Search results for: inclusive speech recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3087

Search results for: inclusive speech recognition

2487 Improving Second Language Speaking Skills via Video Exchange

Authors: Nami Takase

Abstract:

Computer-mediated-communication allows people to connect and interact with each other as if they were sharing the same space. The current study examined the effects of using video letters (VLs) on the development of second language speaking skills of Common European Framework of Reference for Languages (CEFR) A1 and CEFR B2 level learners of English as a foreign language. Two groups were formed to measure the impact of VLs. The experimental and control groups were given the same topic, and both groups worked with a native English-speaking university student from the United States of America. Students in the experimental group exchanged VLs, and students in the control group used video conferencing. Pre- and post-tests were conducted to examine the effects of each practice mode. The transcribed speech-text data showed that the VL group had improved speech accuracy scores, while the video conferencing group had increased sentence complexity scores. The use of VLs may be more effective for beginner-level learners because they are able to notice their own errors and replay videos to better understand the native speaker’s speech at their own pace. Both the VL and video conferencing groups provided positive feedback regarding their interactions with native speakers. The results showed how different types of computer-mediated communication impacts different areas of language learning and speaking practice and how each of these types of online communication tool is suited to different teaching objectives.

Keywords: computer-assisted-language-learning, computer-mediated-communication, english as a foreign language, speaking

Procedia PDF Downloads 99
2486 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
2485 The Code-Mixing of Japanese, English, and Thai in Line Chat

Authors: Premvadee Na Nakornpanom

Abstract:

Language mixing in spontaneous speech has been widely discussed, but not in virtual situations; especially in context of the third language learning students. Thus, this study was an attempt to explore the characteristics of the mixing of Japanese, English and Thai in a mobile chat room by students with their background of Japanese, English, and Thai. The result found that Insertion of Thai and English content words was a very common linguistic phenomenon embedded in the utterances. As chatting is to be ‘relational’ or ‘interactional’, it affected the style of lexical choices to be speech-like, more personal and emotional-related. A Japanese sentence-final question particle“か”(ka) was added to the end of the sentence based on Thai grammar rule. Moreover, some unique characteristics were created. The non-verbal cues were represented in personal, Thai styles by inserting textual representations of images or feelings available on the websites into streams of conversations.

Keywords: code-mixing, Japanese, English, Thai, line chat

Procedia PDF Downloads 652
2484 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism

Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li

Abstract:

Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.

Keywords: keypoint detection, feature fusion, attention, semantic segmentation

Procedia PDF Downloads 119
2483 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition

Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade

Abstract:

The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.

Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection

Procedia PDF Downloads 169
2482 The Wear Recognition on Guide Surface Based on the Feature of Radar Graph

Authors: Youhang Zhou, Weimin Zeng, Qi Xie

Abstract:

Abstract: In order to solve the wear recognition problem of the machine tool guide surface, a new machine tool guide surface recognition method based on the radar-graph barycentre feature is presented in this paper. Firstly, the gray mean value, skewness, projection variance, flat degrees and kurtosis features of the guide surface image data are defined as primary characteristics. Secondly, data Visualization technology based on radar graph is used. The visual barycentre graphical feature is demonstrated based on the radar plot of multi-dimensional data. Thirdly, a classifier based on the support vector machine technology is used, the radar-graph barycentre feature and wear original feature are put into the classifier separately for classification and comparative analysis of classification and experiment results. The calculation and experimental results show that the method based on the radar-graph barycentre feature can detect the guide surface effectively.

Keywords: guide surface, wear defects, feature extraction, data visualization

Procedia PDF Downloads 519
2481 Host-Assisted Delivery of a Model Drug to Genomic DNA: Key Information From Ultrafast Spectroscopy and in Silico Study

Authors: Ria Ghosh, Soumendra Singh, Dipanjan Mukherjee, Susmita Mondal, Monojit Das, Uttam Pal, Aniruddha Adhikari, Aman Bhushan, Surajit Bose, Siddharth Sankar Bhattacharyya, Debasish Pal, Tanusri Saha-Dasgupta, Maitree Bhattacharyya, Debasis Bhattacharyya, Asim Kumar Mallick, Ranjan Das, Samir Kumar Pal

Abstract:

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ~652 s 1. However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.

