Search results for: optical time domain reflectometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20206

Search results for: optical time domain reflectometry

19606 Model-Based Approach as Support for Product Industrialization: Application to an Optical Sensor

Authors: Frederic Schenker, Jonathan J. Hendriks, Gianluca Nicchiotti

Abstract:

In a product industrialization perspective, the end-product shall always be at the peak of technological advancement and developed in the shortest time possible. Thus, the constant growth of complexity and a shorter time-to-market calls for important changes on both the technical and business level. Undeniably, the common understanding of the system is beclouded by its complexity which leads to the communication gap between the engineers and the sale department. This communication link is therefore important to maintain and increase the information exchange between departments to ensure a punctual and flawless delivery to the end customer. This evolution brings engineers to reason with more hindsight and plan ahead. In this sense, they use new viewpoints to represent the data and to express the model deliverables in an understandable way that the different stakeholder may identify their needs and ideas. This article focuses on the usage of Model-Based System Engineering (MBSE) in a perspective of system industrialization and reconnect the engineering with the sales team. The modeling method used and presented in this paper concentrates on displaying as closely as possible the needs of the customer. Firstly, by providing a technical solution to the sales team to help them elaborate commercial offers without omitting technicalities. Secondly, the model simulates between a vast number of possibilities across a wide range of components. It becomes a dynamic tool for powerful analysis and optimizations. Thus, the model is no longer a technical tool for the engineers, but a way to maintain and solidify the communication between departments using different views of the model. The MBSE contribution to cost optimization during New Product Introduction (NPI) activities is made explicit through the illustration of a case study describing the support provided by system models to architectural choices during the industrialization of a novel optical sensor.

Keywords: analytical model, architecture comparison, MBSE, product industrialization, SysML, system thinking

Procedia PDF Downloads 141
19605 Nanofocusing of Surface Plasmon Polaritons by Partially Metal- Coated Dielectric Conical Probe: Optimal Asymmetric Distance

Authors: Ngo Thi Thu, Kazuo Tanaka, Masahiro Tanaka, Dao Ngoc Chien

Abstract:

Nanometric superfocusing of optical intensity near the tip of partially metal- coated dielectric conical probe of the convergent surface plasmon polariton wave is investigated by the volume integral equation method. It is possible to perform nanofocusing using this probe by using both linearly and radially polarized Gaussian beams as the incident waves. Strongly localized and enhanced optical near-fields can be created on the tip of this probe for the cases of both incident Gaussian beams. However the intensity distribution near the probe tip was found to be very sensitive to the shape of the probe tip.

Keywords: waveguide, surface plasmons, electromagnetic theory

Procedia PDF Downloads 461
19604 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 95
19603 Impact of Unusual Dust Event on Regional Climate in India

Authors: Kanika Taneja, V. K. Soni, Kafeel Ahmad, Shamshad Ahmad

Abstract:

A severe dust storm generated from a western disturbance over north Pakistan and adjoining Afghanistan affected the north-west region of India between May 28 and 31, 2014, resulting in significant reductions in air quality and visibility. The air quality of the affected region degraded drastically. PM10 concentration peaked at a very high value of around 1018 μgm-3 during dust storm hours of May 30, 2014 at New Delhi. The present study depicts aerosol optical properties monitored during the dust days using ground based multi-wavelength Sky radiometer over the National Capital Region of India. High Aerosol Optical Depth (AOD) at 500 nm was observed as 1.356 ± 0.19 at New Delhi while Angstrom exponent (Alpha) dropped to 0.287 on May 30, 2014. The variation in the Single Scattering Albedo (SSA) and real n(λ) and imaginary k(λ) parts of the refractive index indicated that the dust event influences the optical state to be more absorbing. The single scattering albedo, refractive index, volume size distribution and asymmetry parameter (ASY) values suggested that dust aerosols were predominant over the anthropogenic aerosols in the urban environment of New Delhi. The large reduction in the radiative flux at the surface level caused significant cooling at the surface. Direct Aerosol Radiative Forcing (DARF) was calculated using a radiative transfer model during the dust period. A consistent increase in surface cooling was evident, ranging from -31 Wm-2 to -82 Wm-2 and an increase in heating of the atmosphere from 15 Wm-2 to 92 Wm-2 and -2 Wm-2 to 10 Wm-2 at top of the atmosphere.

