Search results for: modulation recognition
1557 Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications
Authors: Júlio Cesar Lopes de Oliveira, Carlos Henrique Gonçalves Treviso
Abstract:
The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based on discrete components. The assembly of power circuit uses a methodology for higher power than the initially stipulated.Keywords: DC-DC power converters, converters, power conversion, pulse width modulation converters
Procedia PDF Downloads 3841556 Pattern Recognition Approach Based on Metabolite Profiling Using In vitro Cancer Cell Line
Authors: Amanina Iymia Jeffree, Reena Thriumani, Mohammad Iqbal Omar, Ammar Zakaria, Yumi Zuhanis Has-Yun Hashim, Ali Yeon Md Shakaff
Abstract:
Metabolite profiling is a strategy to be approached in the pattern recognition method focused on three types of cancer cell line that driving the most to death specifically lung, breast, and colon cancer. The purpose of this study was to discriminate the VOCs pattern among cancerous and control group based on metabolite profiling. The sampling was executed utilizing the cell culture technique. All culture flasks were incubated till 72 hours and data collection started after 24 hours. Every running sample took 24 minutes to be completed accordingly. The comparative metabolite patterns were identified by the implementation of headspace-solid phase micro-extraction (HS-SPME) sampling coupled with gas chromatography-mass spectrometry (GCMS). The optimizations of the main experimental variables such as oven temperature and time were evaluated by response surface methodology (RSM) to get the optimal condition. Volatiles were acknowledged through the National Institute of Standards and Technology (NIST) mass spectral database and retention time libraries. To improve the reliability of significance, it is of crucial importance to eliminate background noise which data from 3rd minutes to 17th minutes were selected for statistical analysis. Targeted metabolites, of which were annotated as known compounds with the peak area greater than 0.5 percent were highlighted and subsequently treated statistically. Volatiles produced contain hundreds to thousands of compounds; therefore, it will be optimized by chemometric analysis, such as principal component analysis (PCA) as a preliminary analysis before subjected to a pattern classifier for identification of VOC samples. The volatile organic compound profiling has shown to be significantly distinguished among cancerous and control group based on metabolite profiling.Keywords: in vitro cancer cell line, metabolite profiling, pattern recognition, volatile organic compounds
Procedia PDF Downloads 3661555 Game Structure and Spatio-Temporal Action Detection in Soccer Using Graphs and 3D Convolutional Networks
Authors: Jérémie Ochin
Abstract:
Soccer analytics are built on two data sources: the frame-by-frame position of each player on the terrain and the sequences of events, such as ball drive, pass, cross, shot, throw-in... With more than 2000 ball-events per soccer game, their precise and exhaustive annotation, based on a monocular video stream such as a TV broadcast, remains a tedious and costly manual task. State-of-the-art methods for spatio-temporal action detection from a monocular video stream, often based on 3D convolutional neural networks, are close to reach levels of performances in mean Average Precision (mAP) compatibles with the automation of such task. Nevertheless, to meet their expectation of exhaustiveness in the context of data analytics, such methods must be applied in a regime of high recall – low precision, using low confidence score thresholds. This setting unavoidably leads to the detection of false positives that are the product of the well documented overconfidence behaviour of neural networks and, in this case, their limited access to contextual information and understanding of the game: their predictions are highly unstructured. Based on the assumption that professional soccer players’ behaviour, pose, positions and velocity are highly interrelated and locally driven by the player performing a ball-action, it is hypothesized that the addition of information regarding surrounding player’s appearance, positions and velocity in the prediction methods can improve their metrics. Several methods are compared to build a proper representation of the game surrounding a player, from handcrafted features of the local graph, based on domain knowledge, to the use of Graph Neural Networks trained in an end-to-end fashion with existing state-of-the-art 3D convolutional neural networks. It is shown that the inclusion of information regarding surrounding players helps reaching higher metrics.Keywords: fine-grained action recognition, human action recognition, convolutional neural networks, graph neural networks, spatio-temporal action recognition
Procedia PDF Downloads 231554 Impact of Environmental Rule of Law towards Positive Environmental Outcomes in Nigeria
Authors: Kate N. Okeke
Abstract:
The ever-growing needs of man requiring satisfaction have pushed him strongly towards industrialization which has and is still leaving environmental degradation and its attendant negative impacts in its wake. It is, therefore, not surprising that the enjoyment of fundamental rights like food supply, security of lives and property, freedom of worship, health and education have been drastically affected by such degradation. In recognition of the imperative need to protect the environment and human rights, many global instruments and constitutions have recognized the right to a healthy and sustainable environment. Some environmental advocates and quite a number of literatures on the subject matter call for the recognition of environmental rights via rule of law as a vital means of achieving positive outcomes on the subject matter. However, although there are numerous countries with constitutional environmental provisions, most of them such as Nigeria, have shown poor environmental performance. A notable problem is the fact that the constitution which recognizes environmental rights appears in its other provisions to contradict its provisions by making enforceability of the environmental rights unattainable. While adopting a descriptive, analytical, comparative and explanatory study design in reviewing a successful positive environmental outcome via the rule of law, this article argues that rule of law on a balance of scale, weighs more than just environmental rights recognition and therefore should receive more attention by environmental lawyers and advocates. This is because with rule of law, members of a society are sure of getting the most out of the environmental rights existing in their legal system. Members of Niger-Delta communities of Nigeria will benefit from the environmental rights existing in Nigeria. They are exposed to environmental degradation and pollution with effects such as acidic rainfall, pollution of farmlands and clean water sources. These and many more are consequences of oil and gas exploration. It will also pave way for solving the violence between cattle herdsmen and farmers in the Middle Belt and other regions of Nigeria. Their clashes are over natural resource control. Having seen that environmental rule of law is vital to sustainable development, this paper aims to contribute to discussions on how best the vehicle of rule law can be driven towards achieving positive environmental outcomes. This will be in reliance on other enforceable provisions in the Nigerian Constitution. Other domesticated international instruments will also be considered to attain sustainable environment and development.Keywords: environment, rule of law, constitution, sustainability
Procedia PDF Downloads 1561553 Robustness of MIMO-OFDM Schemes for Future Digital TV to Carrier Frequency Offset
Authors: D. Sankara Reddy, T. Kranthi Kumar, K. Sreevani
Abstract:
This paper investigates the impact of carrier frequency offset (CFO) on the performance of different MIMO-OFDM schemes with high spectral efficiency for next generation of terrestrial digital TV. We show that all studied MIMO-OFDM schemes are sensitive to CFO when it is greater than 1% of intercarrier spacing. We show also that the Alamouti scheme is the most sensitive MIMO scheme to CFO.Keywords: modulation and multiplexing (MIMO-OFDM), signal processing for transmission carrier frequency offset, future digital TV, imaging and signal processing
Procedia PDF Downloads 4871552 Performance Analysis of Next Generation OCDM-RoF-Based Hybrid Network under Diverse Conditions
Authors: Anurag Sharma, Rahul Malhotra, Love Kumar, Harjit Pal Singh
Abstract:
This paper demonstrates OCDM-ROF based hybrid architecture where data/voice communication is enabled via a permutation of Optical Code Division Multiplexing (OCDM) and Radio-over-Fiber (RoF) techniques under various diverse conditions. OCDM-RoF hybrid network of 16 users with DPSK modulation format has been designed and performance of proposed network is analyzed for 100, 150, and 200 km fiber span length under the influence of linear and nonlinear effect. It has been reported that Polarization Mode Dispersion (PMD) has the least effect while other nonlinearity affects the performance of proposed network.Keywords: OCDM, RoF, DPSK, PMD, eye diagram, BER, Q factor
Procedia PDF Downloads 6371551 Telecontrolled Service Robots for Increasing the Quality of Life of Elderly and Disabled
Authors: Nayden Chivarov, Denis Chikurtev, Kaloyan Yovchev, Nedko Shivarov
Abstract:
This paper represents methods for improving the efficiency and precision of service mobile robot. This robot is used for increasing the quality of life of elderly and disabled people. The key concept of the proposed Intelligent Service Mobile Robot is its easier adaptability to achieve services for a wide range of Elderly or Disabled Person’s needs, by performing different tasks for supporting Elderly or Disabled Persons care. We developed robot autonomous navigation and computer vision systems in order to recognize different objects and bring them to the people. Web based user interface is developed to provide easy access and tele-control of the robot by any device through the internet. In this study algorithms for object recognition and localization are proposed for providing successful object recognition and accuracy in the positioning. Different methods for sending movement commands to the mobile robot system are proposed and evaluated. After executing some experiments to show the results of the research, we can summarize that these systems and algorithms provide good control of the service mobile robot and it will be more useful to help the elderly and disabled persons.Keywords: service robot, mobile robot, autonomous navigation, computer vision, web user interface, ROS
Procedia PDF Downloads 3391550 Modulation of the Europay, MasterCard, and VisaCard Authentications by Using Avispa Tool
Authors: Ossama Al-Maliki
Abstract:
The Europay, MasterCard, and Visa (EMV) is the transaction protocol for most of the world and especially in Europe and the UK. EMV protocol consists of three main stages which are: card authentication, cardholder verification methods, and transaction authorization. This paper details in full the EMV card authentications. We have used AVISPA and SPAN tools to do our modulization for the EMV card authentications. The code for each type of the card authentication was written by using CAS+ language. The results showed that our modulations were successfully addressed all the steps of the EMV card authentications and the entire process of the EMV card authentication are secured. Also, our modulations were successfully addressed all the main goals behind the EMV card authentications according to the EMV specifications.Keywords: EMV, card authentication, contactless card, SDA, DDA, CDA AVISPA
Procedia PDF Downloads 1781549 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view football datasets. Our HMR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH multi-view football datasets, respectively.Keywords: computer vision, human motion analysis, random forest, machine learning
Procedia PDF Downloads 361548 Symo-syl: A Meta-Phonological Intervention to Support Italian Pre-Schoolers’ Emergent Literacy Skills
Authors: Tamara Bastianello, Rachele Ferrari, Marinella Majorano
Abstract:
The adoption of the syllabic approach in preschool programmes could support and reinforce meta-phonological awareness and literacy skills in children. The introduction of a meta-phonological intervention in preschool could facilitate the transition to primary school, especially for children with learning fragilities. In the present contribution, we want to investigate the efficacy of "Simo-syl" intervention in enhancing emergent literacy skills in children (especially for reading). Simo-syl is a 12 weeks multimedia programme developed for children to improve their language and communication skills and later literacy development in preschool. During the intervention, Simo-syl, an invented character, leads children in a series of meta-phonological games. Forty-six Italian preschool children (i.e., the Simo-syl group) participated in the programme; seventeen preschool children (i.e., the control group) did not participate in the intervention. Children in the two groups were between 4;10 and 5;9 years. They were assessed on their vocabulary, morpho-syntactical, meta-phonological, phonological, and phono-articulatory skills twice: 1) at the beginning of the last year of the preschool through standardised paper-based assessment tools and 2) one week after the intervention. All children in the Simo-syl group took part in the meta-phonological programme based on the syllabic approach. The intervention lasted 12 weeks (three activities per week; week 1: activities focused on syllable blending and spelling and a first approach to the written code; weeks 2-11: activities focused on syllables recognition; week 12: activities focused on vowels recognition). Very few children (Simo-syl group = 21, control group = 9) were tested again (post-test) one week after the intervention. Before starting the intervention programme, the Simo-syl and the control groups had similar meta-phonological, phonological, lexical skills (all ps > .05). One week after the intervention, a significant difference emerged between the two groups in their meta-phonological skills (syllable blending, p = .029; syllable spelling, p = .032), in their vowel recognition ability (p = .032) and their word reading skills (p = .05). An ANOVA confirmed the effect of the group membership on the developmental growth for the word reading task (F (1,28) = 6.83, p = .014, ηp2 = .196). Taking part in the Simo-syl intervention has a positive effect on the ability to read in preschool children.Keywords: intervention programme, literacy skills, meta-phonological skills, syllabic approach
Procedia PDF Downloads 1621547 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 6131546 Locating Speed Limit Signs for Highway Tunnel Entrance and Exit
Authors: Han Bai, Lemei Yu, Tong Zhang, Doudou Xie, Liang Zhao
Abstract:
The brightness changes at highway tunnel entrance and exit have an effect on the physical and psychological conditions of drivers. It is more conducive for examining driving safety with quantitative analysis of the physical and psychological characteristics of drivers to determine the speed limit sign locations at the tunnel entrance and exit sections. In this study, the physical and psychological effects of tunnels on traffic sign recognition of drivers are analyzed; subsequently, experiments with the assistant of Eyelink-II Type eye movement monitoring system are conducted in the typical tunnels in Ji-Qing freeway and Xi-Zha freeway, to collect the data of eye movement indexes “Fixation Duration” and “Eyeball Rotating Speed”, which typically represent drivers' mental load and visual characteristics. On this basis, the paper establishes a visual recognition model for the speed limit signs at the highway tunnel entrances and exits. In combination with related standards and regulations, it further presents the recommended values for locating speed limit signs under different tunnel conditions. A case application on Panlong tunnel in Ji-Qing freeway is given to generate the helpful improvement suggestions.Keywords: driver psychological load, eye movement index, speed limit sign location, tunnel entrance and exit
Procedia PDF Downloads 2951545 Bird-Adapted Filter for Avian Species and Individual Identification Systems Improvement
Authors: Ladislav Ptacek, Jan Vanek, Jan Eisner, Alexandra Pruchova, Pavel Linhart, Ludek Muller, Dana Jirotkova
Abstract:
One of the essential steps of avian song processing is signal filtering. Currently, the standard methods of filtering are the Mel Bank Filter or linear filter distribution. In this article, a new type of bank filter called the Bird-Adapted Filter is introduced; whereby the signal filtering is modifiable, based upon a new mathematical description of audiograms for particular bird species or order, which was named the Avian Audiogram Unified Equation. According to the method, filters may be deliberately distributed by frequency. The filters are more concentrated in bands of higher sensitivity where there is expected to be more information transmitted and vice versa. Further, it is demonstrated a comparison of various filters for automatic individual recognition of chiffchaff (Phylloscopus collybita). The average Equal Error Rate (EER) value for Linear bank filter was 16.23%, for Mel Bank Filter 18.71%, the Bird-Adapted Filter gave 14.29%, and Bird-Adapted Filter with 1/3 modification was 12.95%. This approach would be useful for practical use in automatic systems for avian species and individual identification. Since the Bird-Adapted Filter filtration is based on the measured audiograms of particular species or orders, selecting the distribution according to the avian vocalization provides the most precise filter distribution to date.Keywords: avian audiogram, bird individual identification, bird song processing, bird species recognition, filter bank
Procedia PDF Downloads 3871544 Recognizing Human Actions by Multi-Layer Growing Grid Architecture
Authors: Z. Gharaee
Abstract:
Recognizing actions performed by others is important in our daily lives since it is necessary for communicating with others in a proper way. We perceive an action by observing the kinematics of motions involved in the performance. We use our experience and concepts to make a correct recognition of the actions. Although building the action concepts is a life-long process, which is repeated throughout life, we are very efficient in applying our learned concepts in analyzing motions and recognizing actions. Experiments on the subjects observing the actions performed by an actor show that an action is recognized after only about two hundred milliseconds of observation. In this study, hierarchical action recognition architecture is proposed by using growing grid layers. The first-layer growing grid receives the pre-processed data of consecutive 3D postures of joint positions and applies some heuristics during the growth phase to allocate areas of the map by inserting new neurons. As a result of training the first-layer growing grid, action pattern vectors are generated by connecting the elicited activations of the learned map. The ordered vector representation layer receives action pattern vectors to create time-invariant vectors of key elicited activations. Time-invariant vectors are sent to second-layer growing grid for categorization. This grid creates the clusters representing the actions. Finally, one-layer neural network developed by a delta rule labels the action categories in the last layer. System performance has been evaluated in an experiment with the publicly available MSR-Action3D dataset. There are actions performed by using different parts of human body: Hand Clap, Two Hands Wave, Side Boxing, Bend, Forward Kick, Side Kick, Jogging, Tennis Serve, Golf Swing, Pick Up and Throw. The growing grid architecture was trained by applying several random selections of generalization test data fed to the system during on average 100 epochs for each training of the first-layer growing grid and around 75 epochs for each training of the second-layer growing grid. The average generalization test accuracy is 92.6%. A comparison analysis between the performance of growing grid architecture and self-organizing map (SOM) architecture in terms of accuracy and learning speed show that the growing grid architecture is superior to the SOM architecture in action recognition task. The SOM architecture completes learning the same dataset of actions in around 150 epochs for each training of the first-layer SOM while it takes 1200 epochs for each training of the second-layer SOM and it achieves the average recognition accuracy of 90% for generalization test data. In summary, using the growing grid network preserves the fundamental features of SOMs, such as topographic organization of neurons, lateral interactions, the abilities of unsupervised learning and representing high dimensional input space in the lower dimensional maps. The architecture also benefits from an automatic size setting mechanism resulting in higher flexibility and robustness. Moreover, by utilizing growing grids the system automatically obtains a prior knowledge of input space during the growth phase and applies this information to expand the map by inserting new neurons wherever there is high representational demand.Keywords: action recognition, growing grid, hierarchical architecture, neural networks, system performance
Procedia PDF Downloads 1571543 Evolution of Multimodulus Algorithm Blind Equalization Based on Recursive Least Square Algorithm
Authors: Sardar Ameer Akram Khan, Shahzad Amin Sheikh
Abstract:
Blind equalization is an important technique amongst equalization family. Multimodulus algorithms based on blind equalization removes the undesirable effects of ISI and cater ups the phase issues, saving the cost of rotator at the receiver end. In this paper a new algorithm combination of recursive least square and Multimodulus algorithm named as RLSMMA is proposed by providing few assumption, fast convergence and minimum Mean Square Error (MSE) is achieved. The excellence of this technique is shown in the simulations presenting MSE plots and the resulting filter results.Keywords: blind equalizations, constant modulus algorithm, multi-modulus algorithm, recursive least square algorithm, quadrature amplitude modulation (QAM)
