found significantly associated with preoperative anxiety. Conclusions: The prevalence of preoperative anxiety among surgical patients was high. Older age (≥ 60 years), emergency surgery, preoperative pain, and rural residency were found to be significantly associated with preoperative anxiety. Assessment for preoperative anxiety should be a routine component of preoperative assessment of both elective and emergency surgical patients. Preoperative pain should be appropriately managed as it can help to reduce preoperative anxiety. Optimal anxiety reduction methods should be investigated and implemented in the hospital.Keywords: preoperative anxiety, anxiety, anxiety of anesthesia and surgery, state-trait anxiety inventory, preoperative care
Procedia PDF Downloads 232819 Effect of Atrial Flutter on Alcoholic Cardiomyopathy
Authors: Ibrahim Ahmed, Richard Amoateng, Akhil Jain, Mohamed Ahmed
Abstract:
Alcoholic cardiomyopathy (ACM) is a type of acquired cardiomyopathy caused by chronic alcohol consumption. Frequently ACM is associated with arrhythmias such as atrial flutter. Our aim was to characterize the patient demographics and investigate the effect of atrial flutter (AF) on ACM. This was a retrospective cohort study using the Nationwide Inpatient Sample database to identify admissions in adults with principal and secondary diagnoses of alcoholic cardiomyopathy and atrial flutter from 2019. Multivariate linear and logistic regression models were adjusted for age, gender, race, household income, insurance status, Elixhauser comorbidity score, hospital location, bed size, and teaching status. The primary outcome was all-cause mortality, and secondary outcomes were the length of stay (LOS) and total charge in USD. There was a total of 21,855 admissions with alcoholic cardiomyopathy, of which 1,635 had atrial flutter (AF-ACM). Compared to Non-AF-ACM cohort, AF-ACM cohort had fewer females (4.89% vs 14.54%, p<0.001), were older (58.66 vs 56.13 years, p<0.001), fewer Native Americans (0.61% vs2.67%, p<0.01), had fewer smaller (19.27% vs 22.45%, p<0.01) & medium-sized hospitals (23.24% vs28.98%, p<0.01), but more large-sized hospitals (57.49% vs 48.57%, p<0.01), more Medicare (40.37% vs 34.08%, p<0.05) and fewer Medicaid insured (23.55% vs 33.70%, p=<0.001), fewer hypertension (10.7% vs 15.01%, p<0.05), and more obesity (24.77% vs 16.35%, p<0.001). Compared to Non-AF-ACM cohort, there was no difference in AF-ACM cohort mortality rate (6.13% vs 4.20%, p=0.0998), unadjusted mortality OR 1.49 (95% CI 0.92-2.40, p=0.102), adjusted mortality OR 1.36 (95% CI 0.83-2.24, p=0.221), but there was a difference in LOS 1.23 days (95% CI 0.34-2.13, p<0.01), total charge $28,860.30 (95% CI 11,883.96-45,836.60, p<0.01). In patients admitted with ACM, the presence of AF was not associated with a higher all-cause mortality rate or odds of all-cause mortality; however, it was associated with 1.23 days increase in LOS and a $28,860.30 increase in total hospitalization charge. Native Americans, older age and obesity were risk factors for the presence of AF in ACM.Keywords: alcoholic cardiomyopathy, atrial flutter, cardiomyopathy, arrhythmia
Procedia PDF Downloads 1122818 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation
Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim
Abstract:
Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time
Procedia PDF Downloads 732817 Factors Associated With Poor Glycaemic Control Among Patients With Type 2 Diabetes at Gatundu Level 5 Hospital. Kiambu County, Kenya: Key Lessons and Way Forward
Authors: Carolyne Ndungu, Wesley Too, Diana Kassaman
Abstract:
Diabetes is a global public health problem with an increasing morbidity and mortality rate across the globe. It is reported that 422 million people worldwide have diabetes with type 2 diabetes more common in people of African descent. Whilst prevalence of diabetes is four times more than it was in the last three decades, making it the world's ninth greatest cause of mortality, treatment of complications resulting from poor glycemic control is still high, contributing to poverty level in sub-Saharan. Poor treatment adherence has also been identified as a major contributing factor poor glycemic control among diabetic patients and still remains a significant challenge especially among patients living in rural Kenya. This study therefore seeks to identify gaps, barriers and challenges towards medication non-adherence among diabetic patients on follow-up at Kiambu County Referral Hospital, Kenya. Methods: A cross- sectional descriptive study was carried out at Gatundu Level five Hospital in Kiambu County. The study population consisted of adult patients with type two diabetes mellitus (T2DM) on follow up, at the Diabetes clinic between the month of June to July 2022. Systematic sampling of 200 participants was carried out. Ethical approvals from relevant authorities were done and ethical aspects of the study were also observed. Data analysis is ongoing using logistic regression analysis. Results, recommendations -contribution of this study will be highlighted within the next one month.Keywords: adherence, diabetes, medication, Kenya
