Search results for: partial least squares regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4592

Search results for: partial least squares regression

3992 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L. Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, "first-glance" correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve

Procedia PDF Downloads 477
3991 Green Materials for Hot Mixed Asphalt Production

Authors: Salisu Dahiru, Jibrin M. Kaura, Abubakar I. Jumare, Sulaiman M. Mahmood

Abstract:

Reclaimed asphalt, used automobile tires and rice husk, were regarded as waste. These materials could be used in construction of new roads and for roads rehabilitation. Investigation into the production of a Green Hot Mixed Asphalt (GHMA) pavement using Reclaimed Asphalt Pavement (RAP) as partial replacement for coarse aggregate, Crumb Rubber (CR) from waste automobile tires as modifier for bitumen binder and Rice Husk Ash (RHA) as partial replacement of ordinary portland cement (OPC) filler, for roads construction and rehabilitation was presented. 30% Reclaimed asphalt of total aggregate, 15% Crumb Rubber of total binder content, 5% Rice Husk Ash of total mix, and 5.2% Crumb Rubber Modified Bitumen content were recommended for optimum performance. Loss of marshal stability was investigated on mix with the recommended optimum CRMB. The mix revealed good performance with only about 13% loss of stability after 24 hours of immersion in hot water bath, as against about 24% marshal stability lost reported in previous studies for conventional Hot Mixed Asphalt (HMA).

Keywords: rice husk, reclaimed asphalt, filler, crumb rubber, bitumen content green hot mix asphalt

Procedia PDF Downloads 336
3990 Predictors of School Drop out among High School Students

Authors: Osman Zorbaz, Selen Demirtas-Zorbaz, Ozlem Ulas

Abstract:

The factors that cause adolescents to drop out school were several. One of the frameworks about school dropout focuses on the contextual factors around the adolescents whereas the other one focuses on individual factors. It can be said that both factors are important equally. In this study, both adolescent’s individual factors (anti-social behaviors, academic success) and contextual factors (parent academic involvement, parent academic support, number of siblings, living with parent) were examined in the term of school dropout. The study sample consisted of 346 high school students in the public schools in Ankara who continued their education in 2015-2016 academic year. One hundred eighty-five the students (53.5%) were girls and 161 (46.5%) were boys. In addition to this 118 of them were in ninth grade, 122 of them in tenth grade and 106 of them were in eleventh grade. Multiple regression and one-way ANOVA statistical methods were used. First, it was examined if the data meet the assumptions and conditions that are required for regression analysis. After controlling the assumptions, regression analysis was conducted. Parent academic involvement, parent academic support, number of siblings, anti-social behaviors, academic success variables were taken into the regression model and it was seen that parent academic involvement (t=-3.023, p < .01), anti-social behaviors (t=7.038, p < .001), and academic success (t=-3.718, p < .001) predicted school dropout whereas parent academic support (t=-1.403, p > .05) and number of siblings (t=-1.908, p > .05) didn’t. The model explained 30% of the variance (R=.557, R2=.300, F5,345=30.626, p < .001). In addition to this the variance, results showed there was no significant difference on high school students school dropout levels according to living with parents or not (F2;345=1.183, p > .05). Results discussed in the light of the literature and suggestion were made. As a result, academic involvement, academic success and anti-social behaviors will be considered as an important factors for preventing school drop-out.

Keywords: adolescents, anti-social behavior, parent academic involvement, parent academic support, school dropout

Procedia PDF Downloads 284
3989 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 85
3988 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression

Authors: Anne M. Denton, Rahul Gomes, David W. Franzen

Abstract:

High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.

Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression

Procedia PDF Downloads 129
3987 Effect of Transit-Oriented Development on Air Quality in Neighborhoods of Delhi

Authors: Smriti Bhatnagar

Abstract:

This study aims to find if the Transit-oriented planning and development approach benefit the quality of air in neighborhoods of New Delhi. Two methodologies, namely the land use regression analysis and the Transit-oriented development index analysis, are being used to explore this relationship. Land Use Regression Analysis makes use of urban form characteristics as obtained for 33 neighborhoods in Delhi. These comprise road lengths, land use areas, population and household densities, number of amenities and distance between amenities. Regressions are run to establish the relationship between urban form variables and air quality parameters (dependent variables). For the Transit-oriented development index analysis, the Transit-oriented Development index is developed as a composite index comprising 29 urban form indicators. This index is developed by assigning weights to each of the 29 urban form data points. Regressions are run to establish the relationship between the Transit-oriented development index and air quality parameters. The thesis finds that elements of Transit-oriented development if incorporated in planning approach, have a positive effect on air quality. Roads suited for non-motorized transport, well connected civic amenities in neighbourhoods, for instance, have a directly proportional relationship with air quality. Transit-oriented development index, however, is not found to have a consistent relationship with air quality parameters. The reason could this, however, be in the way that the index has been constructed.

