Search results for: genetic algorithms
2823 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 1662822 Juvenile Paget’s Disease(JPD) of Bone
Authors: Aftab Ahmed, Ghulam Mehboob
Abstract:
The object of presentation is to highlight the importance of condition which is a very rare genetic disorder although Paget’s disease is common but its juvenile type is very rare and a late presentation due to very slow onset and lack of earlier standard management. We present a case of 25 years old male with a chronic history of bone pain and a slow onset of mild swelling, later on diagnosed as juvenile Paget disease of bone. Rarity of this condition with inaccessibility for standard health treatment can lead to a significant delay in presentation and its management. There have been 50 reported cases worldwide according to Genetic Home Reference. There is increased osteoclastic activity along with osteoblastic activity related to gene alteration and osteoprotegrin deficiency. Morbidity of disease is very significant which lead children to become immobilize.Keywords: juvenile, Paget’s disease, bone, Northern Area of Pakistan
Procedia PDF Downloads 3272821 Cluster-Based Multi-Path Routing Algorithm in Wireless Sensor Networks
Authors: Si-Gwan Kim
Abstract:
Small-size and low-power sensors with sensing, signal processing and wireless communication capabilities is suitable for the wireless sensor networks. Due to the limited resources and battery constraints, complex routing algorithms used for the ad-hoc networks cannot be employed in sensor networks. In this paper, we propose node-disjoint multi-path hexagon-based routing algorithms in wireless sensor networks. We suggest the details of the algorithm and compare it with other works. Simulation results show that the proposed scheme achieves better performance in terms of efficiency and message delivery ratio.Keywords: clustering, multi-path, routing protocol, sensor network
Procedia PDF Downloads 4032820 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1422819 Multi-Cluster Overlapping K-Means Extension Algorithm (MCOKE)
Authors: Said Baadel, Fadi Thabtah, Joan Lu
Abstract:
Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper, we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold to be defined as a priority which can be difficult to determine by novice users.Keywords: data mining, k-means, MCOKE, overlapping
Procedia PDF Downloads 5752818 Genetic Analysis of the Endangered Mangrove Species Avicennia Marina in Qatar Detected by Inter-Simple Sequence Repeat DNA Markers
Authors: Talaat Ahmed, Amna Babssail
Abstract:
Mangroves are evergreen trees and grow along the coastal areas of Qatar. The largest and oldest area of mangroves can be found around Al-Thakhira and Al-Khor. Other mangrove areas originate from fairly recent plantings by the government, although unfortunately the picturesque mangrove lake in Al-Wakra has now been uprooted. Avicinnia marina is the predominant mangrove species found in the region. Mangroves protect and stabilize low lying coastal land, and provide protection and food sources for estuarine and coastal fishery food chains. They also serve as feeding, breeding and nursery grounds for a variety of fish, crustaceans, reptiles, birds and other wildlife. A total of 21 individuals of A. marina, representing seven diverse Natural and artificial populations, were sampled throughout its range in Qatar. Leaves from 2-3 randomly selected trees at each location were collected. The locations are as follows: Al-Rawis, Ras-Madpak, Fuwairt, Summaseima, Al-khour, AL-Mafjar and Zekreet. Total genomic DNA was extracted using commercial DNeasy Plant System (Qiagen, Inc., Valencia, CA) kit to be used for genetic diversity analysis. Total of 12 (Inter-Simple Sequence Repeat) ISSR primers were used to amplify DNA fragments using genomic DNA. The 12 ISSR primers amplified polymorphic bands among mangrove samples in different areas as well as within each area indicating the existing of variation within each area and among the different areas of mangrove in Qatar. The results could characterize Avicinnia marina populations exist in different areas of Qatar and establish DNA fingerprint documentations for mangrove population to be used in further studies. Moreover, existing of genetic variation within and among Avicinnia marina populations is a strong indication for the ability of such populations to adapt different environmental conditions in Qatar. This study could be a warning to save mangrove in Qatar and save the environment as well.Keywords: DNA fingerprint, Avicinnia marina, genetic analysis, Qatar
Procedia PDF Downloads 4052817 Subjective Quality Assessment for Impaired Videos with Varying Spatial and Temporal Information
Authors: Muhammad Rehan Usman, Muhammad Arslan Usman, Soo Young Shin
Abstract:
The new era of digital communication has brought up many challenges that network operators need to overcome. The high demand of mobile data rates require improved networks, which is a challenge for the operators in terms of maintaining the quality of experience (QoE) for their consumers. In live video transmission, there is a sheer need for live surveillance of the videos in order to maintain the quality of the network. For this purpose objective algorithms are employed to monitor the quality of the videos that are transmitted over a network. In order to test these objective algorithms, subjective quality assessment of the streamed videos is required, as the human eye is the best source of perceptual assessment. In this paper we have conducted subjective evaluation of videos with varying spatial and temporal impairments. These videos were impaired with frame freezing distortions so that the impact of frame freezing on the quality of experience could be studied. We present subjective Mean Opinion Score (MOS) for these videos that can be used for fine tuning the objective algorithms for video quality assessment.Keywords: frame freezing, mean opinion score, objective assessment, subjective evaluation
Procedia PDF Downloads 4942816 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1042815 Identity Verification Using k-NN Classifiers and Autistic Genetic Data
Authors: Fuad M. Alkoot
Abstract:
DNA data have been used in forensics for decades. However, current research looks at using the DNA as a biometric identity verification modality. The goal is to improve the speed of identification. We aim at using gene data that was initially used for autism detection to find if and how accurate is this data for identification applications. Mainly our goal is to find if our data preprocessing technique yields data useful as a biometric identification tool. We experiment with using the nearest neighbor classifier to identify subjects. Results show that optimal classification rate is achieved when the test set is corrupted by normally distributed noise with zero mean and standard deviation of 1. The classification rate is close to optimal at higher noise standard deviation reaching 3. This shows that the data can be used for identity verification with high accuracy using a simple classifier such as the k-nearest neighbor (k-NN).Keywords: biometrics, genetic data, identity verification, k nearest neighbor
Procedia PDF Downloads 2572814 Forecasting the Future Implications of ChatGPT Usage in Education Based on AI Algorithms
Authors: Yakubu Bala Mohammed, Nadire Chavus, Mohammed Bulama
Abstract:
Generative Pre-trained Transformer (ChatGPT) represents an artificial intelligence (AI) tool capable of swiftly generating comprehensive responses to prompts and follow-up inquiries. This emerging AI tool was introduced in November 2022 by OpenAI firm, an American AI research laboratory, utilizing substantial language models. This present study aims to delve into the potential future consequences of ChatGPT usage in education using AI-based algorithms. The paper will bring forth the likely potential risks of ChatGBT utilization, such as academic integrity concerns, unfair learning assessments, excessive reliance on AI, and dissemination of inaccurate information using four machine learning algorithms: eXtreme-Gradient Boosting (XGBoost), Support vector machine (SVM), Emotional artificial neural network (EANN), and Random forest (RF) would be used to analyze the study collected data due to their robustness. Finally, the findings of the study will assist education stakeholders in understanding the future implications of ChatGPT usage in education and propose solutions and directions for upcoming studies.Keywords: machine learning, ChatGPT, education, learning, implications
Procedia PDF Downloads 2312813 Approximating Fixed Points by a Two-Step Iterative Algorithm
Authors: Safeer Hussain Khan
Abstract:
In this paper, we introduce a two-step iterative algorithm to prove a strong convergence result for approximating common fixed points of three contractive-like operators. Our algorithm basically generalizes an existing algorithm..Our iterative algorithm also contains two famous iterative algorithms: Mann iterative algorithm and Ishikawa iterative algorithm. Thus our result generalizes the corresponding results proved for the above three iterative algorithms to a class of more general operators. At the end, we remark that nothing prevents us to extend our result to the case of the iterative algorithm with error terms.Keywords: contractive-like operator, iterative algorithm, fixed point, strong convergence
Procedia PDF Downloads 5492812 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women
Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková
Abstract:
Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR
Procedia PDF Downloads 4092811 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions
Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib
Abstract:
Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption
Procedia PDF Downloads 4102810 Genetic Diversity Analysis in Embelia Ribes by RAPD Markers
Authors: Sabitha Rani A., Nagamani V.