Procedia PDF Downloads 1342816 Learning Dynamic Representations of Nodes in Temporally Variant Graphs
Authors: Sandra Mitrovic, Gaurav Singh
Abstract:
In many industries, including telecommunications, churn prediction has been a topic of active research. A lot of attention has been drawn on devising the most informative features, and this area of research has gained even more focus with spread of (social) network analytics. The call detail records (CDRs) have been used to construct customer networks and extract potentially useful features. However, to the best of our knowledge, no studies including network features have yet proposed a generic way of representing network information. Instead, ad-hoc and dataset dependent solutions have been suggested. In this work, we build upon a recently presented method (node2vec) to obtain representations for nodes in observed network. The proposed approach is generic and applicable to any network and domain. Unlike node2vec, which assumes a static network, we consider a dynamic and time-evolving network. To account for this, we propose an approach that constructs the feature representation of each node by generating its node2vec representations at different timestamps, concatenating them and finally compressing using an auto-encoder-like method in order to retain reasonably long and informative feature vectors. We test the proposed method on churn prediction task in telco domain. To predict churners at timestamp ts+1, we construct training and testing datasets consisting of feature vectors from time intervals [t1, ts-1] and [t2, ts] respectively, and use traditional supervised classification models like SVM and Logistic Regression. Observed results show the effectiveness of proposed approach as compared to ad-hoc feature selection based approaches and static node2vec.Keywords: churn prediction, dynamic networks, node2vec, auto-encoders
Procedia PDF Downloads 3162815 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.Keywords: classification, CRISP-DM, machine learning, predictive quality, regression
Procedia PDF Downloads 1452814 Retinal Changes in Patients with Idiopathic Inflammatory Myopathies: A Case-Control Study
Authors: Rachna Agarwal, R. Naveen, Darpan Thakre, Rohit Shahi, Maryam Abbasi, Upendra Rathore, Latika Gupta
Abstract:
Aim: Retinal changes are the window to systemic vasculature. Therefore, we explored retinal changes in patients with idiopathic inflammatory myopathies (IIM) as a surrogate for vascular health. Methods: Adult and juvenile IIM patients visiting a tertiary care centre in 2021 satisfying the International Myositis Classification Criteria were enrolled for detailed ophthalmic examination in comparison with healthy controls (HC). Patients with conditions that precluded thorough posterior chamber examination were excluded. Scale variables are expressed as median (IQR). Multivariate analysis (binary logistic regression-BLR) was conducted, adjusting for age, gender, and comorbidities besides factors significant in univariate analysis. Results: 43 patients with IIM [31 females; age 36 (23-45) years; disease duration 5.5 (2-12) months] were enrolled for participation. DM (44%) was the most common diagnosis. IIM patients exhibited frequent attenuation of retinal vessels (32.6% vs. 4.3%, p <0.001), AV nicking (14% vs. 2.2%, p=0.053), and vascular tortuosity (18.6% vs. 2.2%, p=0.012), besides decreased visual acuity (53.5% vs. 10.9%, p<0.001) and immature cataracts (34.9% vs. 2.2%, p<0.001). Attenuation of vessels [OR 10.9 (1.7-71), p=0.004] emerged as significantly different from HC after adjusting for covariates in BLR. Notably, adults with IIM were more predisposed to retinal abnormalities [21 (57%) vs. 1 (16%), p=0.068], especially attenuation of vessels [14(38%) vs. 0(0), p=0.067] than jIIM. However, no difference was found in retinal features amongst the subtypes of adult IIM, nor did they correlate with MDAAT, MDI, or HAQ-DI. Conclusion: Retinal microvasculopathy and diminution of vision occur in nearly one-third to half of the patients with IIM. Microvasculopathy occurs across subtypes of IIM, and more so in adults, calling for further investigation as a surrogate for damage assessment and potentially even systemic vascular health.Keywords: idiopathic inflammatory myopathies, vascular health, retinal microvasculopathy, arterial attenuation