Keywords: air quality, land use regression, mixed-use planning, transit-oriented development index, New Delhi

Procedia PDF Downloads 270
3986 Going beyond Elementary Algebraic Identities: The Expectation of a Gifted Child, an Indian Scenario

Authors: S. R. Santhanam

Abstract:

A gifted child is one who gives evidence of creativity, good memory, rapid learning. In mathematics, a teacher often comes across some gifted children and they exhibit the following characteristics: unusual alertness, enjoying solving problems, getting bored on repetitions, self-taught, going beyond what teacher taught, ask probing questions, connecting unconnected concepts, vivid imagination, readiness for research work, perseverance of a topic. There are two main areas of research carried out on them: 1)identifying gifted children, 2) interacting and channelizing them. A lack of appropriate recognition will lead the gifted child demotivated. One of the main findings is if proper attention and nourishment are not given then it leads a gifted child to become depressed, underachieving, fail to reach their full potential and sometimes develop negative attitude towards school and study. After identifying them, a mathematics teacher has to develop them into a fall fledged achiever. The responsibility of the teacher is enormous. The teacher has to be resourceful and patient. But interacting with them one finds a lot of surprises and awesomeness. The elementary algebraic identities like (a+b)(a-b)=a²-b², expansion of like (a+b)²(a-b)² and others are taught to students, of age group 13-15 in India. An average child will be satisfied with a single proof and immediate application of these identities. But a gifted child expects more from the teacher and at one stage after a little training will surpass the teacher also. In this short paper, the author shares his experience regarding teaching algebraic identities to gifted children. The following problem was given to a set of 10 gifted children of the specified age group: If a natural number ‘n’ to expressed as the sum of the two squares, will 2n also be expressed as the sum of two squares? An investigation has been done on what multiples of n satisfying the criterion. The attempts of the gifted children were consolidated and conclusion was drawn. A second problem was given to them as: can two natural numbers be found such that the difference of their square is 3? After a successful solution, more situations were analysed. As a third question, the finding of the sign of an algebraic expression in three variables was analysed. As an example: if a,b,c are real and unequal what will be sign of a²+4b²+9c²-4ab-12bc-6ca? Apart from an expression as a perfect square what other methods can be employed to prove an algebraic expression as positive negative or non negative has been analysed. Expressions like 4x²+2y²+13y²-2xy-4yz-6zx were given, and the children were asked to find the sign of the expression for all real values of x,y and z. In all investigations, only basic algebraic identities were used. As a next probe, a divisibility problem was initiated. When a,b,c are natural numbers such that a+b+c is at least 6, and if a+b+c is divisible by 6 then will 6 divide a³+b³+c³. The gifted children solved it in two different ways.

Keywords: algebraic identities, gifted children, Indian scenario, research

Procedia PDF Downloads 180
3985 Design of Compact UWB Multilayered Microstrip Filter with Wide Stopband

Authors: N. Azadi-Tinat, H. Oraizi

Abstract:

Design of compact UWB multilayered microstrip filter with E-shape resonator is presented, which provides wide stopband up to 20 GHz and arbitrary impedance matching. The design procedure is developed based on the method of least squares and theory of N-coupled transmission lines. The dimensions of designed filter are about 11 mm × 11 mm and the three E-shape resonators are placed among four dielectric layers. The average insertion loss in the passband is less than 1 dB and in the stopband is about 30 dB up to 20 GHz. Its group delay in the UWB region is about 0.5 ns. The performance of the optimized filter design perfectly agrees with the microwave simulation softwares.