Keywords: DNA, drug delivery, micelle, pre-micelle, SDS, toluidine blue

Procedia PDF Downloads 113
2480 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 545
2479 Impact of Culture and Religion on Disability and the Health Care Seeking Practices of the Shona People

Authors: Mafunda Esther

Abstract:

The paper seeks to find out and document the impact of culture and religion on disability, specifically language impairment and health care seeking practices of the Shona people. Its main objectives are to explore the cultural and religious beliefs that affect the utilization of rehabilitation services in a rural community in Zimbabwe. The other objective of the paper is to describe how language impairment is presented and understood by people living in a Zimbabwean rural area. The research is qualitative interpretive phenomenological research, and it utilizes the case study approach using semi structured interviews and focus group discussions. Results from the research established that religious and cultural beliefs determine how the Shona people view disability, and this guides their health care seeking practices. The research is important since communication disorders occur in populations worldwide though they are not always recognized as such. The lack of recognition of and the attitudes toward speech and languages disorders, as well as the beliefs about the causes of such disorders, affect people's attitudes toward the treatment of the disorders.

Keywords: culture, religion, disability, language impairment

Procedia PDF Downloads 98
2478 A Review of the Long Term Effects of In-Service Training Towards Inclusive Education

Authors: Meenakshi Srivastava, Anke A. De Boer, Sip Jan Pij

Abstract:

Teacher’s preparedness towards special educational needs (SEN) of the students in regular schools is an important factor in making education inclusive as a goal to provide education for all. The current study measured the long term effects of an in-service teacher training programme which focused on the inclusion of students with a range of SEN. The programme was on three particular aspects: teachers’ attitudes, their knowledge about SEN and knowledge about teaching methods. A refresher course was also organized for participants of the initial training programme. The long term effects were examined by teachers using a self-report questionnaire (n = 38). The wider effects of the initial training were recorded by interviewing school principals (n = 4). Repeated measures of ANOVA revealed significant effects: more positive attitudes and increased knowledge about SEN among teachers who took the refresher course (n = 18) compared to those who had not (n = 19). Principals also found a more positive attitude, sensitivity and increased awareness about SEN among the participants.

Keywords: inclusion, students with special educational needs, teacher training, follow-up, attitudes change

Procedia PDF Downloads 125
2477 Fostering Diversity, Equity, and Inclusion: Case of Higher Education Institutions in Kazakhstan

Authors: Gainiya Tazhina

Abstract:

Higher education systems of many countries have increased diversity and ensured equal rights and opportunities for inclusive students in the last decades. Issues of diversity-equity-inclusion (DEI) in Kazakhstani higher education began to be considered in legislation in 2021-2023. The adoption of the Road Map of the Ministry of Education and Science for universities’ inclusivity indicated strategies for change. The paper traces how this government initiative is being implemented in universities across the country. Content analysis of legislative documents, media publications, surveys of students, staff and interviews with leaders have demonstrated the inconsistency of these strategic decisions. Thus, the Road Map required that by 2023 conditions for promoting and ensuring inclusive education and barrier-free environments should be created in 60% -100% of Kazakhstani universities, including spaces inside academic buildings and dormitories in a short period of time. (March 2023-August 2025). Educational programs and curricula have not been adapted to the needs of students with special education needs (SEN); teachers do not have the skills and methods to work with students with SEN, students from minority groups, and international students. 60% of universities have not created a barrier-free environment on campuses due to the high cost of elevators, tactile tiles and assistive devices. Only 1% of school-disabled graduates enter universities due to the unwillingness of universities to educate people with disabilities. At the same time, universities do not adapt their educational programs and services to the needs of inclusive students; their needs are not identified; they study under the same conditions as regular students. Accordingly, teaching staff does not have the knowledge and skills to teach inclusive students; university lecturers misunderstand or oversimplify the social phenomena of ‘inclusion’ and ‘diversity’. The situation is more acute with the creation of a barrier-free architectural environment on university campuses. Recent reports indicate that these reforms have not been implemented to date, proven controversial in practice due to the inconsistency of national research on inclusion in higher education. Widely announced reforms have not produced the expected results leading to distortions at the local level. Inconsistent policies, contradictory legislative acts without expertise of needs and developing specific implementation criteria, without training specialists and indicators for achieving reforms are doomed to failure and mistrust of society. Based on the results of this research, recommendations have been developed: (1) to overcome inconsistencies in legislation regarding DEI in higher education; (2) to encourage initiatives in universities' inclusive environments; (3) to develop projects that will promote public awareness of DEI.

