Search results for: electron mobility
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3341

Search results for: electron mobility

2741 Quinazolino-Thiazoles: Fused Pharmacophores as Antimicrobial Agents

Authors: Sanjay Bari, Vinod Ugale, Kamalkishor Patil

Abstract:

Over the past several years the emergence of micro-organisms resistant to nearly all the class of antimicrobial agents has become a serious public health concern. In the present research, we report the synthesis and in-vitro antimicrobial activity of a new series of novel quinazolino-thiadiazoles 3 (a-j). The synthesized compounds were confirmed by melting point, IR, 1H-NMR, 13C NMR and Mass spectroscopy. In general, the results of the in-vitro antibacterial activity are encouraging, as out of 10 compounds tested, Compound 3f and 3i with a 4-chloro phenyl and 4-nitro phenyl at C-2 of thiadiazolyl of quinazolino-thiadiazoles, displayed the excellent antibacterial and antifungal activities against all the tested microorganisms (Bacterial and Fungal strain) with MIC values of 62.5 μg/mL. It is worth to mention that the combination of two biologically active moieties quinazoline and thiadiazole profoundly influences the biological activity. While evaluating the antimicrobial activity, it was observed that compounds having electron withdrawing groups on thiazole has shown profound activity in comparison to compounds having electron releasing groups. As a result of this study, it can be concluded that halogen substituent on thiazole ring increases antimicrobial activity. Possible improvements in the antimicrobial activity can be further achieved by slight modifications in the substituent’s and/or additional structural activity investigations to have good antimicrobial activity.

Keywords: antifungal, antimicrobial, quinazolino-thiazoles, synthesis

Procedia PDF Downloads 410
2740 TiO₂ Deactivation Process during Photocatalytic Ethanol Degradation in the Gas Phase

Authors: W. El-Alami, J. Araña, O. González Díaz, J. M. Doña Rodríguez

Abstract:

The efficiency of the semiconductor TiO₂ needs to be improved to be an effective tool for pollutant removal. To improve the efficiency of this semiconductor, it is necessary to deepen the knowledge of the processes that take place on its surface. In this sense, the deactivation of the catalyst is one of the aspects considered relevant. In order to study this point, the processes of deactivation of TiO₂ during the gas phase degradation of ethanol have been studied. For this, catalysts with only the anatase phase (SA and PC100) and catalysts with anatase and rutile phases (P25 and P90) have been selected. In order to force the deactivation processes, different cycles have been performed, adding ethanol gas but avoiding the degradation of acetates to determine their effect on the process. The surface concentration of fluorine on the catalysts was semi-quantitatively determined by EDAX analysis. The photocatalytic experiments were done with four commercial catalysts (P25, SA, P90, and PC100) and the two fluoride catalysts indicated above. The interaction and photocatalytic degradation of ethanol were followed by Fourier transform infrared spectroscopy (FTIR). EDAX analysis has revealed the presence of sodium on the surface of fluorinated catalysts. In FTIR studies, it has been observed that the acetates adsorbed on the anatase phase in P25 and P90 give rise to electron transfer to surface traps that modify the electronic states of the semiconductor. These deactivation studies have also been carried out with fluorinated P25 and SA catalysts (F-P25 and F-SA) which have observed similar electron transfers but in the opposite direction during illumination. In these materials, it has been observed that the electrons present in the surface traps, as a consequence of the interaction Ti-F, react with the holes, causing a change in the electronic states of the semiconductor. In this way, deactivated states of these materials have been detected by different electron transfer routes. It has been identified that acetates produced from the degradation of ethanol in P25 and P90 are probably hydrated on the surface of the rutile phase. In the catalysts with only the anatase phase (SA and PC100), the deactivation is immediate if the acetates are not removed before adsorbing ethanol again. In F-P25 and F-SA has been observed that the acetates formed react with the sodium ions present on the surface and not with the Ti atoms because they are interacting with the fluorine.