Keywords: method of least square, multilayer microstrip filter, n-coupled transmission lines, ultra-wideband

Procedia PDF Downloads 393
3984 Analysis of Spatial Heterogeneity of Residential Prices in Guangzhou: An Actual Study Based on Point of Interest Geographically Weighted Regression Model

Authors: Zichun Guo

Abstract:

Guangzhou's house price has long been lower than the other three major cities; with the gradual increase in Guangzhou's house price, the influencing factors of house price have gradually been paid attention to; this paper tries to use house price data and POI (Point of Interest) data, and explores the distribution of house price and influencing factors by applying the Kriging spatial interpolation method and geographically weighted regression model in ArcGIS. The results show that the interpolation result of house price has a significant relationship with the economic development and development potential of the region and that different POI types have different impacts on the growth of house prices in different regions.

Keywords: POI, house price, spatial heterogeneity, Guangzhou

Procedia PDF Downloads 55
3983 ELD79-LGD2006 Transformation Techniques Implementation and Accuracy Comparison in Tripoli Area, Libya

Authors: Jamal A. Gledan, Othman A. Azzeidani

Abstract:

During the last decade, Libya established a new Geodetic Datum called Libyan Geodetic Datum 2006 (LGD 2006) by using GPS, whereas the ground traversing method was used to establish the last Libyan datum which was called the Europe Libyan Datum 79 (ELD79). The current research paper introduces ELD79 to LGD2006 coordinate transformation technique, the accurate comparison of transformation between multiple regression equations and the three-parameters model (Bursa-Wolf). The results had been obtained show that the overall accuracy of stepwise multi regression equations is better than that can be determined by using Bursa-Wolf transformation model.

Keywords: geodetic datum, horizontal control points, traditional similarity transformation model, unconventional transformation techniques

Procedia PDF Downloads 307
3982 Applicability of Cameriere’s Age Estimation Method in a Sample of Turkish Adults

Authors: Hatice Boyacioglu, Nursel Akkaya, Humeyra Ozge Yilanci, Hilmi Kansu, Nihal Avcu

Abstract:

The strong relationship between the reduction in the size of the pulp cavity and increasing age has been reported in the literature. This relationship can be utilized to estimate the age of an individual by measuring the pulp cavity size using dental radiographs as a non-destructive method. The purpose of this study is to develop a population specific regression model for age estimation in a sample of Turkish adults by applying Cameriere’s method on panoramic radiographs. The sample consisted of 100 panoramic radiographs of Turkish patients (40 men, 60 women) aged between 20 and 70 years. Pulp and tooth area ratios (AR) of the maxilla¬¬ry canines were measured by two maxillofacial radiologists and then the results were subjected to regression analysis. There were no statistically significant intra-observer and inter-observer differences. The correlation coefficient between age and the AR of the maxillary canines was -0.71 and the following regression equation was derived: Estimated Age = 77,365 – ( 351,193 × AR ). The mean prediction error was 4 years which is within acceptable errors limits for age estimation. This shows that the pulp/tooth area ratio is a useful variable for assessing age with reasonable accuracy. Based on the results of this research, it was concluded that Cameriere’s method is suitable for dental age estimation and it can be used for forensic procedures in Turkish adults. These instructions give you guidelines for preparing papers for conferences or journals.

Keywords: age estimation by teeth, forensic dentistry, panoramic radiograph, Cameriere's method

Procedia PDF Downloads 450
3981 Relations between Psychological Adjustment and Perceived Parental, Teacher and Best Friend Acceptance among Bangladeshi Adolescents

Authors: Tariqul Islam, Shaheen Mollah

Abstract:

The study's main objective is to assess the relationship between psychological adjustment and parental acceptance-rejection, teacher acceptance-rejection, and best friend acceptance-rejection among secondary school students. This study was conducted on a sample of 300 (6th through 10th-grade students) recruited from over ten schools in Dhaka. While the schools were selected purposively, the respondents within each school were selected conveniently. The collected data were analyzed using Pearson product-moment correlation, hierarchical regression, and simultaneous regression analysis. The results showed that psychological adjustment is positively correlated with paternal, maternal, teacher, and best friend acceptance. The paternal acceptance was significantly connected with maternal acceptance. The teacher and best friend acceptance are correlated substantially with paternal and maternal acceptance. The hierarchical multiple regressions indicated that maternal, paternal, teacher, and best friend acceptance-rejection contributed significantly to students' psychological adjustment. The results revealed substantial independent contributions of maternal, paternal, teacher, and best friend acceptance on the students' psychological adjustment. The simultaneous regression analysis indicates that the maternal and best friend acceptances (but not paternal acceptance) were significant predictors of psychological adjustments. It showed that 41.7% variability in psychological adjustment could be explained by paternal, maternal, and best friend acceptance. The findings of the present study are exciting. They may contribute to developing insight in parents and best friends for behaving properly with their offspring and friend, respectively, for better psychological adjustment.