Keywords: diversity-equity-inclusion, Kazakhstani universities, reforms, legislation, accessibility

Procedia PDF Downloads 12
2476 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
2475 Online Delivery Approaches of Post Secondary Virtual Inclusive Media Education

Authors: Margot Whitfield, Andrea Ducent, Marie Catherine Rombaut, Katia Iassinovskaia, Deborah Fels

Abstract:

Learning how to create inclusive media, such as closed captioning (CC) and audio description (AD), in North America is restricted to the private sector, proprietary company-based training. We are delivering (through synchronous and asynchronous online learning) the first Canadian post-secondary, practice-based continuing education course package in inclusive media for broadcast production and processes. Despite the prevalence of CC and AD taught within the field of translation studies in Europe, North America has no comparable field of study. This novel approach to audio visual translation (AVT) education develops evidence-based methodology innovations, stemming from user study research with blind/low vision and Deaf/hard of hearing audiences for television and theatre, undertaken at Ryerson University. Knowledge outcomes from the courses include a) Understanding how CC/AD fit within disability/regulatory frameworks in Canada. b) Knowledge of how CC/AD could be employed in the initial stages of production development within broadcasting. c) Writing and/or speaking techniques designed for media. d) Hands-on practice in captioning re-speaking techniques and open source technologies, or in AD techniques. e) Understanding of audio production technologies and editing techniques. The case study of the curriculum development and deployment, involving first-time online course delivery from academic and practitioner-based instructors in introductory Captioning and Audio Description courses (CDIM 101 and 102), will compare two different instructors' approaches to learning design, including the ratio of synchronous and asynchronous classroom time and technological engagement tools on meeting software platform such as breakout rooms and polling. Student reception of these two different approaches will be analysed using qualitative thematic and quantitative survey analysis. Thus far, anecdotal conversations with students suggests that they prefer synchronous compared with asynchronous learning within our hands-on online course delivery method.

Keywords: inclusive media theory, broadcasting practices, AVT post secondary education, respeaking, audio description, learning design, virtual education

Procedia PDF Downloads 183
2474 The Maps of Meaning (MoM) Consciousness Theory

Authors: Scott Andersen

Abstract:

Perhaps simply and rather unadornedly, consciousness is having multiple goals for action and the continuously adjudication of such goals to implement action, referred to as the Maps of Meaning (MoM) Consciousness Theory. The MoM theory triangulates through three parallel corollaries, action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism’s consciousness contains a fluid, nested goals. These goals are not intentionality, but intersectionality, embodiment meeting the world. i.e., Darwinian inclusive fitness or randomization, then survival of the fittest. These goals form via gradual descent under inclusive fitness, the goals being the abstraction of a ‘match’ between the evolutionary environment and organism. Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience crystallize efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one’s adaptive environment. These efficiencies are objectively arbitrary, but determine the operation and level of one’s consciousness, termed extreme thrownness. Since inclusive fitness drives efficiencies in physiologic mechanism, morphology and behavior (action) and originates one’s goals, embodiment is necessarily entangled to human consciousness as its the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. Perception is the operant process of consciousness and is the consciousness’ de facto goal adjudication process. Goal operationalization is fundamentally efficiency-based via one’s unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception isn’t a ‘frame rate,’ but Bayesian priors of efficiency based on one’s extreme thrownness. Consciousness and human consciousness is a modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as emergent phenomena at various modularities, like stratified factors in factor analysis). The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.