Keywords: aerosol optical properties, dust storm, radiative transfer model, sky radiometer

Procedia PDF Downloads 362
19602 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces

Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic

Abstract:

Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

Keywords: contact time, impact dynamics, oscillation, pear-shape droplet

Procedia PDF Downloads 440
19601 Examination of Contaminations in Fabricated Cadmium Selenide Quantum Dots Using Laser Induced Plasma Spectroscopy

Authors: Walid Tawfik, W. Askam Farooq, Sultan F. Alqhtani

Abstract:

Quantum dots (QDots) are nanometer-sized crystals, less than 10 nm, comprise a semiconductor or metallic materials and contain from 100 - 100,000 atoms in each crystal. QDots play an important role in many applications; light emitting devices (LEDs), solar cells, drug delivery, and optical computers. In the current research, a fundamental wavelength of Nd:YAG laser was applied to analyse the impurities in homemade cadmium selenide (CdSe) QDots through laser-induced plasma (LIPS) technique. The CdSe QDots were fabricated by using hot-solution decomposition method where a mixture of Cd precursor and trioctylphosphine oxide (TOPO) is prepared at concentrations of TOPO under controlled temperatures 200-350ºC. By applying laser energy of 15 mJ, at frequency 10 Hz, and delay time 500 ns, LIPS spectra of CdSe QDots samples were observed. The qualitative LIPS analysis for CdSe QDs revealed that the sample contains Cd, Te, Se, H, P, Ar, O, Ni, C, Al and He impurities. These observed results gave precise details of the impurities present in the QDs sample. These impurities are important for future work at which controlling the impurity contents in the QDs samples may improve the physical, optical and electrical properties of the QDs used for solar cell application.

Keywords: cadmium selenide, TOPO, LIPS spectroscopy, quantum dots

Procedia PDF Downloads 124
19600 Parametric Analysis of Lumped Devices Modeling Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Icaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

The SPICE-based simulators are quite robust and widely used for simulation of electronic circuits, their algorithms support linear and non-linear lumped components and they can manipulate an expressive amount of encapsulated elements. Despite the great potential of these simulators based on SPICE in the analysis of quasi-static electromagnetic field interaction, that is, at low frequency, these simulators are limited when applied to microwave hybrid circuits in which there are both lumped and distributed elements. Usually the spatial discretization of the FDTD (Finite-Difference Time-Domain) method is done according to the actual size of the element under analysis. After spatial discretization, the Courant Stability Criterion calculates the maximum temporal discretization accepted for such spatial discretization and for the propagation velocity of the wave. This criterion guarantees the stability conditions for the leapfrogging of the Yee algorithm; however, it is known that for the field update, the stability of the complete FDTD procedure depends on factors other than just the stability of the Yee algorithm, because the FDTD program needs other algorithms in order to be useful in engineering problems. Examples of these algorithms are Absorbent Boundary Conditions (ABCs), excitation sources, subcellular techniques, grouped elements, and non-uniform or non-orthogonal meshes. In this work, the influence of the stability of the FDTD method in the modeling of concentrated elements such as resistive sources, resistors, capacitors, inductors and diode will be evaluated. In this paper is proposed, therefore, the electromagnetic modeling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-wide frequencies. The models of the resistive source, the resistor, the capacitor, the inductor, and the diode will be evaluated, among the mathematical models for lumped components in the LE-FDTD method (Lumped-Element Finite-Difference Time-Domain), through the parametric analysis of Yee cells size which discretizes the lumped components. In this way, it is sought to find an ideal cell size so that the analysis in FDTD environment is in greater agreement with the expected circuit behavior, maintaining the stability conditions of this method. Based on the mathematical models and the theoretical basis of the required extensions of the FDTD method, the computational implementation of the models in Matlab® environment is carried out. The boundary condition Mur is used as the absorbing boundary of the FDTD method. The validation of the model is done through the comparison between the obtained results by the FDTD method through the electric field values and the currents in the components, and the analytical results using circuit parameters.