Keywords: photocatalytic degradation, ethanol, TiO₂, deactivation process, F-P25

Procedia PDF Downloads 67
2739 Modeling the Elastic Mean Free Path of Electron Collision with Pyrimidine: The Screen Corrected Additivity Rule Method

Authors: Aouina Nabila Yasmina, Chaoui Zine El Abiddine

Abstract:

This study presents a comprehensive investigation into the elastic mean free path (EMFP) of electrons colliding with pyrimidine, a precursor to the pyrimidine bases in DNA, employing the Screen Corrected Additivity Rule (SCAR) method. The SCAR method is introduced as a novel approach that combines classical and quantum mechanical principles to elucidate the interaction of electrons with pyrimidine. One of the most fundamental properties characterizing the propagation of a particle in the nuclear medium is its mean free path. Knowledge of the elastic mean free path is essential to accurately predict the effects of radiation on biological matter, as it contributes to the distances between collisions. Additionally, the mean free path plays a role in the interpretation of almost all experiments in which an excited electron moves through a solid. Pyrimidine, the precursor of the pyrimidine bases of DNA, has interesting physicochemical properties, which make it an interesting molecule to study from a fundamental point of view. These include a relatively large dipole polarizability and dipole moment and an electronic charge cloud with a significant spatial extension, which justifies its choice in this present study.

Keywords: elastic mean free path, elastic collision, pyrimidine, SCAR

Procedia PDF Downloads 58
2738 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures

Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý

Abstract:

Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.

Keywords: electron diffraction spectroscopy, high strength concrete, interfacial transition zone, normal strength concrete, scanning electron microscopy

Procedia PDF Downloads 287
2737 Physical Characterization of Indoor Dust Particles Using Scanning Electron Microscope (SEM)

Authors: Fatima S. Mohammed, Derrick Crump

Abstract:

Harmattan, a dusty weather condition characterized by thick smog-like suspended particles and dust storm are the peculiar events that happen during ¾ of the year in the Sahelian regions including Damaturu Town, Nigeria), resulting in heavy dust deposits especially indoors. The inhabitants of the Damaturu community are always inflicted with different ailments; respiratory tract infections, asthma, gastrointestinal infections and different ailments associated with the dusty nature of the immediate environment. This brought the need to investigate the nature of the settled indoor dust. Vacuum cleaner bag dust was collected from indoor of some Nigerian and UK homes, as well as outdoors including during seasonal dusty weather event (Harmattan and Storm dust). The dust was sieved, and the (150 µm size) particles were examined using scanning electron microscope (SEM). The physical characterization of the settled dust samples has revealed the various shapes and sizes, and elemental composition of the dust samples is indicating that some of the dust fractions were the respirable fractions and also the dust contained PM10 to PM 2.5 fractions with possible health effects. The elemental compositions were indicative of the diverse nature of the dust particle sources, which showed dust as a complex matrix.

Keywords: indoor dust, Harmattan dust, SEM, health effects

Procedia PDF Downloads 292
2736 Social Sustainability and Affordability of the Transitional Housing Scheme in Hong Kong

Authors: Tris Kee

Abstract:

This research investigates social sustainability factors in transitional housing projects and their impact on fostering healthy living environments that promote physical activity and social interaction for residents. Social sustainability is integral to individual health and well-being, as emphasized by Goal 11 of the 2030 Agenda for Sustainable Development, which highlights the importance of safe, affordable, and accessible transport systems, green spaces, and public spaces catering to vulnerable populations' needs. Communal spaces in urban environments are essential for fostering social sustainability, as they serve as settings for physical activities and social interactions among diverse socio-economic groups. Factors such as neighborhood social atmosphere, historical context, social disparity, and mobility can influence the relationship between existing and transitional communities. Mental health effects can be measured through housing segregation, mobility and accessibility, and housing tenure. A significant research gap exists in understanding the living environment of transitional housing in Hong Kong and the social sustainability factors affecting residents' mental and physical health. To address this gap, our study employs a mixed-methods approach combining survey questionnaires and interviews to gather both quantitative and qualitative data. This methodology will provide comprehensive insights into residents' experiences and perceptions. Our research's main contribution is identifying key social sustainability factors in transitional housing and their impact on residents' well-being, informing policy-making and the creation of inclusive, healthy living environments. By addressing this research gap, we aim to provide valuable insights for future housing projects, ultimately promoting the development of socially sustainable transitional communities.