Keywords: consciousness, perception, prospection, embodiment

Procedia PDF Downloads 59
2473 Little Retrieval Augmented Generation for Named Entity Recognition: Toward Lightweight, Generative, Named Entity Recognition Through Prompt Engineering, and Multi-Level Retrieval Augmented Generation

Authors: Sean W. T. Bayly, Daniel Glover, Don Horrell, Simon Horrocks, Barnes Callum, Stuart Gibson, Mac Misuira

Abstract:

We assess suitability of recent, ∼7B parameter, instruction-tuned Language Models Mistral-v0.3, Llama-3, and Phi-3, for Generative Named Entity Recognition (GNER). Our proposed Multi-Level Information Retrieval method achieves notable improvements over finetuned entity-level and sentence-level methods. We consider recent developments at the cross roads of prompt engineering and Retrieval Augmented Generation (RAG), such as EmotionPrompt. We conclude that language models directed toward this task are highly capable when distinguishing between positive classes (precision). However, smaller models seem to struggle to find all entities (recall). Poorly defined classes such as ”Miscellaneous” exhibit substantial declines in performance, likely due to the ambiguity it introduces to the prompt. This is partially resolved through a self verification method using engineered prompts containing knowledge of the stricter class definitions, particularly in areas where their boundaries are in danger of overlapping, such as the conflation between the location ”Britain” and the nationality ”British”. Finally, we explore correlations between model performance on the GNER task with performance on relevant academic benchmarks.

Keywords: generative named entity recognition, information retrieval, lightweight artificial intelligence, prompt engineering, personal information identification, retrieval augmented generation, self verification

Procedia PDF Downloads 46
2472 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment

Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay

Abstract:

Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.

Keywords: machine learning, system performance, performance metrics, IoT, edge

Procedia PDF Downloads 195
2471 COVID-19’s Effect on Pre-Existing Hearing Loss

Authors: Jonathan A. Mikhail, Arsenio Paez

Abstract:

It is not uncommon for a viral infection to cause hearing loss. Many viral infections are associated with sudden-onset, often unilateral, idiopathic sensorineural hearing loss. We conducted an exploratory study with thirty patients with pre-existing hearing loss between 50 and 64 to evaluate if COVID-19 was associated with exacerbated hearing loss. We hypothesized that hearing loss would be exacerbated by COVID-19 infection in patients with pre-existing hearing loss. A statistically significant paired T-test between pure tone averages (PTAs) at the patient’s original diagnosis and a current, updated audiometric assessment indicated a regression in hearing (p-value < .001) sensitivity following the contraction of COVID-19. Speech reception thresholds (SRTs) and word recognition scores (WRSs) were also considered, as well as the participants' gender. SRTs between each ear exhibited a statistically significant change (p-value of .002 and p-value < .001). WRSs did not show statistically significant differences (p-value of .290 and p-value of .098). A non-statistically significant Two-Way ANOVA was performed to evaluate gender’s potential role in exacerbated hearing loss and proved to be statistically insignificant (p-value of .214). This study discusses practical implications for clinical and educational pursuits in understanding COVID-19's effect on the auditory system and the need to evaluate the deadly virus further.