Keywords: hybrid circuits, LE-FDTD, lumped element, parametric analysis

Procedia PDF Downloads 135
19599 Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects

Authors: H. Triki, Y. Hamaizi, A. El-Akrmi

Abstract:

We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects.

Keywords: nonlinear Schrödinger equation, high-order effects, soliton solution

Procedia PDF Downloads 620
19598 Strongly Coupled Finite Element Formulation of Electromechanical Systems with Integrated Mesh Morphing Using Radial Basis Functions

Authors: David Kriebel, Jan Edgar Mehner

Abstract:

The paper introduces a method to efficiently simulate nonlinear changing electrostatic fields occurring in micro-electromechanical systems (MEMS). Large deflections of the capacitor electrodes usually introduce nonlinear electromechanical forces on the mechanical system. Traditional finite element methods require a time-consuming remeshing process to capture exact results for this physical domain interaction. In order to accelerate the simulation process and eliminate the remeshing process, a formulation of a strongly coupled electromechanical transducer element will be introduced, which uses a combination of finite-element with an advanced mesh morphing technique using radial basis functions (RBF). The RBF allows large geometrical changes of the electric field domain while retaining the high element quality of the deformed mesh. Coupling effects between mechanical and electrical domains are directly included within the element formulation. Fringing field effects are described accurately by using traditional arbitrary shape functions.

Keywords: electromechanical, electric field, transducer, simulation, modeling, finite-element, mesh morphing, radial basis function

Procedia PDF Downloads 219
19597 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations

Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman

Abstract:

Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.

Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images

Procedia PDF Downloads 122
19596 Laminar Periodic Vortex Shedding over a Square Cylinder in Pseudoplastic Fluid Flow

Authors: Shubham Kumar, Chaitanya Goswami, Sudipto Sarkar

Abstract:

Pseudoplastic (n < 1, n being the power index) fluid flow can be found in food, pharmaceutical and process industries and has very complex flow nature. To our knowledge, inadequate research work has been done in this kind of flow even at very low Reynolds numbers. Here, in the present computation, we have considered unsteady laminar flow over a square cylinder in pseudoplastic flow environment. For Newtonian fluid flow, this laminar vortex shedding range lies between Re = 47-180. In this problem, we consider Re = 100 (Re = U∞ a/ ν, U∞ is the free stream velocity of the flow, a is the side of the cylinder and ν is the kinematic viscosity of the fluid). The pseudoplastic fluid range has been chosen from close to the Newtonian fluid (n = 0.8) to very high pseudoplasticity (n = 0.1). The flow domain is constituted using Gambit 2.2.30 and this software is also used to generate mesh and to impose the boundary conditions. For all places, the domain size is considered as 36a × 16a with 280 ×192 grid point in the streamwise and flow normal directions respectively. The domain and the grid points are selected after a thorough grid independent study at n = 1.0. Fine and equal grid spacing is used close to the square cylinder to capture the upper and lower shear layers shed from the cylinder. Away from the cylinder the grid is unequal in size and stretched out in all direction. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition du/dy = 0, v = 0) at upper and lower domain boundary conditions are used for this simulation. Wall boundary (u = v = 0) is considered on the square cylinder surface. Fully conservative 2-D unsteady Navier-Stokes equations are discretized and then solved by Ansys Fluent 14.5 to understand the flow nature. SIMPLE algorithm written in finite volume method is selected for this purpose which is the default solver in scripted in Fluent. The result obtained for Newtonian fluid flow agrees well with previous work supporting Fluent’s usefulness in academic research. A minute analysis of instantaneous and time averaged flow field is obtained both for Newtonian and pseudoplastic fluid flow. It has been observed that drag coefficient increases continuously with the reduced value of n. Also, the vortex shedding phenomenon changes at n = 0.4 due to flow instability. These are some of the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: Ansys Fluent, CFD, periodic vortex shedding, pseudoplastic fluid flow