Keywords: adjustment, parenting, rejection, acceptance

Procedia PDF Downloads 145
3980 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach

Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak

Abstract:

Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.

Keywords: palm oil, fatty acid, NIRS, regression

Procedia PDF Downloads 507
3979 Is Electricity Consumption Stationary in Turkey?

Authors: Eyup Dogan

Abstract:

The number of research articles analyzing the integration properties of energy variables has rapidly increased in the energy literature for about a decade. The stochastic behaviors of energy variables are worth knowing due to several reasons. For instance, national policies to conserve or promote energy consumption, which should be taken as shocks to energy consumption, will have transitory effects in energy consumption if energy consumption is found to be stationary in one country. Furthermore, it is also important to know the order of integration to employ an appropriate econometric model. Despite being an important subject for applied energy (economics) and having a huge volume of studies, several known limitations still exist with the existing literature. For example, many of the studies use aggregate energy consumption and national level data. In addition, a huge part of the literature is either multi-country studies or solely focusing on the U.S. This is the first study in the literature that considers a form of energy consumption by sectors at sub-national level. This research study aims at investigating unit root properties of electricity consumption for 12 regions of Turkey by four sectors in addition to total electricity consumption for the purpose of filling the mentioned limits in the literature. In this regard, we analyze stationarity properties of 60 cases . Because the use of multiple unit root tests make the results robust and consistent, we apply Dickey-Fuller unit root test based on Generalized Least Squares regression (DFGLS), Phillips-Perron unit root test (PP) and Zivot-Andrews unit root test with one endogenous structural break (ZA). The main finding of this study is that electricity consumption is trend stationary in 7 cases according to DFGLS and PP, whereas it is stationary process in 12 cases when we take into account the structural change by applying ZA. Thus, shocks to electricity consumption have transitory effects in those cases; namely, agriculture in region 1, region 4 and region 7, industrial in region 5, region 8, region 9, region 10 and region 11, business in region 4, region 7 and region 9, total electricity consumption in region 11. Regarding policy implications, policies to decrease or stimulate the use of electricity have a long-run impact on electricity consumption in 80% of cases in Turkey given that 48 cases are non-stationary process. On the other hand, the past behavior of electricity consumption can be used to predict the future behavior of that in 12 cases only.

Keywords: unit root, electricity consumption, sectoral data, subnational data

Procedia PDF Downloads 410
3978 Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing

Authors: Yogita Mishra, Arijit Roy, Dhruval Bhavsar

Abstract:

The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively.

Keywords: hyperspectral, NDNI, nitrogen concentration, regression value

Procedia PDF Downloads 295
3977 Case of A Huge Retroperitoneal Abscess Spanning from the Diaphragm to the Pelvic Brim

Authors: Christopher Leung, Tony Kim, Rebecca Lendzion, Scott Mackenzie

Abstract:

Retroperitoneal abscesses are a rare but serious condition with often delayed diagnosis, non-specific symptoms, multiple causes and high morbidity/mortality. With the advent of more readily available cross-sectional imaging, retroperitoneal abscesses are treated earlier and better outcomes are achieved. Occasionally, a retroperitoneal abscess is present as a huge retroperitoneal abscess, as evident in this 53-year-old male. With a background of chronic renal disease and left partial nephrectomy, this gentleman presented with a one-month history of left flank pain without any other symptoms, including fevers or abdominal pain. CT abdomen and pelvis demonstrated a huge retroperitoneal abscess spanning from the diaphragm, abutting the spleen, down to the iliopsoas muscle and abutting the iliac vessels at the pelvic brim. This large retroperitoneal abscess required open drainage as well as drainage by interventional radiology. A long course of intravenous antibiotics and multiple drainages was required to drain the abscess. His blood culture and fluid culture grew Proteus species suggesting a urinary source, likely from his non-functioning kidney, which had a partial nephrectomy. Such a huge retroperitoneal abscess has rarely been described in the literature. The learning point here is that the basic principle of source control and antibiotics is paramount in treating retroperitoneal abscesses regardless of the size of the abscess.