Keywords: social sustainablity, affordable housing, transitional housing, high density housing

Procedia PDF Downloads 72
2735 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering

Authors: Dong Tang, Yongli Zhao

Abstract:

The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.

Keywords: asphalt, Beaucage model, microstructure, SAXS

Procedia PDF Downloads 73
2734 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete

Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević

Abstract:

This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.

Keywords: compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis

Procedia PDF Downloads 104
2733 On Unification of the Electromagnetic, Strong and Weak Interactions

Authors: Hassan Youssef Mohamed

Abstract:

In this paper, we show new wave equations, and by using the equations, we concluded that the strong force and the weak force are not fundamental, but they are quantum effects for electromagnetism. This result is different from the current scientific understanding about strong and weak interactions at all. So, we introduce three evidences for our theory. First, we prove the asymptotic freedom phenomenon in the strong force by using our model. Second, we derive the nuclear shell model as an approximation of our model. Third, we prove that the leptons do not participate in the strong interactions, and we prove the short ranges of weak and strong interactions. So, our model is consistent with the current understanding of physics. Finally, we introduce the electron-positron model as the basic ingredients for protons, neutrons, and all matters, so we can study all particles interactions and nuclear interaction as many-body problems of electrons and positrons. Also, we prove the violation of parity conservation in weak interaction as evidence of our theory in the weak interaction. Also, we calculate the average of the binding energy per nucleon.

Keywords: new wave equations, the strong force, the grand unification theory, hydrogen atom, weak force, the nuclear shell model, the asymptotic freedom, electron-positron model, the violation of parity conservation, the binding energy

Procedia PDF Downloads 171
2732 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 353
2731 Unconventional Strategies for Combating Multidrug Resistant Bacterial Biofilms

Authors: Soheir Mohamed Fathey

Abstract:

Biofilms are complex biological communities which are hard to be eliminated by conventional antibiotic administration and implemented in eighty percent of humans infections. Green remedies have been used for centuries and have shown obvious effects in hindering and combating microbial biofilm infections. Nowadays, there has been a growth in the number of researches on the anti-biofilm performance of natural agents such as plant essential oil (EOs) and propolis. In this study, we investigated the antibiofilm performance of various natural agents, including four essential oils (EOs), cinnamon (Cinnamomum cassia), tea tree (Melaleuca alternifolia), and clove (Syzygium aromaticum), as well as propolis versus the biofilm of both Gram-positive pathogenic bacterium Staphylococcus aureus and Gram-negative pathogenic bacterium Pseudomonas aeruginosa which are major human and animal pathogens rendering a high risk due to their biofilm development ability. The antibiofilm activity of the tested agents was evaluated by crystal violet staining assay and detected by scanning electron and fluorescent microscopy. Antibiofilm performance declared a potent effect of the tested products versus the tested bacterial biofilms.

Keywords: biofilm, essential oils, electron microscopy, fluorescent

Procedia PDF Downloads 90
2730 Dependence of the Structural, Electrical and Magnetic Properties of YBa2Cu3O7−δ Bulk Superconductor on the Sm Doping

Authors: Raheleh Hajilou

Abstract:

In this study, we report the synthesis and characterization of YBa2Cu3O7-δ (YBCO) high-temperature superconductor prepared by solid-state method and doped with Sm in different weight percentages, 0, 0.01, 0.02 and 0.05 wt. The result of X-ray diffraction (XRD) analysis conforms to the formation of an orthorhombic phase of superconductivity in our samples. This is an important finding and indicates that the samples may exhibit superconductivity properties at certain conditions. Our results unequivocally point to a different structural order or disorder in SM/Y samples as compared to Sm based samples. We suggest that different site preferences of oxygen vacancies, predominantly created in CuO2 planes (CuO chains) of Y and Sm-based samples, might be responsible for the observed difference in the behavior. This contention is supported by a host of other considerations and experimental observations. The study investigated the effects of Sm doping on the YBCO system on various properties such as structural, critical temperature (Tc), scanning electron microscope (SEM), irresistibility line(IL), critical current density, jc, and flux line pinning force. It Seems the sample x=0.05 undergoes an insulator transition, which suppresses its superconducting transition temperature (Tc). Additionally, magnetization was measured as a function of temperature (M-T) and magnetic loops (M-H) at constant temperatures of 10. 20, 30, 40, 50 and 60K up to 10KG.