Procedia PDF Downloads 173
19595 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 58
19594 Data Quality as a Pillar of Data-Driven Organizations: Exploring the Benefits of Data Mesh

Authors: Marc Bachelet, Abhijit Kumar Chatterjee, José Manuel Avila

Abstract:

Data quality is a key component of any data-driven organization. Without data quality, organizations cannot effectively make data-driven decisions, which often leads to poor business performance. Therefore, it is important for an organization to ensure that the data they use is of high quality. This is where the concept of data mesh comes in. Data mesh is an organizational and architectural decentralized approach to data management that can help organizations improve the quality of data. The concept of data mesh was first introduced in 2020. Its purpose is to decentralize data ownership, making it easier for domain experts to manage the data. This can help organizations improve data quality by reducing the reliance on centralized data teams and allowing domain experts to take charge of their data. This paper intends to discuss how a set of elements, including data mesh, are tools capable of increasing data quality. One of the key benefits of data mesh is improved metadata management. In a traditional data architecture, metadata management is typically centralized, which can lead to data silos and poor data quality. With data mesh, metadata is managed in a decentralized manner, ensuring accurate and up-to-date metadata, thereby improving data quality. Another benefit of data mesh is the clarification of roles and responsibilities. In a traditional data architecture, data teams are responsible for managing all aspects of data, which can lead to confusion and ambiguity in responsibilities. With data mesh, domain experts are responsible for managing their own data, which can help provide clarity in roles and responsibilities and improve data quality. Additionally, data mesh can also contribute to a new form of organization that is more agile and adaptable. By decentralizing data ownership, organizations can respond more quickly to changes in their business environment, which in turn can help improve overall performance by allowing better insights into business as an effect of better reports and visualization tools. Monitoring and analytics are also important aspects of data quality. With data mesh, monitoring, and analytics are decentralized, allowing domain experts to monitor and analyze their own data. This will help in identifying and addressing data quality problems in quick time, leading to improved data quality. Data culture is another major aspect of data quality. With data mesh, domain experts are encouraged to take ownership of their data, which can help create a data-driven culture within the organization. This can lead to improved data quality and better business outcomes. Finally, the paper explores the contribution of AI in the coming years. AI can help enhance data quality by automating many data-related tasks, like data cleaning and data validation. By integrating AI into data mesh, organizations can further enhance the quality of their data. The concepts mentioned above are illustrated by AEKIDEN experience feedback. AEKIDEN is an international data-driven consultancy that has successfully implemented a data mesh approach. By sharing their experience, AEKIDEN can help other organizations understand the benefits and challenges of implementing data mesh and improving data quality.

Keywords: data culture, data-driven organization, data mesh, data quality for business success

Procedia PDF Downloads 117
19593 Phenotypic and Molecular Heterogeneity Linked to the Magnesium Transporter CNNM2

Authors: Reham Khalaf-Nazzal, Imad Dweikat, Paula Gimenez, Iker Oyenarte, Alfonso Martinez-Cruz, Domonik Muller

Abstract:

Metal cation transport mediator (CNNM) gene family comprises 4 isoforms that are expressed in various human tissues. Structurally, CNNMs are complex proteins that contain an extracellular N-terminal domain preceding a DUF21 transmembrane domain, a ‘Bateman module’ and a C-terminal cNMP-binding domain. Mutations in CNNM2 cause familial dominant hypomagnesaemia. Growing evidence highlights the role of CNNM2 in neurodevelopment. Mutations in CNNM2 have been implicated in epilepsy, intellectual disability, schizophrenia, and others. In the present study, we aim to elucidate the function of CNNM2 in the developing brain. Thus, we present the genetic origin of symptoms in two family cohorts. In the first family, three siblings of a consanguineous Palestinian family in which parents are first cousins, and consanguinity ran over several generations, presented a varying degree of intellectual disability, cone-rod dystrophy, and autism spectrum disorder. Exome sequencing and segregation analysis revealed the presence of homozygous pathogenic mutation in the CNNM2 gene, the parents were heterozygous for that gene mutation. Magnesium blood levels were normal in the three children and their parents in several measurements. They had no symptoms of hypomagnesemia. The CNNM2 mutation in this family was found to locate in the CBS1 domain of the CNNM2 protein. The crystal structure of the mutated CNNM2 protein was not significantly different from the wild-type protein, and the binding of AMP or MgATP was not dramatically affected. This suggests that the CBS1 domain could be involved in pure neurodevelopmental functions independent of its magnesium-handling role, and this mutation could have affected a protein partner binding or other functions in this protein. In the second family, another autosomal dominant CNNM2 mutation was found to run in a large family with multiple individuals over three generations. All affected family members had hypomagnesemia and hypermagnesuria. Oral supplementation of magnesium did not increase the levels of magnesium in serum significantly. Some affected members of this family have defects in fine motor skills such as dyslexia and dyslalia. The detected mutation is located in the N-terminal part, which contains a signal peptide thought to be involved in the sorting and routing of the protein. In this project, we describe heterogenous clinical phenotypes related to CNNM2 mutations and protein functions. In the first family, and up to the authors’ knowledge, we report for the first time the involvement of CNNM2 in retinal photoreceptor development and function. In addition, we report the presence of a neurophenotype independent of magnesium status related to the CNNM2 protein mutation. Taking into account the different modes of inheritance and the different positions of the mutations within CNNM2 and its different structural and functional domains, it is likely that CNNM2 might be involved in a wide spectrum of neuropsychiatric comorbidities with considerable varying phenotypes.

Keywords: magnesium transport, autosomal recessive, autism, neurodevelopment, CBS domain

Procedia PDF Downloads 136
19592 An Efficient Robot Navigation Model in a Multi-Target Domain amidst Static and Dynamic Obstacles

Authors: Michael Ayomoh, Adriaan Roux, Oyindamola Omotuyi

Abstract:

This paper presents an efficient robot navigation model in a multi-target domain amidst static and dynamic workspace obstacles. The problem is that of developing an optimal algorithm to minimize the total travel time of a robot as it visits all target points within its task domain amidst unknown workspace obstacles and finally return to its initial position. In solving this problem, a classical algorithm was first developed to compute the optimal number of paths to be travelled by the robot amidst the network of paths. The principle of shortest distance between robot and targets was used to compute the target point visitation order amidst workspace obstacles. Algorithm premised on the standard polar coordinate system was developed to determine the length of obstacles encountered by the robot hence giving room for a geometrical estimation of the total surface area occupied by the obstacle especially when classified as a relevant obstacle i.e. obstacle that lies in between a robot and its potential visitation point. A stochastic model was developed and used to estimate the likelihood of a dynamic obstacle bumping into the robot’s navigation path and finally, the navigation/obstacle avoidance algorithm was hinged on the hybrid virtual force field (HVFF) method. Significant modelling constraints herein include the choice of navigation path to selected target points, the possible presence of static obstacles along a desired navigation path and the likelihood of encountering a dynamic obstacle along the robot’s path and the chances of it remaining at this position as a static obstacle hence resulting in a case of re-routing after routing. The proposed algorithm demonstrated a high potential for optimal solution in terms of efficiency and effectiveness.

Keywords: multi-target, mobile robot, optimal path, static obstacles, dynamic obstacles

Procedia PDF Downloads 272
19591 Numerical Modeling of Wave Run-Up in Shallow Water Flows Using Moving Wet/Dry Interfaces

Authors: Alia Alghosoun, Michael Herty, Mohammed Seaid

Abstract:

We present a new class of numerical techniques to solve shallow water flows over dry areas including run-up. Many recent investigations on wave run-up in coastal areas are based on the well-known shallow water equations. Numerical simulations have also performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of coastal areas. In all these simulations the shallow water equations are solved in entire domain including dry areas and special treatments are used for numerical solution of singularities at these dry regions. In the present study we propose a new method to deal with these difficulties by reformulating the shallow water equations into a new system to be solved only in the wetted domain. The system is obtained by a change in the coordinates leading to a set of equations in a moving domain for which the wet/dry interface is the reconstructed using the wave speed. To solve the new system we present a finite volume method of Lax-Friedrich type along with a modified method of characteristics. The method is well-balanced and accurately resolves dam-break problems over dry areas.