Keywords: retroperitoneal abscess, retroperitoneal mass, sepsis, genitourinary infection

Procedia PDF Downloads 221
3976 The Effects of Vocational Training on Offender Rehabilitation in Nigerian Correctional Institutions

Authors: Hadi Mohammed

Abstract:

The introduction of vocational education and training (VET) in correctional institutions as part of prisoner rehabilitation program is to help offenders develop marketable job skills and reduce re-offending thereby increasing the likely hood of successful reintegration back to their community. Offenders who participate in vocational education and training are significantly less likely to return to prison after released and are more likely to find employment after released than offenders who do not received such training. Those who participated in vocational training were 28% more likely to be employed after released from prison than those who did not received such training. This paper examined the effects of vocational training on offender rehabilitation as well as the effects of vocational training on the relationship between reformation and reintegration in Nigerian correctional institution. To address this two research question were formulated to guide the research. A survey research was employed. The participants were 200 offenders in Nigerian correctional institutions. Questionnaire items were administered. Mean, standard deviation and Partial Correlation were used for the data analysis. The findings revealed that vocational training has helped in offender rehabilitation in Nigerian correctional institutions. Similarly there was a moderate significant positive partial correlation between reformation and reintegration, controlling for vocational training, r=0.461, n=221, p<0.005 with moderate level of reformation and being associated with moderate level of reintegration. Based on the findings of the study, it was recommended that Nigerian Correctional Institutions should strengthen their vocational training program for offenders to be properly rehabilitated.

Keywords: correctional institutions, vocational education and training, offender rehabilitation

Procedia PDF Downloads 168
3975 A Multinomial Logistic Regression Analysis of Factors Influencing Couples' Fertility Preferences in Kenya

Authors: Naomi W. Maina

Abstract:

Fertility preference is a subject of great significance in developing countries. Studies reveal that the preferences of fertility are actually significant in determining the society’s fertility levels because the fertility behavior of the future has a high likelihood of falling under the effect of currently observed fertility inclinations. The objective of this study was to establish the factors associated with fertility preference amongst couples in Kenya by fitting a multinomial logistic regression model against 5,265 couple data obtained from Kenya demographic health survey 2014. Results revealed that the type of place of residence, the region of residence, age and spousal age gap significantly influence desire for additional children among couples in Kenya. There was the notable high likelihood of couples living in rural settlements having similar fertility preference compared to those living in urban settlements. Moreover, geographical disparities such as in northern Kenya revealed significant differences in a couples desire to have additional children compared to Nairobi. The odds of a couple’s desire for additional children were further observed to vary dependent on either the wife or husbands age and to a large extent the spousal age gap. Evidenced from the study, was the fact that as spousal age gap increases, the desire for more children amongst couples decreases. Insights derived from this study would be attractive to demographers, health practitioners, policymakers, and non-governmental organizations implementing fertility related interventions in Kenya among other stakeholders. Moreover, with the adoption of devolution, there is a clear need for adoption of population policies that are County specific as opposed to a national population policy as is the current practice in Kenya. Additionally, researchers or students who have little understanding in the application of multinomial logistic regression, both theoretical understanding and practical analysis in SPSS as well as application on real datasets, will find this article useful.

Keywords: couples' desire, fertility, fertility preference, multinomial regression analysis

Procedia PDF Downloads 182
3974 Estimation of a Finite Population Mean under Random Non Response Using Improved Nadaraya and Watson Kernel Weights

Authors: Nelson Bii, Christopher Ouma, John Odhiambo

Abstract:

Non-response is a potential source of errors in sample surveys. It introduces bias and large variance in the estimation of finite population parameters. Regression models have been recognized as one of the techniques of reducing bias and variance due to random non-response using auxiliary data. In this study, it is assumed that random non-response occurs in the survey variable in the second stage of cluster sampling, assuming full auxiliary information is available throughout. Auxiliary information is used at the estimation stage via a regression model to address the problem of random non-response. In particular, the auxiliary information is used via an improved Nadaraya-Watson kernel regression technique to compensate for random non-response. The asymptotic bias and mean squared error of the estimator proposed are derived. Besides, a simulation study conducted indicates that the proposed estimator has smaller values of the bias and smaller mean squared error values compared to existing estimators of finite population mean. The proposed estimator is also shown to have tighter confidence interval lengths at a 95% coverage rate. The results obtained in this study are useful, for instance, in choosing efficient estimators of the finite population mean in demographic sample surveys.