Procedia PDF Downloads 932813 Statistical Model to Examine the Impact of the Inflation Rate and Real Interest Rate on the Bahrain Economy
Authors: Ghada Abo-Zaid
Abstract:
Introduction: Oil is one of the most income source in Bahrain. Low oil price influence on the economy growth and the investment rate in Bahrain. For example, the economic growth was 3.7% in 2012, and it reduced to 2.9% in 2015. Investment rate was 9.8% in 2012, and it is reduced to be 5.9% and -12.1% in 2014 and 2015, respectively. The inflation rate is increased to the peak point in 2013 with 3.3 %. Objectives: The objectives here are to build statistical models to examine the effect of the interest rate inflation rate on the growth economy in Bahrain from 2000 to 2018. Methods: This study based on 18 years, and the multiple regression model is used for the analysis. All of the missing data are omitted from the analysis. Results: Regression model is used to examine the association between the Growth national product (GNP), the inflation rate, and real interest rate. We found that (i) Increase the real interest rate decrease the GNP. (ii) Increase the inflation rate does not effect on the growth economy in Bahrain since the average of the inflation rate was almost 2%, and this is considered as a low percentage. Conclusion: There is a positive impact of the real interest rate on the GNP in Bahrain. While the inflation rate does not show any negative influence on the GNP as the inflation rate was not large enough to effect negatively on the economy growth rate in Bahrain.Keywords: growth national product, egypt, regression model, interest rate
Procedia PDF Downloads 1672812 Incidence, Risk Factors and Impact of Major Adverse Events Following Paediatric Cardiac Surgery
Authors: Sandipika Gupta
Abstract:
Objective: Due to admirably low 30-day mortality rates for paediatric cardiac surgery, it is now pertinent to turn towards more intermediate-length outcomes such as morbidities closely associated with these surgeries. One such morbidity, major adverse events (MAE) comprises a group of adverse outcomes associated with paediatric cardiac surgery (e.g. cardiac arrest, major haemorrhage). Methods: This is a retrospective study that analysed the incidence and impact of MAE which was the primary outcome in the UK population. The data was collected in 5 centres between October 2015 and June 2017, amassing 3090 surgical episodes. The incidence and risk factors for MAE, were assessed through descriptive statistical analyses and multivariate logistic regression. The secondary outcomes of life status at 6 months and the length of hospital stay were also evaluated to understand the impact of MAE on patients. Results: Out of 3090 episodes, 134 (4.3%) had a postoperative MAE. The majority of the episodes were in: neonates (47%, P<0.001), high-risk cardiac diagnosis groups (20.1%, P<0.001), episodes with longer 5mes on the bypass (72.4%, P<0.001) and urgent surgeries (57.9%, P<0.001). Episodes reporting MAE also reported longer lengths of stay in hospital (29 days vs 9 days, P<0.001). Furthermore, patients experiencing MAE were at a higher risk of mortality at the 6-month life status check (mortality rates: 29.2% vs 2%, P<0.001).Conclusions: Key risk factors were identified. An important negative impact of MAE was found for patients. The identified risk factors could be used to profile and flag at-risk patients. Monitoring of MAE rates and closer investigation into the care pathway before and after individual MAEs in children’s heart units may lead to a reduction in these terrible events. Procedia PDF Downloads 2332811 The Prediction of Effective Equation on Drivers' Behavioral Characteristics of Lane Changing
Authors: Khashayar Kazemzadeh, Mohammad Hanif Dasoomi
Abstract:
According to the increasing volume of traffic, lane changing plays a crucial role in traffic flow. Lane changing in traffic depends on several factors including road geometrical design, speed, drivers’ behavioral characteristics, etc. A great deal of research has been carried out regarding these fields. Despite of the other significant factors, the drivers’ behavioral characteristics of lane changing has been emphasized in this paper. This paper has predicted the effective equation based on personal characteristics of lane changing by regression models.Keywords: effective equation, lane changing, drivers’ behavioral characteristics, regression models
Procedia PDF Downloads 4522810 Impact of Social Transfers on Energy Poverty in Turkey
Authors: Julide Yildirim, Nadir Ocal
Abstract:
Even though there are many studies investigating the extent and determinants of poverty, there is paucity of research investigating the issue of energy poverty in Turkey. The aim of this paper is threefold: First to investigate the extend of energy poverty in Turkey by using Household Budget Survey datasets belonging to 2005 - 2016 period. Second, to examine the risk factors for energy poverty. Finally, to assess the impact of social assistance program participation on energy poverty. Existing literature employs alternative methods to measure energy poverty. In this study energy poverty is measured by employing expenditure approach, where people are considered as energy poor if they disburse more than 10 per cent of their income to meet their energy requirements. Empirical results indicate that energy poverty rate is around 20 per cent during the time period under consideration. Since Household Budget Survey panel data is not available for 2005 - 2016 period, a pseudo panel has been constructed. Panel logistic regression method is utilized to determine the risk factors for energy poverty. The empirical results demonstrate that there is a statistically significant impact of work status and education level on energy poverty likelihood. In the final part of the paper the impact of social transfers on energy poverty has been examined by utilizing panel biprobit model, where social transfer participation and energy poverty incidences are jointly modeled. The empirical findings indicate that social transfer program participation reduces energy poverty. The negative association between energy poverty and social transfer program participation is more pronounced in urban areas compared with the rural areas.Keywords: energy poverty, social transfers, panel data models, Turkey
Procedia PDF Downloads 1442809 Climate Changes in Albania and Their Effect on Cereal Yield
Authors: Lule Basha, Eralda Gjika
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest
Procedia PDF Downloads 932808 Determining the Prevalence and Correlates of Depression among Transgenders of a Developing Country
Authors: Usama Bin Zubair, Muhammad Azeem
Abstract:
Introduction: Depression has been one of the most commonly diagnosed mental health disorders in Pakistan. A Census conducted by the government of Pakistan in 2017 showed that more than 10000 trans-genders live in Pakistan. HIV, illicit substance use and mental health issues, including depression, have been the main health problems faced by them. Trans-gender population has been suffering from depressive illness more than normal population all over the world. Aim: To assess the prevalence of depression among the transgender population and analyze the relationship of socio-demographic factors with depression. Subjects and Methods: The sample population comprised of one hundred and forty-two transgender people of Rawalpindi and Islamabad. Beck depressive inventory II (BDI-II) was used to record the presence and severity of the depressive symptoms. Depressive symptoms were categorized as mild, moderate and severe. Relationship of the age, smoking, family income, illicit substance use and education were studied with the presence of depressive symptoms among these transgender people of twin cities of Pakistan. Results: A total of 142 transgender people were included in the final analysis. The mean age of the study participants was 39.55 ± 6.18. Out of these, 45.1% had no depressive symptoms while 31.7% had mild, 12.7% had moderate and 10.6% had severe depressive symptomatology. After applying the binary logistic regression, we found that the presence of depressive symptoms had a significant association with illicit substance use among the target population. Conclusion: This study showed a high prevalence of depressive symptoms among the transgender population in the twin cities of Pakistan. Use of illicit substances like tobacco, cannabis, opiates, and alcohol should be discouraged to prevent mental health problems.Keywords: depression, transgender, prevalence, sociodemographic factors
Procedia PDF Downloads 1222807 Impact of Perceived Stress on Psychological Well-Being, Aggression and Emotional Regulation
Authors: Nishtha Batra
Abstract:
This study was conducted to identify the effect of perceived stress on emotional regulation, aggression and psychological well-being. Analysis was conducted using correlational and regression models to examine the relationships between perceived stress (independent variable) and psychological factors containing emotional intelligence, psychological well-being and aggression. Subjects N=100, Male students 50 and Female students 50. The data was collected using Cohen's Perceived Stress Scale, Gross’s Emotional Regulation Questionnaire (ERQ), Ryff’s Psychological Well-being scale and Orispina’s aggression scale. Correlation and regression (SPSS version 22) Emotional regulation and psychological well-being had a significant relationship with Perceived stress.Keywords: perceived stress, psychological well-being, aggression, emotional regulation, students