Keywords: dam-break problems, finite volume method, run-up waves, shallow water flows, wet/dry interfaces

Procedia PDF Downloads 128
19590 Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts

Authors: Virgil-Florin Duma, Dorin Demian

Abstract:

Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297.

Keywords: laser signals, laser systems, optical choppers, optomechatronics, transfer functions, eclipse choppers, choppers with shafts

Procedia PDF Downloads 175
19589 Moving Target Defense against Various Attack Models in Time Sensitive Networks

Authors: Johannes Günther

Abstract:

Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.

Keywords: network security, time sensitive networking, moving target defense, cyber security

Procedia PDF Downloads 56
19588 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals

Authors: N. Renuka, R. Ramesh Babu, N. Vijayan

Abstract:

Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.

Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer

Procedia PDF Downloads 236
19587 Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass

Authors: Demet Tatar, Bahattin Düzgün

Abstract:

In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices.

Keywords: transparent conducting oxide, gas sensors, SnO2, Ti, optoelectronic, spray pyrolysis

Procedia PDF Downloads 372
19586 Hot Air Flow Annealing of MAPbI₃ Perovskite: Structural and Optical Properties

Authors: Mouad Ouafi, Lahoucine Atourki, Larbi Laanab, Erika Vega, Miguel Mollar, Bernabe Marib, Boujemaa Jaber

Abstract:

Despite the astonishing emergence of the methylammonium lead triiodide perovskite as a promising light harvester for solar cells, their physical properties in solution-processed MAPbI₃ are still crucial and need to be improved. The objective of this work is to investigate the hot airflow effect during the growth of MAPbI₃ films using the spin-coating process on their structural, optical and morphological proprieties. The experimental results show that many physical proprieties of the perovskite strongly depend on the air flow temperature and the optimization which has a beneficial effect on the perovskite quality. In fact, a clear improvement of the crystallinity and the crystallite size of MAPbI₃ perovskite is demonstrated by the XRD analyses, when the airflow temperature is increased up to 100°C. Alternatively, as far as the surface morphology is concerned, SEM micrographs show that significant homogenous nucleation, uniform surface distribution and pin holes free with highest surface coverture of 98% are achieved when the airflow temperature reaches 100°C. At this temperature, the improvement is also observed when considering the optical properties of the films. By contrast, a remarkable degradation of the MAPbI₃ perovskites associated to the PbI₂ phase formation is noticed, when the hot airflow temperature is higher than 100°C, especially 300°C.

Keywords: hot air flow, crystallinity, surface coverage, perovskite morphology

Procedia PDF Downloads 148
19585 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm

Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian

Abstract:

Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.

Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system

Procedia PDF Downloads 99
19584 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor

Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen

Abstract:

In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.

Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.

Procedia PDF Downloads 233
19583 Impact of Hybrid Optical Amplifiers on 16 Channel Wavelength Division Multiplexed System

Authors: Inderpreet Kaur, Ravinder Pal Singh, Kamal Kant Sharma

Abstract:

This paper addresses the different configurations used of optical amplifiers with 16 channels in Wavelength Division Multiplexed system. The systems with 16 channels have been simulated for evaluation of various parameters; Bit Error Rate, Quality Factor, for threshold values for a range of wavelength from 1471 nm to 1611 nm. Comparison of various combination of configurations have been analyzed with EDFA and FRA but EDFA-FRA configuration performance has been found satisfactory in terms of performance indices and stable region. The paper also compared various parameters quantized with different configurations individually. It has been found that Q factor has high value with less value of BER and high resolution for EDFA-FRA configuration.