Keywords: audiology, COVID-19, sensorineural hearing loss, otology, auditory research

Procedia PDF Downloads 79
2470 Fight the Burnout: Phase Two of a NICU Nurse Wellness Bundle

Authors: Megan Weisbart

Abstract:

Background/Significance: The Intensive Care Unit (ICU) environment contributes to nurse burnout. Burnout costs include decreased employee compassion, missed workdays, worse patient outcomes, diminished job performance, high turnover, and higher organizational cost. Meaningful recognition, nurturing of interpersonal connections, and mindfulness-based interventions are associated with decreased burnout. The purpose of this quality improvement project was to decrease Neonatal ICU (NICU) nurse burnout using a Wellness Bundle that fosters meaningful recognition, interpersonal connections and includes mindfulness-based interventions. Methods: The Professional Quality of Life Scale Version 5 (ProQOL5) was used to measure burnout before Wellness Bundle implementation, after six months, and will be given yearly for three years. Meaningful recognition bundle items include Online submission and posting of staff shoutouts, recognition events, Nurses Week and Unit Practice Council member gifts, and an employee recognition program. Fostering of interpersonal connections bundle items include: Monthly staff games with prizes, social events, raffle fundraisers, unit blog, unit wellness basket, and a wellness resource sheet. Quick coherence techniques were implemented at staff meetings and huddles as a mindfulness-based intervention. Findings: The mean baseline burnout score of 14 NICU nurses was 20.71 (low burnout). The baseline range was 13-28, with 11 nurses experiencing low burnout, three nurses experiencing moderate burnout, and zero nurses experiencing high burnout. After six months of the Wellness Bundle Implementation, the mean burnout score of 39 NICU nurses was 22.28 (low burnout). The range was 14-31, with 22 nurses experiencing low burnout, 17 nurses experiencing moderate burnout, and zero nurses experiencing high burnout. Conclusion: A NICU Wellness Bundle that incorporated meaningful recognition, fostering of interpersonal connections, and mindfulness-based activities was implemented to improve work environments and decrease nurse burnout. Participation bias and low baseline response rate may have affected the reliability of the data and necessitate another comparative measure of burnout in one year.

Keywords: burnout, NICU, nurse, wellness

Procedia PDF Downloads 86
2469 Challenges of Teaching and Learning English Speech Sounds in Five Selected Secondary Schools in Bauchi, Bauchi State, Nigeria

Authors: Mairo Musa Galadima, Phoebe Mshelia

Abstract:

In Nigeria, the national policy of education stipulates that the kindergarten primary schools and the legislature are to use the three popular Nigerian Languages namely: Hausa, Igbo and Yoruba. However, the English language seems to be preferred and this calls for this paper. Attempts were made to draw out the challenges faced by learners in understanding English speech sounds and using them to communicate effectively in English; using 5(five) selected secondary school in Bauchi. It was discover that challenges abound in the wrong use of stress and intonation, transfer of phonetic features from their first language. Others are inadequate qualified teachers and relevant materials including text-books. It is recommended that teachers of English should lay more emphasis on the teaching of supra-segmental features and should be encouraged to go for further studies, seminars and refresher courses.

Keywords: kindergarten, stress, phonetic and intonation, Nigeria

Procedia PDF Downloads 300
2468 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition

Authors: Umair Rashid

Abstract:

Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.

Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter

Procedia PDF Downloads 101
2467 Image Processing of Scanning Electron Microscope Micrograph of Ferrite and Pearlite Steel for Recognition of Micro-Constituents

Authors: Subir Gupta, Subhas Ganguly

Abstract:

In this paper, we demonstrate the new area of application of image processing in metallurgical images to develop the more opportunity for structure-property correlation based approaches of alloy design. The present exercise focuses on the development of image processing tools suitable for phrase segmentation, grain boundary detection and recognition of micro-constituents in SEM micrographs of ferrite and pearlite steels. A comprehensive data of micrographs have been experimentally developed encompassing the variation of ferrite and pearlite volume fractions and taking images at different magnification (500X, 1000X, 15000X, 2000X, 3000X and 5000X) under scanning electron microscope. The variation in the volume fraction has been achieved using four different plain carbon steel containing 0.1, 0.22, 0.35 and 0.48 wt% C heat treated under annealing and normalizing treatments. The obtained data pool of micrographs arbitrarily divided into two parts to developing training and testing sets of micrographs. The statistical recognition features for ferrite and pearlite constituents have been developed by learning from training set of micrographs. The obtained features for microstructure pattern recognition are applied to test set of micrographs. The analysis of the result shows that the developed strategy can successfully detect the micro constitutes across the wide range of magnification and variation of volume fractions of the constituents in the structure with an accuracy of about +/- 5%.