Keywords: mean squared error, random non-response, two-stage cluster sampling, confidence interval lengths

Procedia PDF Downloads 140
3973 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
3972 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: least square, neighbor joining, phylogenetic tree, wild dog pack

Procedia PDF Downloads 320
3971 Electrical Load Estimation Using Estimated Fuzzy Linear Parameters

Authors: Bader Alkandari, Jamal Y. Madouh, Ahmad M. Alkandari, Anwar A. Alnaqi

Abstract:

A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness.

Keywords: fuzzy regression, load estimation, fuzzy linear parameters, electrical load estimation

Procedia PDF Downloads 540
3970 Stature and Gender Estimation Using Foot Measurements in South Indian Population

Authors: Jagadish Rao Padubidri, Mehak Bhandary, Sowmya J. Rao

Abstract:

Introduction: The significance of the human foot and its measurements in identifying an individual has been proved a lot of times by different studies in different geographical areas and its association to the stature and gender of the individual has been justified by many researches. In our study we have used different foot measurements including the length, width, malleol height and navicular height for establishing its association to stature and gender and to find out its accuracy. The purpose of this study is to show the relation of foot measurements with stature and gender, and to derive Multiple and Logistic regression equations for stature and gender estimation in South Indian population. Materials and Methods: The subjects for this study were 200 South Indian students out of which 100 were females and 100 were males, aged between 18 to 24 years. The data for the present study included the stature, foot length, foot breath, foot malleol height, foot navicular height of both right and left foot. Descriptive statistics, T-test and Pearson correlation coefficients were derived between stature, gender and foot measurements. The stature was estimated from right and left foot measurements for both male and female South Indian population using multiple regression analysis and logistic regression analysis for gender estimation. Results: The means, standard deviation, stature, right and left foot measurements and T-test in male population were higher than in females. LFL (Left foot length) is more than RFL (Right Foot length) in male groups, but in female groups the length of both foot are almost equal [RFL=226.6, LFL=227.1]. There is not much of difference in means of RFW (Right foot width) and LFW (Left foot width) in both the genders. Significant difference were seen in mean values of malleol and navicular height of right and left feet in male gender. No such difference was seen in female subjects. Conclusions: The study has successfully demonstrated the correlation of foot length in stature estimation in all the three study groups in both right and left foot. Next in parameters are Foot width and malleol height in estimating stature among male and female groups. Navicular height of both right and left foot showed poor relationship with stature estimation in both male and female groups. Multiple regression equations for both right and left foot measurements to estimate stature were derived with standard error ranging from 11-12 cm in males and 10-11 cm in females. The SEE was 5.8 when both male and female groups were pooled together. The logistic regression model which was derived to determine gender showed 85% accuracy and 92.5% accuracy using right and left foot measurements respectively. We believe that stature and gender can be estimated with foot measurements in South Indian population.

Keywords: foot length, gender, stature, South Indian

Procedia PDF Downloads 335
3969 Uncovering the Relationship between EFL Students' Self-Concept and Their Willingness to Communicate in Language Classes

Authors: Seyedeh Khadijeh Amirian, Seyed Mohammad Reza Amirian, Narges Hekmati

Abstract:

The current study aims at examining the relationship between English as a foreign language (EFL) students' self-concept and their willingness to communicate (WTC) in EFL classes. To this effect, two questionnaires, namely 'Willingness to Communicate' (MacIntyre et al., 2001) and 'Self-Concept Scale' (Liu and Wang, 2005), were distributed among 174 (45 males and 129 females) Iranian EFL university students. Correlation and regression analyses were conducted to examine the relationship between the two variables. The results indicated that there was a significantly positive correlation between EFL students' self-concept and their WTC in EFL classes (p < .0.05). Moreover, regression analyses indicated that self-concept has a significantly positive influence on students’ WTC in language classes (B= .302, p < .0.05) and explains .302 percent of the variance in the dependent variable (WTC). The results are discussed with regards to the individual differences in educational contexts, and implications are offered.