Keywords: EDFA, FRA, WDM, Q factor, BER

Procedia PDF Downloads 337
19582 Evaluation of the Curricular Content Domain Related to Topics of Human Sexuality in Teachers of Public Elementary Schools

Authors: Ahmed Ali Asadi, Julio R. Martinez-Alvarado, Claudia V. Camacho-Guevara, J. Jesus Cabrales-Ruvalcaba, Julieta Y. Islas-Limon, Bertha M. Viñas-Velazquez

Abstract:

The transformation of education in Mexico incorporates human sexuality subjects in its study plans for elementary education level, leaving aside the training of teachers to educate on such topics. The objective of this study was to evaluate the curricular content domain related to human sexuality subjects of public elementary school teachers in Mexico. For this, a transversal descriptive-prospective study with a quantitative focus has been conducted. The population for this study consisted of 109 fifth and sixth-grade teachers from a school zone of the State Education System. It was found in the results that fifth-grade teachers got a low achievement level, sixth-grade teachers got a medium achievement level, while teachers who give classes on both grades obtained a high achievement level on domain of curricular subjects related to sexuality. Likewise, a relation of different variables with the participant’s achievement level is exposed.

Keywords: curricular content, evaluation, sexual education, teacher

Procedia PDF Downloads 279
19581 Optical Variability of Faint Quasars

Authors: Kassa Endalamaw Rewnu

Abstract:

The variability properties of a quasar sample, spectroscopically complete to magnitude J = 22.0, are investigated on a time baseline of 2 years using three different photometric bands (U, J and F). The original sample was obtained using a combination of different selection criteria: colors, slitless spectroscopy and variability, based on a time baseline of 1 yr. The main goals of this work are two-fold: first, to derive the percentage of variable quasars on a relatively short time baseline; secondly, to search for new quasar candidates missed by the other selection criteria; and, thus, to estimate the completeness of the spectroscopic sample. In order to achieve these goals, we have extracted all the candidate variable objects from a sample of about 1800 stellar or quasi-stellar objects with limiting magnitude J = 22.50 over an area of about 0.50 deg2. We find that > 65% of all the objects selected as possible variables are either confirmed quasars or quasar candidates on the basis of their colors. This percentage increases even further if we exclude from our lists of variable candidates a number of objects equal to that expected on the basis of `contamination' induced by our photometric errors. The percentage of variable quasars in the spectroscopic sample is also high, reaching about 50%. On the basis of these results, we can estimate that the incompleteness of the original spectroscopic sample is < 12%. We conclude that variability analysis of data with small photometric errors can be successfully used as an efficient and independent (or at least auxiliary) selection method in quasar surveys, even when the time baseline is relatively short. Finally, when corrected for the different intrinsic time lags corresponding to a fixed observed time baseline, our data do not show a statistically significant correlation between variability and either absolute luminosity or redshift.

Keywords: nuclear activity, galaxies, active quasars, variability

Procedia PDF Downloads 58
19580 Execution Time Optimization of Workflow Network with Activity Lead-Time

Authors: Xiaoping Qiu, Binci You, Yue Hu

Abstract:

The executive time of the workflow network has an important effect on the efficiency of the business process. In this paper, the activity executive time is divided into the service time and the waiting time, then the lead time can be extracted from the waiting time. The executive time formulas of the three basic structures in the workflow network are deduced based on the activity lead time. Taken the process of e-commerce logistics as an example, insert appropriate lead time for key activities by using Petri net, and the executive time optimization model is built to minimize the waiting time with the time-cost constraints. Then the solution program-using VC++6.0 is compiled to get the optimal solution, which reduces the waiting time of key activities in the workflow, and verifies the role of lead time in the timeliness of e-commerce logistics.