Keywords: SEM micrograph, metallurgical image processing, ferrite pearlite steel, microstructure

Procedia PDF Downloads 199
2466 A Voice Signal Encryption Scheme Based on Chaotic Theory

Authors: Hailang Yang

Abstract:

To ensure the confidentiality and integrity of speech signals in communication transmission, this paper proposes a voice signal encryption scheme based on chaotic theory. Firstly, the scheme utilizes chaotic mapping to generate a key stream and then employs the key stream to perform bitwise exclusive OR (XOR) operations for encrypting the speech signal. Additionally, the scheme utilizes a chaotic hash function to generate a Message Authentication Code (MAC), which is appended to the encrypted data to verify the integrity of the data. Subsequently, we analyze the security performance and encryption efficiency of the scheme, comparing and optimizing it against existing solutions. Finally, experimental results demonstrate that the proposed scheme can resist common attacks, achieving high-quality encryption and speed.

Keywords: chaotic theory, XOR encryption, chaotic hash function, Message Authentication Code (MAC)

Procedia PDF Downloads 51
2465 EEG and ABER Abnormalities in Children with Speech and Language Delay

Authors: Bharati Mehta, Manish Parakh, Bharti Bhandari, Sneha Ambwani

Abstract:

Speech and language delay (SLD) is seen commonly as a co-morbidity in children having severe resistant focal and generalized, syndromic and symptomatic epilepsies. It is however not clear whether epilepsy contributes to or is a mere association in the pathogenesis of SLD. Also, it is acknowledged that Auditory Brainstem Evoked Responses (ABER), besides used for evaluating hearing threshold, also aid in prognostication of neurological disorders and abnormalities in the hearing pathway in the brainstem. There is no circumscribed or surrogate neurophysiologic laboratory marker to adjudge the extent of SLD. The current study was designed to evaluate the abnormalities in Electroencephalography (EEG) and ABER in children with SLD who do not have an overt hearing deficit or autism. 94 children of age group 2-8 years with predominant SLD and without any gross motor developmental delay, head injury, gross hearing disorder, cleft lip/palate and autism were selected. Standard video Electroencephalography using the 10:20 international system and ABER after click stimulus with intensities 110 db until 40 db was performed in all children. EEG was abnormal in 47.9% (n= 45; 36 boys and 9 girls) children. In the children with abnormal EEG, 64.5% (n=29) had an abnormal background, 57.8% (n=27) had presence of generalized interictal epileptiform discharges (IEDs), 20% (n=9) had focal epileptiform discharges exclusively from left side and 33.3% (n=15) had multifocal IEDs occurring both in isolation or associated with generalised abnormalities. In ABER, surprisingly, the peak latencies for waves I, III & V, inter-peak latencies I-III & I-V, III-V and wave amplitude ratio V/I, were found within normal limits in both ears of all the children. Thus in the current study it is certain that presence of generalized IEDs in EEG are seen in higher frequency with SLD and focal IEDs are seen exclusively in left hemisphere in these children. It may be possible that even with generalized EEG abnormalities present in these children, left hemispheric abnormalities as a part of this generalized dysfunction may be responsible for the speech and language dysfunction. The current study also emphasizes that ABER may not be routinely recommended as diagnostic or prognostic tool in children with SLD without frank hearing deficit or autism, thus reducing the burden on electro physiologists, laboratories and saving time and financial resources.