Abstract:
Embelia ribes Burm.f (Family-Myrsinaceae) commonly known as Vidanga or Baibirang, is one of the important medicinal plants of India. The seed extract is reported to be antidiabetic, antitumour, analgesic, anti-inflammatory, antispermatogenic, free radical scavenging activities and widely used in more than 75 Ayurvedic commercial formulations. Among the 100 different species of Embelia, E. ribes is considered as a major source of Embelin, a bioactive compound. Because of high demand and low availability, the seeds of E. ribes are substituted with many cheaper alternatives. Therefore, the present study of RAPD-PCR analysis was undertaken to develop molecular markers for identification of E. ribes. A total of 13 different seed samples of Embelia were collected from different agro-climatic regions of India. The seeds of E.ribes were collected from Kalpetta, Kerala and three different seed samples were collected from traders of Odisha, Madhya Pradesh, Maharastra. The other nine seed samples were collected from local traders which they have collected from different regions of India. Genomic DNA was isolated from different seed samples E. ribes and RAPD-PCR was performed on 13 different seed samples using 47 random primers. Out of all the primers, only 22 primers produced clear and highly-reproducible banding patterns. The 22 selected RAPD primers generated a total of 280 alleles with an average of 12 alleles per primer pair. In the present study, we have identified three RAPD-PCR markers i.e. OPF5_480 bp, OPH11_520 bp and OPH4_530 bp which can be used for genetic fingerprinting of E. ribes. This methodology can be employed for identification of original E. ribes and also distinguishing it from other substitutes and adulterants.Keywords: Embelia ribes, RAPD-PCR, primers, genetic analysis
Procedia PDF Downloads 2982809 Genetic Diversity of Mycobacterium bovis and Its Zoonotic Potential in Ethiopia: A Systematic Review
Authors: Begna Tulu, Gobena Ameni
Abstract:
Understanding the types of Mycobacterium bovis (M. bovis) strains circulating in a country and exploring its zoonotic potential has significant contribution in the effort to design control strategies. The main aim of this study was to review and compile the results of studies conducted on M. bovis genotyping and its zoonotic potential of M. bovis in Ethiopia. A systematic search and review of articles published on M. bovis strains in Ethiopia were made. PubMed and Google Scholar databases were considered for the search while the keywords used were 'Mycobacteria,' 'Mycobacterium bovis,' 'Bovine Tuberculosis' and 'Ethiopia.' Fourteen studies were considered in this review and a total of 31 distinct strains of M. bovis (N=211) were obtained; the most dominant strains were SB0133 (N=62, 29.4%), SB1176 (N=61, 28.9%), and followed by SB0134 and SB1476 each (N=18, 8.5%). The clustering rate of M. bovis strains was found to be 42.0%. On the other hand, 6 strains of M. bovis were reported from human namely; SB0665 (N=4), SB0303 (N=2), SB0982 (N=2), SB0133 (N=1), SB1176 (N=1), and 1 new strain. Similarly, a total of 8 strains (N=13) of M. tuberculosis bacteria were also identified from animal subjects; namely SIT149 (N=3), SIT1 (N=2), SIT1688 (n=2), SIT262 (N=2), SIT53 (N=1), SIT59 (N=1), and one new-Ethiopian strain. The result showed that the genetic diversity of M. bovis strains reported from Ethiopia are less diversified and highly clustered. And also the result underlines that there is an ongoing active transmission of M. bovis and M. tuberculosis between human and animals in Ethiopia because a significant number strains of both type of bacteria were reported from human and animals.Keywords: mycobacterium bovis, Mycobacterium tuberculosis, zoonotic potential, genetic diversity, Ethiopia
Procedia PDF Downloads 1382808 Reinforcement Learning for Quality-Oriented Production Process Parameter Optimization Based on Predictive Models
Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt
Abstract:
Producing faulty products can be costly for manufacturing companies and wastes resources. To reduce scrap rates in manufacturing, process parameters can be optimized using machine learning. Thus far, research mainly focused on optimizing specific processes using traditional algorithms. To develop a framework that enables real-time optimization based on a predictive model for an arbitrary production process, this study explores the application of reinforcement learning (RL) in this field. Based on a thorough review of literature about RL and process parameter optimization, a model based on maximum a posteriori policy optimization that can handle both numerical and categorical parameters is proposed. A case study compares the model to state–of–the–art traditional algorithms and shows that RL can find optima of similar quality while requiring significantly less time. These results are confirmed in a large-scale validation study on data sets from both production and other fields. Finally, multiple ways to improve the model are discussed.Keywords: reinforcement learning, production process optimization, evolutionary algorithms, policy optimization, actor critic approach