Procedia PDF Downloads 322806 Factors Affecting of Musculoskeletal Disorders in Nurses from a Taiwan Hospital
Authors: Hsien Hua Kuo, Wen Chun Lin, Chia Chi Hsu, Hsien Wen Kuo
Abstract:
Objective: Despite the high prevalence of musculoskeletal disorders (MSDs) among nurses, which has been consistently observed in the studies of Western countries, very little information regarding intensity of workload and work-related quality of life (WRQOL) related to MSDs among nurses is available in Taiwan. The objective of this study is to investigate the factors affecting musculoskeletal disorders in nurses from a hospital. Methods: 550 nurses from a hospital in Taoyuan were interviewed using a modified standardized Nordic Musculoskeletal (NMQ) questionnaire which contained the demographic information, workplace condition and musculoskeletal disorders. Results: Response rate of nurses were 92.5% from a teaching hospital. Based on medical diagnosis by physician, neck of musculoskeletal disorders had the highest percentage in nine body portions. The higher percentage of musculoskeletal disorders in nurses found from wards of internal and surgery. Severity and symptoms of musculoskeletal disorders diagnosed by self-reported questionnaire significantly correlated with WRQOL, job satisfaction and intensity of workload among nurses based on the logistic regression model. Conclusion: The severity and symptoms of musculoskeletal disorders among nurses showed a dose-dependent with WRQOL and workload. When work characteristics in hospital were modified, the severity of musculoskeletal disorders among nurses will be decreased and alleviated. Comment: Multifaceted ergonomic intervention programme to reduce the prevalence of MSDs among nurses was by encouraging nurses to do more physical activity which will make them more flexible and increase their strength. Therefore, the head nurse should encourage nurses to regularly physical activity and to modify unfitting ergonomic environment in order to reduce the prevalence of MSDs.Keywords: musculoskeletal disorders, nurse, WRQOL, job satisfaction
Procedia PDF Downloads 3342805 Dietary Habit and Anthropometric Status in Hypertensive Patients Compared to Normotensive Participants in the North of Iran
Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahbobeh Gholipour
Abstract:
Hypertension is one of the important reasons of morbidity and mortality in countries, including Iran. It has been shown that hypertension is a consequence of the interaction of genetics and environment. Nutrients have important roles in the controlling of blood pressure. We assessed dietary habit and anthropometric status in patients with hypertension in the north of Iran, and that have special dietary habit and according to their culture. This study was conducted on 127 patients with newly recognized hypertension and the 120 normotensive participants. Anthropometric status was measured and demographic characteristics, and medical condition were collected by valid questionnaires and dietary habit assessment was assessed with 3-day food recall (two weekdays and one weekend). The mean age of participants was 58 ± 6.7 years. The mean level of energy intake, saturated fat, vitamin D, potassium, zinc, dietary fiber, vitamin C, calcium, phosphorus, copper and magnesium was significantly lower in the hypertensive group compared to the control (p < 0.05). After adjusting for energy intake, positive association was observe between hypertension and some dietary nutrients including; Cholesterol [OR: 1.1, P: 0.001, B: 0.06], fiber [OR: 1.6, P: 0.001, B: 1.8], vitamin D [OR: 2.6, P: 0.006, B: 0.9] and zinc [OR: 1.4, P: 0.006, B: 0.3] intake. Logistic regression analysis showed that there was not significant association between hypertension, weight and waist circumference. In our study, the mean intake of some nutrients was lower in the hypertensive individuals compared to the normotensive individual. Health training about suitable dietary habits and easier access to vitamin D supplementation in patients with hypertension are cost-effective tools to improve outcomes in Iran.Keywords: hypertension, north of Iran, dietary intake, weight
Procedia PDF Downloads 1842804 Exploring the Spatial Relationship between Built Environment and Ride-hailing Demand: Applying Street-Level Images
Authors: Jingjue Bao, Ye Li, Yujie Qi
Abstract:
The explosive growth of ride-hailing has reshaped residents' travel behavior and plays a crucial role in urban mobility within the built environment. Contributing to the research of the spatial variation of ride-hailing demand and its relationship to the built environment and socioeconomic factors, this study utilizes multi-source data from Haikou, China, to construct a Multi-scale Geographically Weighted Regression model (MGWR), considering spatial scale heterogeneity. The regression results showed that MGWR model was demonstrated superior interpretability and reliability with an improvement of 3.4% on R2 and from 4853 to 4787 on AIC, compared with Geographically Weighted Regression model (GWR). Furthermore, to precisely identify the surrounding environment of sampling point, DeepLabv3+ model is employed to segment street-level images. Features extracted from these images are incorporated as variables in the regression model, further enhancing its rationality and accuracy by 7.78% improvement on R2 compared with the MGWR model only considered region-level variables. By integrating multi-scale geospatial data and utilizing advanced computer vision techniques, this study provides a comprehensive understanding of the spatial dynamics between ride-hailing demand and the urban built environment. The insights gained from this research are expected to contribute significantly to urban transportation planning and policy making, as well as ride-hailing platforms, facilitating the development of more efficient and effective mobility solutions in modern cities.Keywords: travel behavior, ride-hailing, spatial relationship, built environment, street-level image
Procedia PDF Downloads 822803 Perception of Neighbourhood-Level Built Environment in Relation to Youth Physical Activity in Malaysia
Authors: A. Abdullah, N. Faghih Mirzaei, S. Hany Haron
Abstract:
Neighbourhood environment walkability on reported physical activity (PA) levels of students of Universiti Sains Malaysia (USM) in Malaysia. Compared with previous generations, today’s young people spend less time playing outdoors and have lower participation rates in PA. Research suggests that negative perceptions of neighbourhood walkability may be a potential barrier to adolescents’ PA. The sample consisted of 200 USM students (to 24 years old) who live outside of the main campus and engage in PA in sport halls and sport fields of USM. The data were analysed using the t-test, binary logistic regression, and discriminant analysis techniques. The present study found that youth PA was affected by neighbourhood environment walkability factors, including neighbourhood infrastructures, neighbourhood safety (crime), and recreation facilities, as well as street characteristics and neighbourhood design variables such as facades of sidewalks, roadside trees, green spaces, and aesthetics. The finding also illustrated that active students were influenced by street connectivity, neighbourhood infrastructures, recreation facilities, facades of sidewalks, and aesthetics, whereas students in the less active group were affected by access to destinations, neighbourhood safety (crime), and roadside trees and green spaces for their PAs. These results report which factors of built environments have more effect on youth PA and they message to the public to create more awareness about the benefits of PA on youth health.Keywords: fear of crime, neighbourhood built environment, physical activities, street characteristics design
Procedia PDF Downloads 3542802 Incidence and Causes of Elective Surgery Cancellations in Songklanagarind Hospital, Thailand
Authors: A. Kaeotawee, N. Bunmas, W. Chomthong
Abstract:
Background: The cancellation of elective surgery is a major indicator of poor operating room efficiency. Furthermore, it is recognized as a major cause of emotional trauma to patients as well as their families. This study was carried out to assess the incidence and causes of elective surgery cancellation in our setting and to find the appropriate solutions for better quality management. Objective: To determine the incidence and causes of elective surgery cancellations in Songklanagarind Hospital. Material and Method: A prospective survey was conducted from September to November 2012. All patients who had their scheduled elective operations cancelled were assessed. Data was collected on the following 2 components: (1) patient demographics;(2) main reasons for cancellations, which were grouped into patient-related factors and organizational-related factors. Data are reported as a percentage of patients whose operations were cancelled. The association between cancellation status and patient demographics was assessed using univariate logistic regression. Results: 2,395 patients were scheduled for elective surgery and of these 343 (14.3%) had their operations cancelled. Cardiothoracic surgery had the highest rate of cancellations (28.7%) while the least number of cancellations occurred in ophthalmology (10.1%). The main reasons for cancellations were related to the unit's organization (53.6%), due to the surgeon (48.4%). Patient related causes (46.4%), due to non medical reasons (32.1%). The most common cause of cancellation by the surgeon was lack of theater time (21.3%), by patients due to the patient’s nonappearance (25.1%). Cancellation was significantly associated with type of patient, health insurance, type of anesthesia and specialties (p<0.05). Conclusion: Surgery cancellations by surgeons relating to a lack of theater time was a significant problem in our setting. Appropriate solutions for better quality improvement are needed.Keywords: elective cases, surgery cancellation, quality management, appropriate solutions