Keywords: high-Tc superconductors, Scanning electron microscopy, X-ray scattering, Irreversibility line

Procedia PDF Downloads 7
2729 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique

Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang

Abstract:

AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.

Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage

Procedia PDF Downloads 258
2728 Realizing the Rights of Prisoners with Disabilities in Nigeria: A Case Study of Four Lagos State Prisons

Authors: Jacob Bogart, Adaobi Egboka

Abstract:

Nigeria signed and ratified the Convention on the Rights of Persons with Disabilities in 2010, which was heralded as a much-needed step towards protecting the rights of persons with disabilities (PWDs). However, even with such progress, incarcerated PWDs have been left behind. The current legal framework in Nigeria does not consider the particular challenges PWDs face in prison nor make provisions to address them, despite the need for such reforms. Indeed, given the closed and restricted nature of prisons, and the violence that results from overcrowding, lack of supervision, and poor facilities, prisoners with disabilities often face significant challenges while incarcerated. While every prisoner is affected by these issues, PWDs are disproportionately harmed by them due to the nature of their disability. A study of four prisons in Lagos State, Nigeria was carried out by interviewing prisoners with disabilities, prison officials, advocates, and academics. The study found that for prisoners with physical disabilities, inaccessible prison facilities and a lack of mobility, hearing, or seeing assistance can often cause them to be dependent on the mercy of the other inmates for assistance in performing such basic functions as using the restroom, going to church, or washing themselves. Prison officials do not assist these PWDs or provide them with aids, such as crutches or a cane. Relatedly, prisoners with psychosocial disabilities (mental health conditions) often are not removed to health care facilities, despite a law to that effect, and are left to languish in prisons without the mental health care treatment they need. This presentation argues that reforms addressing the rights of PWDs must consider and make provisions for prisoners with disabilities, such as ensuring that prison facilities are accessible, providing PWDs with mobility, seeing or hearing aids as needed, and conducting mental health screenings for persons awaiting trial immediately upon entering the prison. These reforms, among others, are necessary first steps toward realizing the rights of prisoners with disabilities in Nigeria.

Keywords: disability rights, human rights, Lagos, Nigeria, prisoners with disabilities

Procedia PDF Downloads 346
2727 Synthesis of Polyvinyl Alcohol Encapsulated Ag Nanoparticle Film by Microwave Irradiation for Reduction of P-Nitrophenol

Authors: Supriya, J. K. Basu, S. Sengupta

Abstract:

Silver nanoparticles have caught a lot of attention because of its unique physical and chemical properties. Silver nanoparticles embedded in polyvinyl alcohol (PVA/Ag) free-standing film have been prepared by microwave irradiation in few minutes. PVA performed as a reducing agent, stabilizing agents as well as support for silver nanoparticles. UV-Vis spectrometry, scanning transmission electron (SEM) and transmission electron microscopy (TEM) techniques affirmed the reduction of silver ion to silver nanoparticles in the polymer matrix. Effect of irradiation time, the concentration of PVA and concentration of silver precursor on the synthesis of silver nanoparticle has been studied. Particles size of silver nanoparticles decreases with increase in irradiation time. Concentration of silver nanoparticles increases with increase in concentration of silver precursor. Good dispersion of silver nanoparticles in the film has been confirmed by TEM analysis. Particle size of silver nanoparticle has been found to be in the range of 2-10nm. Catalytic property of prepared silver nanoparticles as a heterogeneous catalyst has been studied in the reduction of p-Nitrophenol (a water pollutant) with >98% conversion. From the experimental results, it can be concluded that PVA encapsulated Ag nanoparticles film as a catalyst shows better efficiency and reusability in the reduction of p-Nitrophenol.