Procedia PDF Downloads 972807 Glucose Monitoring System Using Machine Learning Algorithms
Authors: Sangeeta Palekar, Neeraj Rangwani, Akash Poddar, Jayu Kalambe
Abstract:
The bio-medical analysis is an indispensable procedure for identifying health-related diseases like diabetes. Monitoring the glucose level in our body regularly helps us identify hyperglycemia and hypoglycemia, which can cause severe medical problems like nerve damage or kidney diseases. This paper presents a method for predicting the glucose concentration in blood samples using image processing and machine learning algorithms. The glucose solution is prepared by the glucose oxidase (GOD) and peroxidase (POD) method. An experimental database is generated based on the colorimetric technique. The image of the glucose solution is captured by the raspberry pi camera and analyzed using image processing by extracting the RGB, HSV, LUX color space values. Regression algorithms like multiple linear regression, decision tree, RandomForest, and XGBoost were used to predict the unknown glucose concentration. The multiple linear regression algorithm predicts the results with 97% accuracy. The image processing and machine learning-based approach reduce the hardware complexities of existing platforms.Keywords: artificial intelligence glucose detection, glucose oxidase, peroxidase, image processing, machine learning
Procedia PDF Downloads 2032806 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2032805 Association of Xeroderma pigmentosum Group D Gene Polymorphism with Colorectal Cancer Risk in Kashmiri Population
Authors: Syed Sameer Aga, Saniya Nissar
Abstract:
The Xeroderma pigmentosum group D gene (XPD) plays a key role in nucleotide excision repair (NER) pathway of the damaged DNA. Genetic polymorphisms in the coding region of the XPD gene may alter DNA repair capacity of the protein and hence can modulate the risk of colorectal cancer (CRC) risk. The aim of the study was to determine the genetic association of XPD Lys751Gln polymorphism with the risk of colorectal cancer (CRC) development. 120 CRC patients and 160 normal controls were assessed for genotype frequencies of XPD Lys751Gln polymorphism using PCR-RFLP technique. We observed a significant association (p < 0.05) between the XPD Lys751Gln polymorphism and the risk of developing CRC (p < 0.05). Additionally, Gln/Gln genotype of the XPD gene doubled the risk for the development of CRC [p < 0.05; OR=2.25 95% CI (1.07-4.7)]. Our results suggest that there is a significant association between the XPD Lys751Gln polymorphism and the risk of CRC.Keywords: colorectal cancer, polymorphism, RFLP, DNA Repair, NER, XPD
Procedia PDF Downloads 2152804 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4052803 Towards a Computational Model of Consciousness: Global Abstraction Workspace
Authors: Halim Djerroud, Arab Ali Cherif
Abstract:
We assume that conscious functions are implemented automatically. In other words that consciousness as well as the non-consciousness aspect of human thought, planning, and perception, are produced by biologically adaptive algorithms. We propose that the mechanisms of consciousness can be produced using similar adaptive algorithms to those executed by the mechanism. In this paper, we propose a computational model of consciousness, the ”Global Abstraction Workspace” which is an internal environmental modelling perceived as a multi-agent system. This system is able to evolve and generate new data and processes as well as actions in the environment.Keywords: artificial consciousness, cognitive architecture, global abstraction workspace, multi-agent system
Procedia PDF Downloads 3402802 Distribution Network Optimization by Optimal Placement of Photovoltaic-Based Distributed Generation: A Case Study of the Nigerian Power System
Authors: Edafe Lucky Okotie, Emmanuel Osawaru Omosigho
Abstract:
This paper examines the impacts of the introduction of distributed energy generation (DEG) technology into the Nigerian power system as an alternative means of energy generation at distribution ends using Otovwodo 15 MVA, 33/11kV injection substation as a case study. The overall idea is to increase the generated energy in the system, improve the voltage profile and reduce system losses. A photovoltaic-based distributed energy generator (PV-DEG) was considered and was optimally placed in the network using Genetic Algorithm (GA) in Mat. Lab/Simulink environment. The results of simulation obtained shows that the dynamic performance of the network was optimized with DEG-grid integration.Keywords: distributed energy generation (DEG), genetic algorithm (GA), power quality, total load demand, voltage profile