Procedia PDF Downloads 6441542 The Hijras of Odisha: A Study of the Self-Identity of the Eunuchs and Their Identification with Stereotypical Feminine Roles
Authors: Purnima Anjali Mohanty, Mousumi Padhi
Abstract:
Background of the study: In the background of the passage of the Transgender Bill 2016, which is the first such step of formal recognition of the rights of transgender, the Hijras have been recognized under the wider definition of Transgender. Fascinatingly, in the Hindu social context, Hijras have a long social standing during marriages and childbirths. Other than this ironically, they live an ostracized life. The Bill rather than recognizing their unique characteristics and needs, reinforces the societal dualism through a parallelism of their legal rights with rights available to women. Purpose of the paper: The research objective was to probe why and to what extent did they identify themselves with the feminine gender roles. Originality of the paper: In the Indian context, the subject of eunuch has received relatively little attention. Among the studies that exist, there has been a preponderance of studies from the perspective of social exclusion, rights, and physical health. There has been an absence of research studying the self-identity of Hijras from the gender perspective. Methodology: The paper adopts the grounded theory method to investigate and discuss the underlying gender identity of transgenders. Participants in the study were 30 hijras from various parts of Odisha. 4 Focus group discussions were held for collecting data. The participants were approached in their natural habitat. Following the methodological recommendations of the grounded theory, care was taken to select respondents with varying experiences. The recorded discourses were transcribed verbatim. The transcripts were analysed sentence by sentence, and coded. Common themes were identified, and responses were categorized under the themes. Data collected in the latter group discussions were added till saturation of themes. Finally, the themes were put together to prove that despite the demand for recognition as third gender, the eunuchs of Odisha identify themselves with the feminine roles. Findings: The Hijra have their own social structure and norms which are unique and are in contrast with the mainstream culture. These eunuchs live and reside in KOTHIS (house), where the family is led by a matriarch addressed as Maa (mother) with her daughters (the daughters are eunuchs/effeminate men castrated and not castrated). They all dress up as woman, do womanly duties, expect to be considered and recognized as woman and wife and have the behavioral traits of a woman. Looking from the stance of Feminism one argues that when the Hijras identify themselves with the gender woman then on what grounds they are given the recognition as third gender. As self-identified woman; their claim for recognition as third gender falls flat. Significance of the study: Academically it extends the study of understanding of gender identity and psychology of the Hijras in the Indian context. Practically its significance is far reaching. The findings can be used to address legal and social issues with regards to the rights available to the Hijras.Keywords: feminism, gender perspective, Hijras, rights, self-identity
Procedia PDF Downloads 4321541 SVM-DTC Using for PMSM Speed Tracking Control
Authors: Kendouci Khedidja, Mazari Benyounes, Benhadria Mohamed Rachid, Dadi Rachida
Abstract:
In recent years, direct torque control (DTC) has become an alternative to the well-known vector control especially for permanent magnet synchronous motor (PMSM). However, it presents a problem of field linkage and torque ripple. In order to solve this problem, the conventional DTC is combined with space vector pulse width modulation (SVPWM). This control theory has achieved great success in the control of PMSM. That has become a hotspot for resolving. The main objective of this paper gives us an introduction of the DTC and SVPWM-DTC control theory of PMSM which has been simulating on each part of the system via Matlab/Simulink based on the mathematical modeling. Moreover, the outcome of the simulation proved that the improved SVPWM- DTC of PMSM has a good dynamic and static performance.Keywords: PMSM, DTC, SVM, speed control
Procedia PDF Downloads 3891540 Cognitive Development Theories as Determinant of Children's Brand Recall and Ad Recognition: An Indian Perspective
Authors: Ruchika Sharma
Abstract:
In the past decade, there has been an explosion of research that has examined children’s understanding of TV advertisements and its persuasive intent, socialization of child consumer and child psychology. However, it is evident from the literature review that no studies in this area have covered advertising messages and its impact on children’s brand recall and ad recognition. Copywriters use various creative devices to lure the consumers and very impressionable consumers such as children face far more drastic effects of these creative ways of persuasion. On the basis of Piaget’s theory of cognitive development as a theoretical basis for predicting/understanding children’s response and understanding, a quasi-experiment was carried out for the study, that manipulated measurement timing and advertising messages (familiar vs. unfamiliar) keeping gender and age group as two prominent factors. This study also examines children’s understanding of Advertisements and its elements, predominantly - Language, keeping in view Fishbein’s model. Study revealed significant associations between above mentioned factors and children’s brand recall and ad identification. Further, to test the reliability of the findings on larger sample, bootstrap simulation technique was used. The simulation results are in accordance with the findings of experiment, suggesting that the conclusions obtained from the study can be generalized for entire children’s (as consumers) market in India.Keywords: advertising, brand recall, cognitive development, preferences