Keywords: biopolymer, microwave irradiation, silver nanoparticles, water pollutant

Procedia PDF Downloads 283
2726 Theoretical Study of Substitutional Phosphorus and Nitrogen Pairs in Diamond

Authors: Tahani Amutairi, Paul May, Neil Allan

Abstract:

Many properties of semiconductor materials (mechanical, electronic, magnetic, and optical) can be significantly modified by introducing a point defect. Diamond offers extraordinary properties as a semiconductor, and doping seems to be a viable method of solving the problem associated with the fabrication of diamond-based electronic devices in order to exploit those properties. The dopants are believed to play a significant role in reducing the energy barrier to conduction and controlling the mobility of the carriers and the resistivity of the film. Although it has been proven that the n-type diamond semiconductor can be obtained with phosphorus doping, the resulting ionisation energy and mobility are still inadequate for practical application. Theoretical studies have revealed that this is partly because the effects of the many phosphorus atoms incorporated in the diamond lattice are compensated by acceptor states. Using spin-polarised hybrid density functional theory and a supercell approach, we explored the effects of bonding one N atom to a P in adjacent substitutional sites in diamond. A range of hybrid functional, including HSE06, B3LYP, PBE0, PBEsol0, and PBE0-13, were used to calculate the formation, binding, and ionisation energies, in order to explore the solubility and stability of the point defect. The equilibrium geometry and the magnetic and electronic structures were analysed and presented in detail. The defect introduces a unique reconstruction in a diamond where one of the C atoms coordinated with the N atom involved in the elongated C-N bond and creates a new bond with the P atom. The simulated infrared spectra of phosphorus-nitrogen defects were investigated with different supercell sizes and found to contain two sharp peaks at the edges of the spectrum, one at a high frequency 1,379 cm⁻¹ and the second appearing at the end range, 234 cm⁻¹, as obtained with the largest supercell (216).

Keywords: DFT, HSE06, B3LYP, PBE0, PBEsol0, PBE0-13

Procedia PDF Downloads 75
2725 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 133
2724 Nonequilibrium Effects in Photoinduced Ultrafast Charge Transfer Reactions

Authors: Valentina A. Mikhailova, Serguei V. Feskov, Anatoly I. Ivanov

Abstract:

In the last decade the nonequilibrium charge transfer have attracted considerable interest from the scientific community. Examples of such processes are the charge recombination in excited donor-acceptor complexes and the intramolecular electron transfer from the second excited electronic state. In these reactions the charge transfer proceeds predominantly in the nonequilibrium mode. In the excited donor-acceptor complexes the nuclear nonequilibrium is created by the pump pulse. The intramolecular electron transfer from the second excited electronic state is an example where the nuclear nonequilibrium is created by the forward electron transfer. The kinetics of these nonequilibrium reactions demonstrate a number of peculiar properties. Most important from them are: (i) the absence of the Marcus normal region in the free energy gap law for the charge recombination in excited donor-acceptor complexes, (ii) extremely low quantum yield of thermalized charge separated state in the ultrafast charge transfer from the second excited state, (iii) the nonexponential charge recombination dynamics in excited donor-acceptor complexes, (iv) the dependence of the charge transfer rate constant on the excitation pulse frequency. This report shows that most of these kinetic features can be well reproduced in the framework of stochastic point-transition multichannel model. The model involves an explicit description of the nonequilibrium excited state formation by the pump pulse and accounts for the reorganization of intramolecular high-frequency vibrational modes, for their relaxation as well as for the solvent relaxation. The model is able to quantitatively reproduce complex nonequilibrium charge transfer kinetics observed in modern experiments. The interpretation of the nonequilibrium effects from a unified point of view in the terms of the multichannel point transition stochastic model allows to see similarities and differences of electron transfer mechanism in various molecular donor-acceptor systems and formulates general regularities inherent in these phenomena. The nonequilibrium effects in photoinduced ultrafast charge transfer which have been studied for the last 10 years are analyzed. The methods of suppression of the ultrafast charge recombination, similarities and dissimilarities of electron transfer mechanism in different molecular donor-acceptor systems are discussed. The extremely low quantum yield of the thermalized charge separated state observed in the ultrafast charge transfer from the second excited state in the complex consisting of 1,2,4-trimethoxybenzene and tetracyanoethylene in acetonitrile solution directly demonstrates that its effectiveness can be close to unity. This experimental finding supports the idea that the nonequilibrium charge recombination in the excited donor-acceptor complexes can be also very effective so that the part of thermalized complexes is negligible. It is discussed the regularities inherent to the equilibrium and nonequilibrium reactions. Their fundamental differences are analyzed. Namely the opposite dependencies of the charge transfer rates on the dynamical properties of the solvent. The increase of the solvent viscosity results in decreasing the thermal rate and vice versa increasing the nonequilibrium rate. The dependencies of the rates on the solvent reorganization energy and the free energy gap also can considerably differ. This work was supported by the Russian Science Foundation (Grant No. 16-13-10122).