Keywords: electronic business, execution time, lead time, optimization model, petri net, time workflow network

Procedia PDF Downloads 156
19579 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 544
19578 Optical Characterization of Erbium-Mixed Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

The structural characterization of silicon nano crystals (SiNCs) have been carried out using transmission electron microscope (TEM) and atomic force microscopy (AFM). SiNCs are crystalline with an average diameter of 65 nm. Erbium trichloride was added to silicon nano crystals using a simple chemical procedure. Erbium is useful in this context because it has a narrow emission band at ⋍1536 nm which corresponds to a standard optical telecommunication wavelength. The optical properties of SiNCs and erbium-mixed SiNCs samples have been characterized using UV-vis spectroscopy, confocal Raman spectroscopy and photoluminescence spectroscopy (PL). SiNCs and erbium-mixed SiNCs samples exhibit an orange PL emission peak at around 595 nm that arise from radiative recombination of Si. Erbium-mixed SiNCs also shows a weak PL emission peak at ⋍1536 nm that attributed to the intra-4f transition in erbium ions. The intensity of the PL peak of Si in erbium-mixed SiNCs is increased in the intensity up to ×3 as compared to pure SiNCs. It was observed that intensity of 1536 nm peak decreased dramatically in the presence of silicon nano crystals and the PL emission peak of silicon nano crystals is increased. Therefore, the resulted data present that the energy transfer from erbium ions to SiNCs due to the chemical mixing method which used in this work.

Keywords: Silicon Nanocrystals (SiNCs), Erbium Ion, photoluminescence, energy transfer

Procedia PDF Downloads 361
19577 Assessment of Five Photoplethysmographic Methods for Estimating Heart Rate Variability

Authors: Akshay B. Pawar, Rohit Y. Parasnis

Abstract:

Heart Rate Variability (HRV) is a widely used indicator of the regulation between the autonomic nervous system (ANS) and the cardiovascular system. Besides being non-invasive, it also has the potential to predict mortality in cases involving critical injuries. The gold standard method for determining HRV is based on the analysis of RR interval time series extracted from ECG signals. However, because it is much more convenient to obtain photoplethysmogramic (PPG) signals as compared to ECG signals (which require the attachment of several electrodes to the body), many researchers have used pulse cycle intervals instead of RR intervals to estimate HRV. They have also compared this method with the gold standard technique. Though most of their observations indicate a strong correlation between the two methods, recent studies show that in healthy subjects, except for a few parameters, the pulse-based method cannot be a surrogate for the standard RR interval- based method. Moreover, the former tends to overestimate short-term variability in heart rate. This calls for improvements in or alternatives to the pulse-cycle interval method. In this study, besides the systolic peak-peak interval method (PP method) that has been studied several times, four recent PPG-based techniques, namely the first derivative peak-peak interval method (P1D method), the second derivative peak-peak interval method (P2D method), the valley-valley interval method (VV method) and the tangent-intersection interval method (TI method) were compared with the gold standard technique. ECG and PPG signals were obtained from 10 young and healthy adults (consisting of both males and females) seated in the armchair position. In order to de-noise these signals and eliminate baseline drift, they were passed through certain digital filters. After filtering, the following HRV parameters were computed from PPG using each of the five methods and also from ECG using the gold standard method: time domain parameters (SDNN, pNN50 and RMSSD), frequency domain parameters (Very low-frequency power (VLF), Low-frequency power (LF), High-frequency power (HF) and Total power or “TP”). Besides, Poincaré plots were also plotted and their SD1/SD2 ratios determined. The resulting sets of parameters were compared with those yielded by the standard method using measures of statistical correlation (correlation coefficient) as well as statistical agreement (Bland-Altman plots). From the viewpoint of correlation, our results show that the best PPG-based methods for the determination of most parameters and Poincaré plots are the P2D method (shows more than 93% correlation with the standard method) and the PP method (mean correlation: 88%) whereas the TI, VV and P1D methods perform poorly (<70% correlation in most cases). However, our evaluation of statistical agreement using Bland-Altman plots shows that none of the five techniques agrees satisfactorily well with the gold standard method as far as time-domain parameters are concerned. In conclusion, excellent statistical correlation implies that certain PPG-based methods provide a good amount of information on the pattern of heart rate variation, whereas poor statistical agreement implies that PPG cannot completely replace ECG in the determination of HRV.

Keywords: photoplethysmography, heart rate variability, correlation coefficient, Bland-Altman plot

Procedia PDF Downloads 310