Keywords: EFL students, language classes, willingness to communicate, self-concept

Procedia PDF Downloads 126
3968 The Influence of Interest, Beliefs, and Identity with Mathematics on Achievement

Authors: Asma Alzahrani, Elizabeth Stojanovski

Abstract:

This study investigated factors that influence mathematics achievement based on a sample of ninth-grade students (N  =  21,444) from the High School Longitudinal Study of 2009 (HSLS09). Key aspects studied included efficacy in mathematics, interest and enjoyment of mathematics, identity with mathematics and future utility beliefs and how these influence mathematics achievement. The predictability of mathematics achievement based on these factors was assessed using correlation coefficients and multiple linear regression. Spearman rank correlations and multiple regression analyses indicated positive and statistically significant relationships between the explanatory variables: mathematics efficacy, identity with mathematics, interest in and future utility beliefs with the response variable, achievement in mathematics.

Keywords: Mathematics achievement, math efficacy, mathematics interest, factors influence

Procedia PDF Downloads 150
3967 Determinants of Free Independent Traveler Tourist Expenditures in Israel: Quantile Regression Model

Authors: Shlomit Hon-Snir, Sharon Teitler-Regev, Anabel Lifszyc Friedlander

Abstract:

Tourism, one of the world's largest and fastest growing industries, exerts a major economic influence. The number of international tourists is growing every year, and the relative portion of independent (FIT) tourists is growing as well. The characteristics of independent tourists differ from those of tourists who travel in organized trips. The purpose of the research is to identify the factors that affect the individual tourist's expenses in Israel: total expenses, expenses per day, expenses per tourist, expenses per day per tourist, accommodation expenses, dining expenses and transportation expenses. Most of the research analyzed the total expenses using OLS regression. The determinants influencing expenses were divided into four groups: budget constraints, socio-demographic data, psychological characteristics and travel-related characteristics. Since the effect of each variable may change over different levels of total expenses the quantile regression (QR) theory will be applied. The current research will use data collected by the Israeli Ministry of Tourism in 2015 from individual independent tourists at the end of their visit to Israel. Preliminary results show that: At lower levels of expense, only income has a (positive) effect on total expenses, while at higher levels of expense, both income and length of stay have (positive) effects. -The effect of income on total expenses is higher for higher levels of expenses than for lower level of expenses. -The number of sites visited during the trip has a (negative) effect on tourist accommodation expenses only for tourists with a high level of total expenses. Due to the increasing share of independent tourism in Israel and around the world and due to the importance of tourism to Israel, it is very important to understand the factors that influence the expenses and behavior of independent tourists. Understanding the factors that affect independent tourists' expenses in Israel can help Israeli policymakers in their promotional efforts to attract tourism to Israel.

Keywords: independent tourist, quantile regression theory, tourism expenses, tourism

Procedia PDF Downloads 274
3966 Binary Logistic Regression Model in Predicting the Employability of Senior High School Graduates

Authors: Cromwell F. Gopo, Joy L. Picar

Abstract:

This study aimed to predict the employability of senior high school graduates for S.Y. 2018- 2019 in the Davao del Norte Division through quantitative research design using the descriptive status and predictive approaches among the indicated parameters, namely gender, school type, academics, academic award recipient, skills, values, and strand. The respondents of the study were the 33 secondary schools offering senior high school programs identified through simple random sampling, which resulted in 1,530 cases of graduates’ secondary data, which were analyzed using frequency, percentage, mean, standard deviation, and binary logistic regression. Results showed that the majority of the senior high school graduates who come from large schools were females. Further, less than half of these graduates received any academic award in any semester. In general, the graduates’ performance in academics, skills, and values were proficient. Moreover, less than half of the graduates were not employed. Then, those who were employed were either contractual, casual, or part-time workers dominated by GAS graduates. Further, the predictors of employability were gender and the Information and Communications Technology (ICT) strand, while the remaining variables did not add significantly to the model. The null hypothesis had been rejected as the coefficients of the predictors in the binary logistic regression equation did not take the value of 0. After utilizing the model, it was concluded that Technical-Vocational-Livelihood (TVL) graduates except ICT had greater estimates of employability.