Keywords: Charge recombination, higher excited states, free energy gap law, nonequilibrium

Procedia PDF Downloads 319
2723 Characterization of Nanostructured and Conventional TiAlN and AlCrN Coated ASTM-SA213-T-11 Boiler Steel

Authors: Vikas Chawla, Buta Singh Sidhu, Amita Rani, Amit Handa

Abstract:

The main objective of the present work is microstructural and mechanical characterization of the conventional and nanostructured TiAlN and AlCrN coatings deposited on T-11 boiler steel. In case of conventional coatings, Al-Cr and Ti-Al metallic powders were deposited using plasma spray process followed by gas nitriding of the surface which was done in the lab with optimized parameters after conducting several trials on plasma-sprayed coated specimens. The physical vapor deposition process (PAPVD) was employed for depositing nanostructured TiAlN and AlCrN coatings. The field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray analysis (EDAX) attachment, X-ray diffraction (XRD) analysis, atomic force microscopy (AFM) analysis and the X-Ray mapping analysis techniques have been used to study surface and cross-sectional morphology of the coatings. The surface roughness and micro-hardness were also measured. A good adhesion of the conventional thick TiAlN and AlCrN coatings was found. The coatings under study are recommended for the applications to super-heater and re-heater tubes of the boilers based upon the outcomes of the research work.

Keywords: nanostructure, physical vapour deposition, oxides, thin films, electron microscopy

Procedia PDF Downloads 134
2722 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App

Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira

Abstract:

The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.

Keywords: travel app, behavior change, persuasive technology, travel information, causality

Procedia PDF Downloads 133
2721 Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method

Authors: A. Srion, W. Thepsuwan, N. Monmaturapoj

Abstract:

Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure.

Keywords: lithium disilicate, hot pressing, dental crown, microstructure

Procedia PDF Downloads 319
2720 In Situ Analysis of the Effect of Twinning on Deformation and Cracking of Magnesium Alloy

Authors: Chaoqun Zhao, Gang Fang

Abstract:

Twinning is an important deformation mechanism of magnesium alloys, but there is no consensus on the relationship between twinning and ductility. To comprehensively understand the effect of twinning on plastic deformation and cracking, the in situ tensile tests of a magnesium alloy sample along its extrusion direction were conducted, accompanied by the observations using scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The misorientation angles around specific axes and trace analysis of grains were used to identify the active twinning systems. The results show that the area fraction of tension twins increases with the increasing strain, resulting in the c-axes of most grains rotating from the normal direction to the transverse direction, and the intensity of (0002) pole is weakened. Based on the analysis of kernel average misorientation (KAM) and SEM maps, it is found that the appearance of tension twins accommodates plastic deformation. However, the stress concentration caused by the intersection of tension twinning with the second phase can lead to crack initiation, and the crack propagates along the direction perpendicular to the tension twinning. For contraction twinning, it plays a role in plastic relaxation and improving strain compatibility during deformation, and is not a necessary potential mechanism of crack nucleation.