Procedia PDF Downloads 2602801 Increasing National Health Insurance Scheme Enrolment in Ghana: Pro-Rata Insurance Premium Payment with Mobile Phone as the Answer
Authors: Joseph Marfo Boaheng, Daniel Ansong, Eugenia Amporfo
Abstract:
Health Insurance is proposed to provide financial protection against catastrophic health care cost arising from disease. Ghana has had a National Health Insurance Scheme (NHIS) since 2003 with the current enrolment/retention rate of 36%. The main goal of the scheme is to provide equity in the health sector as well as ensuring affordable health care for the poor. However, the current payment system is not flexible to attract significant proportion of the poor informal sector onto the scheme. Looking at the extensive use of mobiles in the Ghana where about 29,220,602.00 registered mobile phone lines are actively in used as of June 2014, paying health insurance premium through mobile phone could be feasible to attract larger proportion of the informal sector onto the scheme. Methodology: The quantitative cross-sectional survey was used to solicit the required information from 877 respondents living in Kumasi, the second capital city of Ghana. The magnitude of the effect of Pro-rata system (flexible payment terms) on NHIS enrollment rate was estimated with binary logistic regression model. Results: The odds for an individual to enroll onto NHIS with mobile phone increases about 2 times more when payment of insurance premium is on pro-rata basis ie. flexible payment terms (p=0.008, CI=1.212-3.565). Conclusion: The study advocates the National Health Insurance Authority consider this alternative payment system that has the potential of attracting a greater proportion of the informal sector to be enrolled or retained onto the scheme.Keywords: enrollment, health insurance, mobile phone, pro-rata
Procedia PDF Downloads 3992800 Factors Associated with Unintended Pregnancy amongst Currently Married Pregnant Women in Ilesa Osun State, Nigeria
Authors: O. S. Asaolu, A. Bolorunduro
Abstract:
Background: Unwanted, mistimed and unintended pregnancy is an important public health issue and the most common cause of maternal mortality in developing countries. Unintended pregnancy is a potential hazard for every sexually active woman as it most times ends in unsafe abortion. The study aimed at assessing the pre-conception contraceptive use, prevalence of unintended pregnancies and the non-contraceptive factors associated with unintended pregnancy amongst currently married women in Osun state. Methodology: A descriptive cross-sectional study among randomly selected 341 currently married pregnant women attending antenatal clinics in Ilesa town of Osun state was conducted in 5 health facilities. A random selection of 5 of the 22 health facilities in the state was done. Data was collected through a self-administered questionnaire and all completed questionnaires were analyzed with SPSS. Result: About two-fifth of the currently pregnant women (40%) who has never used an FP method reported that their current pregnancy was unintended. The results indicate that age of women, age at first sex, substance use, total children ever born of children, religion, and extramarital affairs were key predictors of unintended pregnancy. Women who have higher parity are more likely to experience unintended pregnancy compared to women with lower parity (odds ratio, 0.25). Furthermore, those women who don’t engage in extra marital affairs were less likely to experience unintended pregnancy (odds ratio, 0.3) compared to those who do not. Contribution to knowledge: The predicted probability, using logistic regression, has shown that women who engage in extramarital affairs and women with high parity are more likely to have unintended pregnancy. Conclusion: Behaviour change programs should aim to reduce unintended pregnancy by focusing mostly on identified factors so that the need for abortion is decreased and the overall well-being of the family is maintained and enhanced.Keywords: unintended pregnancy, factors, pregnant women, Nigeria
Procedia PDF Downloads 393