Procedia PDF Downloads 2901539 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines
Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder
Abstract:
One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.Keywords: affective computing, emotion recognition, humanoid robot, human-robot-interaction (HRI), social robots
Procedia PDF Downloads 2351538 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.Keywords: multiclass classification, convolution neural network, OpenCV
Procedia PDF Downloads 1761537 An Event-Related Potential Study of Individual Differences in Word Recognition: The Evidence from Morphological Knowledge of Sino-Korean Prefixes
Authors: Jinwon Kang, Seonghak Jo, Joohee Ahn, Junghye Choi, Sun-Young Lee
Abstract:
A morphological priming has proved its importance by showing that segmentation occurs in morphemes when visual words are recognized within a noticeably short time. Regarding Sino-Korean prefixes, this study conducted an experiment on visual masked priming tasks with 57 ms stimulus-onset asynchrony (SOA) to see how individual differences in the amount of morphological knowledge affect morphological priming. The relationship between the prime and target words were classified as morphological (e.g., 미개척 migaecheog [unexplored] – 미해결 mihaegyel [unresolved]), semantical (e.g., 친환경 chinhwangyeong [eco-friendly]) – 무공해 mugonghae [no-pollution]), and orthographical (e.g., 미용실 miyongsil [beauty shop] – 미확보 mihwagbo [uncertainty]) conditions. We then compared the priming by configuring irrelevant paired stimuli for each condition’s control group. As a result, in the behavioral data, we observed facilitatory priming from a group with high morphological knowledge only under the morphological condition. In contrast, a group with low morphological knowledge showed the priming only under the orthographic condition. In the event-related potential (ERP) data, the group with high morphological knowledge presented the N250 only under the morphological condition. The findings of this study imply that individual differences in morphological knowledge in Korean may have a significant influence on the segmental processing of Korean word recognition.Keywords: ERP, individual differences, morphological priming, sino-Korean prefixes
Procedia PDF Downloads 2141536 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3391535 Psoriasis Diagnostic Test Development: Exploratory Study
Authors: Salam N. Abdo, Orien L. Tulp, George P. Einstein
Abstract:
The purpose of this exploratory study was to gather the insights into psoriasis etiology, treatment, and patient experience, for developing psoriasis and psoriatic arthritis diagnostic test. Data collection methods consisted of a comprehensive meta-analysis of relevant studies and psoriasis patient survey. Established meta-analysis guidelines were used for the selection and qualitative comparative analysis of psoriasis and psoriatic arthritis research studies. Only studies that clearly discussed psoriasis etiology, treatment, and patient experience were reviewed and analyzed, to establish a qualitative data base for the study. Using the insights gained from meta-analysis, an existing psoriasis patient survey was modified and administered to collect additional data as well as triangulate the results. The hypothesis is that specific types of psoriatic disease have specific etiology and pathophysiologic pattern. The following etiology categories were identified: bacterial, environmental/microbial, genetic, immune, infectious, trauma/stress, and viral. Additional results, obtained from meta-analysis and confirmed by patient survey, were the common age of onset (early to mid-20s) and type of psoriasis (plaque; mild; symmetrical; scalp, chest, and extremities, specifically elbows and knees). Almost 70% of patients reported no prescription drug use due to severe side effects and prohibitive cost. These results will guide the development of psoriasis and psoriatic arthritis diagnostic test. The significant number of medical publications classified psoriatic arthritis disease as inflammatory of an unknown etiology. Thus numerous meta-analyses struggle to report any meaningful conclusions since no definitive results have been reported to date. Therefore, return to the basics is an essential step to any future meaningful results. To date, medical literature supports the fact that psoriatic disease in its current classification could be misidentifying subcategories, which in turn hinders the success of studies conducted to date. Moreover, there has been an enormous commercial support to pursue various immune-modulation therapies, thus following a narrow hypothesis/mechanism of action that is yet to yield resolution of disease state. Recurrence and complications may be considered unacceptable in a significant number of these studies. The aim of the ongoing study is to focus on a narrow subgroup of patient population, as identified by this exploratory study via meta-analysis and patient survey, and conduct an exhaustive work up, aiming at mechanism of action and causality before proposing a cure or therapeutic modality. Remission in psoriasis has been achieved and documented in medical literature, such as immune-modulation, phototherapy, various over-the-counter agents, including salts and