Keywords: magnesium alloy, cracking, in-situ EBSD, twinning

Procedia PDF Downloads 5
2719 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 335
2718 C₅₉Pd: A Heterogeneous Catalytic Material for Heck Coupling Reaction

Authors: Manjusha C. Padole, Parag A. Deshpande

Abstract:

Density functional theory calculations were carried out for identification of an active heterogeneous catalyst to carry out Heck coupling reaction which is of pharmaceutical importance. One of the carbonaceous nanomaterials, heterofullerene, was designed for the reaction. Stability and reactivity of the proposed heterofullerenes (C59M, M = Pd/Ni) were established with insights into the metal-carbon bond, electron affinity and chemical potential. Adsorbent potentials of both the heterofullerenes were examined from the adsorption study of four halobenzenes (C6H5F, C6H5Cl, C6H5Br and C6H5I). Oxidative addition activities of all four halobenzenes were investigated by developing free energy landscapes over both the heterofullerenes for rate determining step (oxidative addition). C6H5I showed a good catalytic activity for the rate determining step. Thus, C6H5I was proposed as a suitable halobenzene and complete free energy landscapes for Heck coupling reaction were developed over C59Pd and C59Ni. Smaller activation barriers observed over C59Pd in comparison with C59Ni put us in a position to propose C59Pd to be an efficient heterofullerene for carrying Heck coupling reaction.

Keywords: metal-substituted fullerene, density functional theory, electron affinity, oxidative addition, Heck coupling reaction

Procedia PDF Downloads 221
2717 Innovations for Freight Transport Systems

Authors: M. Lu

Abstract:

The paper presents part of the results of EU-funded projects: SoCool@EU (Sustainable Organisation between Clusters Of Optimized Logistics @ Europe), DG-RTD (Research and Innovation), Regions of Knowledge Programme (FP7-REGIONS-2011-1). It will provide an in-depth review of emerging technologies for further improving urban mobility and freight transport systems, such as (information and physical) infrastructure, ICT-based Intelligent Transport Systems (ITS), vehicles, advanced logistics, and services. Furthermore, the paper will provide an analysis of the barriers and will review business models for the market uptake of innovations. From a perspective of science and technology, the challenges of urbanization could be mainly handled through adequate (human-oriented) solutions for urban planning, sustainable energy, the water system, building design and construction, the urban transport system (both physical and information aspects), and advanced logistics and services. Implementation of solutions for these domains should be follow a highly integrated and balanced approach, a silo approach should be avoided. To develop a sustainable urban transport system (for people and goods), including inter-hubs and intra-hubs, a holistic view is needed. To achieve a sustainable transport system for people and goods (in terms of cost-effectiveness, efficiency, environment-friendliness and fulfillment of the mobility, transport and logistics needs of the society), a proper network and information infrastructure, advanced transport systems and operations, as well as ad hoc and seamless services are required. In addition, a road map for an enhanced urban transport system until 2050 will be presented. This road map aims to address the challenges of urban transport, and to provide best practices in inter-city and intra-city environments from various perspectives, including policy, traveler behaviour, economy, liability, business models, and technology.

Keywords: synchromodality, multimodal transport, logistics, Intelligent Transport Systems (ITS)

Procedia PDF Downloads 313
2716 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 85
2715 Carbon Nitride Growth on ZnO Architectures for Enhanced Photoelectrochemical Water Splitting Application

Authors: Špela Hajduk, Sean P. Berglund, Matejka Podlogar, Goran Dražić, Fatwa F. Abdi, Zorica C. Orel, Menny Shalom

Abstract:

Graphitic carbon nitride materials (g-CN) have emerged as an attractive photocatalyst and electrocatalyst for photo and electrochemical water splitting reaction, due to their environmental benignity nature and suitable band gap. Many approaches were introduced to enhance the photoactivity and electronic properties of g-CN and resulted in significant changes in the electronic and catalytic properties. Here we demonstrate the synthesis of thin and homogenous g-CN layer on highly ordered ZnO nanowire (NW) substrate by growing a seeding layer of small supramolecular assemblies on the nanowires. The new synthetic approach leads to the formation of thin g-CN layer (~3 nm) without blocking all structure. Two different deposition methods of carbon nitride were investigated and will be presented. The amount of loaded carbon nitride significantly influences the PEC activity of hybrid material and all the ZnO/g-CNx electrodes show great improvement in photoactivity. The chemical structure, morphology and optical properties of the deposited g-CN were fully characterized by various techniques as X-ray powder spectroscopy (XRD), scanning electron microscopy (SEM), focused ion beam scanning electron microscopy (FIB-SEM), high-resolution scanning microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS).