Keywords: ABER, EEG, speech, language delay

Procedia PDF Downloads 535
2464 A Tactic for a Cosmopolitan City Comparison through a Data-Driven Approach: Case of Climate City Networking

Authors: Sombol Mokhles

Abstract:

Tackling climate change requires expanding networking opportunities between a diverse range of cities to accelerate climate actions. Existing climate city networks have limitations in actively engaging “ordinary” cities in networking processes between cities, as they encourage a few powerful cities to be followed by the many “ordinary” cities. To reimagine the networking opportunities between cities beyond global cities, this paper incorporates “cosmopolitan comparison” to expand our knowledge of a diverse range of cities using a data-driven approach. Through a cosmopolitan perspective, a framework is presented on how to utilise large data to expand knowledge of cities beyond global cities to reimagine the existing hierarchical networking practices. The contribution of this framework is beyond urban climate governance but inclusive of different fields which strive for a more inclusive and cosmopolitan comparison attentive to the differences across cities.

Keywords: cosmopolitan city comparison, data-driven approach, climate city networking, urban climate governance

Procedia PDF Downloads 111
2463 Developing Pan-University Collaborative Initiatives in Support of Diversity and Inclusive Campuses

Authors: David Philpott, Karen Kennedy

Abstract:

In recognition of an increasingly diverse student population, a Teaching and Learning Framework was developed at Memorial University of Newfoundland. This framework emphasizes work that is engaging, supportive, inclusive, responsive, committed to discovery, and is outcomes-oriented for both educators and learners. The goal of the Teaching and Learning framework was to develop a number of initiatives that builds on existing knowledge, proven programs, and existing supports in order to respond to the specific needs of identified groups of diverse learners: 1) academically vulnerable first year students; 2) students with individual learning needs associated with disorders and/or mental health issues; 3) international students and those from non-western cultures. This session provides an overview of this process. The strategies employed to develop these initiatives were drawn primarily from research on student success and retention (literature review), information on pre-existing programs (environmental scan), an analysis of in-house data on students at our institution; consultations with key informants at all of Memorial’s campuses. The first initiative that emerged from this research was a pilot project proposal for a first-year success program in support of the first-year experience of academically vulnerable students. This program offers a university experience that is enhanced by smaller classes, supplemental instruction, learning communities, and advising sessions. The second initiative that arose under the mandate of the Teaching and Learning Framework was a collaborative effort between two institutions (Memorial University and the College of the North Atlantic). Both institutions participated in a shared conversation to examine programs and services that support an accessible and inclusive environment for students with disorders and/or mental health issues. A report was prepared based on these conversations and an extensive review of research and programs across the country. Efforts are now being made to explore possible initiatives that address culturally diverse and non-traditional learners. While an expanding literature has emerged on diversity in higher education, the process of developing institutional initiatives is usually excluded from such discussions, while the focus remains on effective practice. The proposals that were developed constitute a co-ordination and strengthening of existing services and programs; a weaving of supports to engage a diverse body of students in a sense of community. This presentation will act as a guide through the process of developing projects addressing learner diversity and engage attendees in a discussion of institutional practices that have been implemented in support of overcoming challenges, as well as provide feedback on institutional and student outcomes. The focus of this session will be on effective practice, and will be of particular interest to university administrators, educational developers, and educators wishing to implement similar initiatives on their campuses; possible adaptations for practice will be addressed. A presentation of findings from this research will be followed by an open discussion where the sharing of research, initiatives, and best practices for the enhancement of teaching and learning is welcomed. There is much insight and understanding to be gained through the sharing of ideas and collaborative practice as we move forward to further develop the program and prepare other initiatives in support of diversity and inclusion.

Keywords: eco-scale, green analysis, environmentally-friendly, pharmaceuticals analysis

Procedia PDF Downloads 292
2462 The Impact of E-Commerce on the Physical Space of Traditional Retail System

Authors: Sumayya S.