Keywords: employability, senior high school graduates, Davao del Norte, Philippines

Procedia PDF Downloads 152
3965 Prediction of Coronary Artery Stenosis Severity Based on Machine Learning Algorithms

Authors: Yu-Jia Jian, Emily Chia-Yu Su, Hui-Ling Hsu, Jian-Jhih Chen

Abstract:

Coronary artery is the major supplier of myocardial blood flow. When fat and cholesterol are deposit in the coronary arterial wall, narrowing and stenosis of the artery occurs, which may lead to myocardial ischemia and eventually infarction. According to the World Health Organization (WHO), estimated 740 million people have died of coronary heart disease in 2015. According to Statistics from Ministry of Health and Welfare in Taiwan, heart disease (except for hypertensive diseases) ranked the second among the top 10 causes of death from 2013 to 2016, and it still shows a growing trend. According to American Heart Association (AHA), the risk factors for coronary heart disease including: age (> 65 years), sex (men to women with 2:1 ratio), obesity, diabetes, hypertension, hyperlipidemia, smoking, family history, lack of exercise and more. We have collected a dataset of 421 patients from a hospital located in northern Taiwan who received coronary computed tomography (CT) angiography. There were 300 males (71.26%) and 121 females (28.74%), with age ranging from 24 to 92 years, and a mean age of 56.3 years. Prior to coronary CT angiography, basic data of the patients, including age, gender, obesity index (BMI), diastolic blood pressure, systolic blood pressure, diabetes, hypertension, hyperlipidemia, smoking, family history of coronary heart disease and exercise habits, were collected and used as input variables. The output variable of the prediction module is the degree of coronary artery stenosis. The output variable of the prediction module is the narrow constriction of the coronary artery. In this study, the dataset was randomly divided into 80% as training set and 20% as test set. Four machine learning algorithms, including logistic regression, stepwise regression, neural network and decision tree, were incorporated to generate prediction results. We used area under curve (AUC) / accuracy (Acc.) to compare the four models, the best model is neural network, followed by stepwise logistic regression, decision tree, and logistic regression, with 0.68 / 79 %, 0.68 / 74%, 0.65 / 78%, and 0.65 / 74%, respectively. Sensitivity of neural network was 27.3%, specificity was 90.8%, stepwise Logistic regression sensitivity was 18.2%, specificity was 92.3%, decision tree sensitivity was 13.6%, specificity was 100%, logistic regression sensitivity was 27.3%, specificity 89.2%. From the result of this study, we hope to improve the accuracy by improving the module parameters or other methods in the future and we hope to solve the problem of low sensitivity by adjusting the imbalanced proportion of positive and negative data.

Keywords: decision support, computed tomography, coronary artery, machine learning

Procedia PDF Downloads 229
3964 Assessing the Celebrity Effects on Change in Brand Association and Consumer’s Attitude in a Celebrity-Collaborated Fashion Brand in Hong Kong

Authors: Chu Wai Ching, Kan Chi Wai

Abstract:

Fashion industry is fast moving with intense competitions; it is hard for fashion retailers to stand out among their peers. In order to promote and enhance uniqueness, fashion retailers have collaborated with different brands or celebrity in their marketing campaign recently. As brand-celebrity collaboration is a growing phenomenon in the Hong Kong fashion industry, this research aims to investigate the effect of celebrity on altering consumer’s brand association and the overall attitude towards the co-branded products. One of the popular celebrity-collaborated fashion brands was chosen for this study and a survey was conducted among university students in Hong Kong which yielded 222 responses. By using factor analysis, linear regression and bootstrap test for the mediation, the results show that three celebrity attributes namely “expertise”, “trustworthiness” and “attractiveness” affect the evaluation of the co-branded products. In addition, the change in the association of the brand and co-branded product attributes mediates the relationship between the characteristics of the celebrity and the overall attitude of the co-branded product. The result shows “expertise” of the celebrity has a perfect mediation, while “trustworthiness” and “attractiveness” of the celebrity have partial mediation. This implies that expertise of the celebrity is capable in altering the association towards both the brand and core product attributes and bringing a positive attitude towards the co-brand. The trustworthiness and the attractiveness of the celebrity are able to alter the consumer association towards the brand, but do not guarantee a complete positive attitude towards the co-branded product. This means that change in brand attributes is not a definite mediator as direct relationship may happen or there may be other factors that can affect the relationship between the celebrity’s persuasiveness and the overall attitude towards the co-branded collection.

Keywords: brand attribute, brand-celebrity collaborations, co-branding, fashion industry

Procedia PDF Downloads 330
3963 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 186