Keywords: carbon nitride, photoanode, solar water splitting, zinc oxide

Procedia PDF Downloads 187
2714 Preparation, Characterisation, and Antibacterial Activity of Green-Biosynthesised Silver Nanoparticles Using Clinacanthus Nutans Extract

Authors: Salahaedin Waiezi, Nik Ahmad Nizam Nik Malek, Hassan Abdelmagid Elzamzami, Shahrulnizahana Mohammad Din

Abstract:

A green and safe approach to the synthesis of silver nanoparticles (AgNP) can be performed using plant leaf extract as the reducing agent. Hence, this paper reports the biosynthesis of AgNP using Clinacanthus nutans plant extract. C. nutans is known as belalai gajah in Malaysia and is widely used as a medicinal herb locally. The biosynthesized AgNP, using C. nutans aqueous extract at pH 10, with the reaction temperature of 70°C and 48 h reaction time, was characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), and transmission electron microscope (TEM). A peak appeared in the UV-Vis spectra at around 400 nm, while XRD confirmed the crystal structure of AgNP, with the average size between 20 to 30 nm, as shown in FESEM and TEM. The antibacterial activity of the biosynthesized AgNP, which was performed using the disc diffusion technique (DDT) indicated effective inhibition against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. In contrast, minimal antibacterial activity was detected against Enterococcus faecalis and methicillin-resistant Staphylococcus aureus (MRSA). In general, AgNP produced using C. nutans leaf extract possesses potential antibacterial activity.

Keywords: silver nanoparticles, Clinacanthus nutans, antibacterial agent, biosynthesis

Procedia PDF Downloads 196
2713 Rheological and Self-Healing Properties of Poly (Vinyl Butyral)

Authors: Sunatda Arayachukiat, Shogo Nobukawa, Masayuki Yamaguchi

Abstract:

A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior.

Keywords: Poly(vinyl butyral) (PVB), rheological properties, self-healing behaviour, molecular diffusion

Procedia PDF Downloads 423
2712 The Influence of Travel Experience within Perceived Public Transport Quality

Authors: Armando Cartenì, Ilaria Henke

Abstract:

The perceived public transport quality is an important driver that influences both customer satisfaction and mobility choices. The competition among transport operators needs to improve the quality of the services and identify which attributes are perceived as relevant by passengers. Among the “traditional” public transport quality attributes there are, for example: travel and waiting time, regularity of the services, and ticket price. By contrast, there are some “non-conventional” attributes that could significantly influence customer satisfaction jointly with the “traditional” ones. Among these, the beauty/aesthetics of the transport terminals (e.g. rail station and bus terminal) is probably one of the most impacting on user perception. Starting from these considerations, the point stressed in this paper was if (and how munch) the travel experience of the overall travel (e.g. how long is the travel, how many transport modes must be used) influences the perception of the public transport quality. The aim of this paper was to investigate the weight of the terminal quality (e.g. aesthetic, comfort and service offered) within the overall travel experience. The case study was the extra-urban Italian bus network. The passengers of the major Italian terminal bus were interviewed and the analysis of the results shows that about the 75% of the travelers, are available to pay up to 30% more for the ticket price for having a high quality terminal. A travel experience effect was observed: the average perceived transport quality varies with the characteristic of the overall trip. The passengers that have a “long trip” (travel time greater than 2 hours) perceived as “low” the overall quality of the trip even if they pass through a high quality terminal. The opposite occurs for the “short trip” passengers. This means that if a traveler passes through a high quality station, the overall perception of that terminal could be significantly reduced if he is tired from a long trip. This result is important and if confirmed through other case studies, will allow to conclude that the “travel experience impact" must be considered as an explicit design variable for public transport services and planning.

Keywords: transportation planning, sustainable mobility, decision support system, discrete choice model, design problem

Procedia PDF Downloads 292