Abstract:

Making cities adaptive and inclusive is one among the inherent goal and challenge for contemporary cities. This is a serious concern when the urban transformations occur in varying magnitude due to visible and invisible factors. One type of visibly invisible factor is ecommerce and its expanding operation that is understood to cause changes to the conventional spatial structure positively and negatively. With the continued growth in e-commerce activities and its future potential, market analysts, media, and even retailers have questioned the importance of a future presence of traditional Brick-and-mortar stores in cities as a critical element, with some even referring to the repeated announcement of the closure of some store chains as the end of the online shopping era. Essentially this raises the question of how adaptive and inclusive the cities are to the dynamics of transformative changes that are often unseen. People have become more comfortable with seating inside and door delivery systems, and this increased change in usage of public spaces, especially the commercial corridors. Through this research helped in presetting a new approach for planning and designing commercial activities centers and also presents the impact of ecommerce on the urban fabric, such as division and fragmentation of space, showroom syndrome, reconceptualization of space, etc., in a critical way. The changes are understood by analyzing the e-commerce logistic process. Based on the inferences reach at the conclusion for the need of an integrated approach in the field of planning and designing of public spaces for the sustainable omnichannel retailing. This study was carried out with the following objectives Monitoring the impact of e commerce on the traditional shopping space. Explore the new challenges and opportunities faced by the urban form. Explore how adaptive and inclusive our cities are to the dynamics of transformative changes caused by ecommerce.

Keywords: E-commerce, shopping streets, online environment, offline environment, shopping factors

Procedia PDF Downloads 88
2461 Unsupervised Assistive and Adaptative Intelligent Agent in Smart Enviroment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lorenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in a smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore relying on fixed operational models would be inappropriate. This paper presents a study on developing an Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose an Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 562
2460 The Impact of Stress and Coping Style on Educational Involvement among Fathers to Children with Special Needs in Inclusive Education

Authors: Aviva Lvan, Lipaz Shamoa-Nir

Abstract:

Recently, has increased the research interest in modern fatherhood especially, the increasing involvement of fathers in the family. However, there is a little research evidence on fathers to children with special needs. Therefore, the purpose of this study was to examine the effects of stress and coping style on involvement in school among fathers to children with special needs in inclusive education. We compared the fathers to children with special needs (N=72) with fathers to non-special needs children (N = 75), and found that higher stress levels, greater educational involvement and greater use of social support coping style, were found among fathers of children with special needs. In addition, mission coping style and emotional coping style predict involvement in the school and emotional coping style predicts high levels of stress. The above findings contribute to the investigation of changes in the perception of the role of fathers and their involvement in their children's lives especially, among fathers to children with special needs. From the applied aspect, the findings may increase the understanding of the role of fathers and their unique contribution to the social, emotional, and academic development of their children.

Keywords: coping style, educational involvement, special needs, stress

Procedia PDF Downloads 436
2459 Unsupervised Assistive and Adaptive Intelligent Agent in Smart Environment

Authors: Sebastião Pais, João Casal, Ricardo Ponciano, Sérgio Lourenço

Abstract:

The adaptation paradigm is a basic defining feature for pervasive computing systems. Adaptation systems must work efficiently in smart environment while providing suitable information relevant to the user system interaction. The key objective is to deduce the information needed information changes. Therefore, relying on fixed operational models would be inappropriate. This paper presents a study on developing a Intelligent Personal Assistant to assist the user in interacting with their Smart Environment. We propose a Unsupervised and Language-Independent Adaptation through Intelligent Speech Interface and a set of methods of Acquiring Knowledge, namely Semantic Similarity and Unsupervised Learning.

Keywords: intelligent personal assistants, intelligent speech interface, unsupervised learning, language-independent, knowledge acquisition, association measures, symmetric word similarities, attributional word similarities

Procedia PDF Downloads 643
2458 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: biometric characters, facial recognition, neural network, OpenCV

Procedia PDF Downloads 256