Procedia PDF Downloads 842801 Heritability and Diversity Analysis of Blast Resistant Upland Rice Genotypes Based on Quantitative Traits
Authors: Mst. Tuhina-Khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Md. Aktar-Uz-Zaman, Mahbod Sahebi
Abstract:
Rice is a staple crop of economic importance of most Asian people, and blast is the major constraints for its higher yield. Heritability of plants traits helps plant breeders to make an appropriate selection and to assess the magnitude of genetic improvement through hybridization. Diversity of crop plants is necessary to manage the continuing genetic erosion and address the issues of genetic conservation for successfully meet the future food requirements. Therefore, an experiment was conducted to estimate heritability and to determine the diversity of 27 blast resistant upland rice genotypes based on 18 quantitative traits using randomized complete block design. Heritability value was found to vary from 38 to 93%. The lowest heritability belonged to the character total number of tillers/plant (38%). In contrast, number of filled grains/panicle, and yield/plant (g) was recorded for their highest heritability value viz. 93 and 91% correspondingly. Cluster analysis based on 18 traits grouped 27 rice genotypes into six clusters. Cluster I was the biggest, which comprised 17 genotypes, accounted for about 62.96% of total population. The multivariate analysis suggested that the genotype ‘Chokoto 14’ could be hybridized with ‘IR 5533-55-1-11’ and ‘IR 5533-PP 854-1’ for broadening the gene pool of blast resistant upland rice germplasms for yield and other favorable characters.Keywords: blast resistant, diversity analysis, heritability, upland rice
Procedia PDF Downloads 3692800 The Role of Named Entity Recognition for Information Extraction
Authors: Girma Yohannis Bade, Olga Kolesnikova, Grigori Sidorov
Abstract:
Named entity recognition (NER) is a building block for information extraction. Though the information extraction process has been automated using a variety of techniques to find and extract a piece of relevant information from unstructured documents, the discovery of targeted knowledge still poses a number of research difficulties because of the variability and lack of structure in Web data. NER, a subtask of information extraction (IE), came to exist to smooth such difficulty. It deals with finding the proper names (named entities), such as the name of the person, country, location, organization, dates, and event in a document, and categorizing them as predetermined labels, which is an initial step in IE tasks. This survey paper presents the roles and importance of NER to IE from the perspective of different algorithms and application area domains. Thus, this paper well summarizes how researchers implemented NER in particular application areas like finance, medicine, defense, business, food science, archeology, and so on. It also outlines the three types of sequence labeling algorithms for NER such as feature-based, neural network-based, and rule-based. Finally, the state-of-the-art and evaluation metrics of NER were presented.Keywords: the role of NER, named entity recognition, information extraction, sequence labeling algorithms, named entity application area
Procedia PDF Downloads 802799 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 702798 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4892797 Black Box Model and Evolutionary Fuzzy Control Methods of Coupled-Tank System
Authors: S. Yaman, S. Rostami
Abstract:
In this study, a black box modeling of the coupled-tank system is obtained by using fuzzy sets. The derived model is tested via adaptive neuro fuzzy inference system (ANFIS). In order to achieve a better control performance, the parameters of three different controller types, classical proportional integral controller (PID), fuzzy PID and function tuner method, are tuned by one of the evolutionary computation method, genetic algorithm. All tuned controllers are applied to the fuzzy model of the coupled-tank experimental setup and analyzed under the different reference input values. According to the results, it is seen that function tuner method demonstrates better robust control performance and guarantees the closed loop stability.Keywords: function tuner method (FTM), fuzzy modeling, fuzzy PID controller, genetic algorithm (GA)
Procedia PDF Downloads 3082796 Integrative Omics-Portrayal Disentangles Molecular Heterogeneity and Progression Mechanisms of Cancer
Authors: Binder Hans
Abstract:
Cancer is no longer seen as solely a genetic disease where genetic defects such as mutations and copy number variations affect gene regulation and eventually lead to aberrant cell functioning which can be monitored by transcriptome analysis. It has become obvious that epigenetic alterations represent a further important layer of (de-)regulation of gene activity. For example, aberrant DNA methylation is a hallmark of many cancer types, and methylation patterns were successfully used to subtype cancer heterogeneity. Hence, unraveling the interplay between different omics levels such as genome, transcriptome and epigenome is inevitable for a mechanistic understanding of molecular deregulation causing complex diseases such as cancer. This objective requires powerful downstream integrative bioinformatics methods as an essential prerequisite to discover the whole genome mutational, transcriptome and epigenome landscapes of cancer specimen and to discover cancer genesis, progression and heterogeneity. Basic challenges and tasks arise ‘beyond sequencing’ because of the big size of the data, their complexity, the need to search for hidden structures in the data, for knowledge mining to discover biological function and also systems biology conceptual models to deduce developmental interrelations between different cancer states. These tasks are tightly related to cancer biology as an (epi-)genetic disease giving rise to aberrant genomic regulation under micro-environmental control and clonal evolution which leads to heterogeneous cellular states. Machine learning algorithms such as self organizing maps (SOM) represent one interesting option to tackle these bioinformatics tasks. The SOMmethod enables recognizing complex patterns in large-scale data generated by highthroughput omics technologies. It portrays molecular phenotypes by generating individualized, easy to interpret images of the data landscape in combination with comprehensive analysis options. Our image-based, reductionist machine learning methods provide one interesting perspective how to deal with massive data in the discovery of complex diseases, gliomas, melanomas and colon cancer on molecular level. As an important new challenge, we address the combined portrayal of different omics data such as genome-wide genomic, transcriptomic and methylomic ones. The integrative-omics portrayal approach is based on the joint training of the data and it provides separate personalized data portraits for each patient and data type which can be analyzed by visual inspection as one option. The new method enables an integrative genome-wide view on the omics data types and the underlying regulatory modes. It is applied to high and low-grade gliomas and to melanomas where it disentangles transversal and longitudinal molecular heterogeneity in terms of distinct molecular subtypes and progression paths with prognostic impact.Keywords: integrative bioinformatics, machine learning, molecular mechanisms of cancer, gliomas and melanomas
Procedia PDF Downloads 1482795 Study of Pathogenicity and Characterization of Fusarium oxysporum f.sp. albedinis by Isozymes Systemes
Authors: Abouamama Sidaoui, Noureddine Karkachi, Mebrouk Kihal
Abstract:
The characteristics of Fusarium oxysporium f.sp. albedinis (Foa) isolates were investigated using electrophoretic studies of isozymes systems (esterase and phosphatase). All the (F.o.a) isolates were pathogenic to the date palm seedlings cultivar Deglet Nour, but they did not induce any disease symptoms on control plants. Fusarium sp. isolated from soil did not show aggression against these seedlings. The isoenzymes profiles revealed polymorphic bands. The data were subjected to analysis with the JMP method. The isolates were delineated into two main groups A and B which were divided into sub-groups. 19 isolates create the group A, and four isolates (E1, E2, E3 and M15A) formed the group B. Analysis of isozyme banding patterns was found to be a reliable marker technology, efficient, and effective tools to find the genetic variability among isolates isolated in different geographical areas.Keywords: genetic diversity, Fusarium oxysporium f. sp. albedinis, isozyme analysis, pathogenicity
Procedia PDF Downloads 2182794 Optimization of SWL Algorithms Using Alternative Adder Module in FPGA
Authors: Tayab D. Memon, Shahji Farooque, Marvi Deshi, Imtiaz Hussain Kalwar, B. S. Chowdhry
Abstract:
Recently single-bit ternary FIR-like filter (SBTFF) hardware synthesize in FPGA is reported and compared with multi-bit FIR filter on similar spectral characteristics. Results shows that SBTFF dominates upon multi-bit filter overall. In this paper, an optimized adder module for ternary quantized sigma-delta modulated signal is presented. The adder is simulated using ModelSim for functional verification the area-performance of the proposed adder were obtained through synthesis in Xilinx and compared to conventional adder trees. The synthesis results show that the proposed adder tree achieves higher clock rates and lower chip area at higher inputs to the adder block; whereas conventional adder tree achieves better performance and lower chip area at lower number of inputs to the same adder block. These results enhance the usefulness of existing short word length DSP algorithms for fast and efficient mobile communication.Keywords: short word length (SWL), DSP algorithms, FPGA, SBTFF, VHDL
Procedia PDF Downloads 345