tar. However, there is no psoriasis and psoriatic arthritis diagnostic test to date, to guide the diagnosis and treatment of this debilitating and, thus far, incurable disease. Because psoriasis affects approximately 2% of population, the results of this study may affect the treatment and improve the quality of life of a significant number of psoriasis patients, potentially millions of patients in the United States alone and many more millions worldwide.Keywords: biologics, early diagnosis, etiology, immune disease, immune modulation therapy, inflammation skin disorder, phototherapy, plaque psoriasis, psoriasis, psoriasis classification, psoriasis disease marker, psoriasis diagnostic test, psoriasis marker, psoriasis mechanism of action, psoriasis treatment, psoriatic arthritis, psoriatic disease, psoriatic disease marker, psoriatic patient experience, psoriatic patient quality of life, remission, salt therapy, targeted immune therapy
Procedia PDF Downloads 1181534 An Ontological Approach to Existentialist Theatre and Theatre of the Absurd in the Works of Jean-Paul Sartre and Samuel Beckett
Authors: Gülten Silindir Keretli
Abstract:
The aim of this study is to analyse the works of playwrights within the framework of existential philosophy. It is to observe the ontological existence in the plays of No Exit and Endgame. Literary works will be discussed separately in each section of this study. The despair of post-war generation of Europe problematized the ‘human condition’ in every field of literature which is the very product of social upheaval. With this concern in his mind, Sartre’s creative works portrayed man as a lonely being, burdened with terrifying freedom to choose and create his own meaning in an apparently meaningless world. The traces of the existential thought are to be found throughout the history of philosophy and literature. On the other hand, the theatre of the absurd is a form of drama showing the absurdity of the human condition and it is heavily influenced by the existential philosophy. Beckett is the most influential playwright of the theatre of the absurd. The themes and thoughts in his plays share many tenets of the existential philosophy. The existential philosophy posits the meaninglessness of existence and it regards man as being thrown into the universe and into desolate isolation. To overcome loneliness and isolation, the human ego needs recognition from the other people. Sartre calls this need of recognition as the need for ‘the Look’ (Le regard) from the Other. In this paper, existentialist philosophy and existentialist angst will be elaborated and then the works of existentialist theatre and theatre of absurd will be discussed within the framework of existential philosophy.Keywords: consciousness, existentialism, the notion of the absurd, the other
Procedia PDF Downloads 1581533 Automatic Target Recognition in SAR Images Based on Sparse Representation Technique
Authors: Ahmet Karagoz, Irfan Karagoz
Abstract:
Synthetic Aperture Radar (SAR) is a radar mechanism that can be integrated into manned and unmanned aerial vehicles to create high-resolution images in all weather conditions, regardless of day and night. In this study, SAR images of military vehicles with different azimuth and descent angles are pre-processed at the first stage. The main purpose here is to reduce the high speckle noise found in SAR images. For this, the Wiener adaptive filter, the mean filter, and the median filters are used to reduce the amount of speckle noise in the images without causing loss of data. During the image segmentation phase, pixel values are ordered so that the target vehicle region is separated from other regions containing unnecessary information. The target image is parsed with the brightest 20% pixel value of 255 and the other pixel values of 0. In addition, by using appropriate parameters of statistical region merging algorithm, segmentation comparison is performed. In the step of feature extraction, the feature vectors belonging to the vehicles are obtained by using Gabor filters with different orientation, frequency and angle values. A number of Gabor filters are created by changing the orientation, frequency and angle parameters of the Gabor filters to extract important features of the images that form the distinctive parts. Finally, images are classified by sparse representation method. In the study, l₁ norm analysis of sparse representation is used. A joint database of the feature vectors generated by the target images of military vehicle types is obtained side by side and this database is transformed into the matrix form. In order to classify the vehicles in a similar way, the test images of each vehicle is converted to the vector form and l₁ norm analysis of the sparse representation method is applied through the existing database matrix form. As a result, correct recognition has been performed by matching the target images of military vehicles with the test images by means of the sparse representation method. 97% classification success of SAR images of different military vehicle types is obtained.Keywords: automatic target recognition, sparse representation, image classification, SAR images
Procedia PDF Downloads 3651532 A Novel Harmonic Compensation Algorithm for High Speed Drives
Authors: Lakdar Sadi-Haddad
Abstract:
The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.Keywords: active harmonic compensation, eddy current losses, high speed machine
Procedia PDF Downloads 3951531 Being Your Own First Responder: A Training to Identify and Respond to Mental Health
Authors: Joe Voshall, Leigha Shoup
Abstract:
In 2022, the Ohio Peace Officer Training Council and the Attorney General required officers to complete a minimum of 24 hours of continued professional training for the year. Much of the training was based on Mental Health or similarly related topics. This includes Officer Wellness and Officer Mental Health. It is becoming clearer that the stigma of Officer / First Responder Mental Health is a topic that is becoming more prevalently faced. To assist officers and first responders in facing mental health issues, we are developing new training. This training will aid in recognizing mental health-related issues in officers/first responders and citizens, as well as further using the same information to better respond and interact with one another and the public. In general, society has many varying views of mental health, much of which is largely over-sensationalized by television, movies, and other forms of entertainment. There has also been a stigma in law enforcement / first responders related to mental health and being weak as a result of on-the-job-related trauma-induced struggles. It is our hope this new training will assist officers and first responders in not only positively facing and addressing their mental health but using their own experience and education to recognize signs and symptoms of mental health within individuals in the community. Further, we hope that through this recognition, officers and first responders can use their experiences and more in-depth understanding to better interact within the field and with the public. Through recognition and better understanding of mental health issues and more positive interaction with the public, additional achievements are likely to result. This includes in the removal of bias and stigma for everyone.Keywords: law enforcement, mental health, officer related mental health, trauma
Procedia PDF Downloads 1641530 Mirrors and Lenses: Multiple Views on Recognition in Holocaust Literature
Authors: Kirsten A. Bartels
Abstract:
There are a number of similarities between survivor literature and Holocaust fiction for children and young adults. The paper explores three facets of the parallels of recognition found specifically between Livia Bitton-Jackson’s memoir of her experience during the Holocaust as an inmate in Auschwitz, I Have Lived a Thousand Years (1999) and Morris Glietzman series of Holocaust fiction. While Bitton-Jackson reflects on her past and Glietzman designs a fictive character, both are judicious with what they are willing to impart, only providing information about their appearance or themselves when it impacts others or when it serves a necessary purpose to the story. Another similarity lies in another critical aspect of many works of Holocaust literature – the idea of being ‘representatively Jewish’. The authors come to this idea from different angles, perhaps best explained as the difference between showing and telling, for Bitton-Jackson provides personal details, and Gleitzman constructed Felix arguably with this idea in mind. Interwoven through their journeys is a shift in perspectives on being recognized -- from wanting to be seen as individuals to being seen as Jew. With this, being Jewish takes on different meaning, both youths struggle with being labeled as something they do not truly understand, and may have not truly identified with, from a label, to a death warrant. With survivor literature viewed as the most credible and worthwhile type of Holocaust literature and Holocaust fiction is often seen as the least (with children’s and young-adult being the lowest form) the similarities in approaches to telling the stories may go overlooked or be undervalued. This paper serves as an exploration in the some of parallel messages shared between the two.Keywords: holocaust fiction, Holocaust literature, representatively Jewish, survivor literature
Procedia PDF Downloads 1681529 Correlation between Speech Emotion Recognition Deep Learning Models and Noises
Authors: Leah Lee
Abstract:
This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked.Keywords: auto-encoder, convolutional neural networks, long short-term memory, speech emotion recognition, visual geometry group-16
Procedia PDF Downloads 751528 Using Deep Learning Real-Time Object Detection Convolution Neural Networks for Fast Fruit Recognition in the Tree
Authors: K. Bresilla, L. Manfrini, B. Morandi, A. Boini, G. Perulli, L. C. Grappadelli
Abstract:
Image/video processing for fruit in the tree using hard-coded feature extraction algorithms have shown high accuracy during recent years. While accurate, these approaches even with high-end hardware are computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks (CNNs), specifically an algorithm (YOLO - You Only Look Once) with 24+2 convolution layers. Using deep-learning techniques eliminated the need for hard-code specific features for specific fruit shapes, color and/or other attributes. This CNN is trained on more than 5000 images of apple and pear fruits on 960 cores GPU (Graphical Processing Unit). Testing set showed an accuracy of 90%. After this, trained data were transferred to an embedded device (Raspberry Pi gen.3) with camera for more portability. Based on correlation between number of visible fruits or detected fruits on one frame and the real number of fruits on one tree, a model was created to accommodate this error rate. Speed of processing and detection of the whole platform was higher than 40 frames per second. This speed is fast enough for any grasping/harvesting robotic arm or other real-time applications.Keywords: artificial intelligence, computer vision, deep learning, fruit recognition, harvesting robot, precision agriculture
Procedia PDF Downloads 420