Search results for: composite forecasting
1957 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite
Authors: M. Palizvan, M. H. Sadr, M. T. Abadi
Abstract:
The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE
Procedia PDF Downloads 1531956 Anti-Microbial Activity of Ag-N Co-Doped ZnS and ZnS-Fe2O3 Composite Nanoparticles
Authors: O. P. Yadav
Abstract:
Ag-N co-doped ZnS and ZnS/Fe2O3 composite nanoparticles have been synthesized by chemical and sol-gel methods. As-synthesized nanomaterial have been characterized by XRD and TEM techniques and their antimicrobial effects were studied using paper disc diffusion technique against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria. As-synthesized nanomaterial showed potent antimicrobial activity against studied bacterial strains. Antimicrobial activity of synthesized nanomaterial has also been compared with some commonly used antibiotics.Keywords: antibiotic, Escherichia coli, nanomaterial, TEM, Staphylococcus aureus
Procedia PDF Downloads 3471955 Assessing Future Offshore Wind Farms in the Gulf of Roses: Insights from Weather Research and Forecasting Model Version 4.2
Authors: Kurias George, Ildefonso Cuesta Romeo, Clara Salueña Pérez, Jordi Sole Olle
Abstract:
With the growing prevalence of wind energy there is a need, for modeling techniques to evaluate the impact of wind farms on meteorology and oceanography. This study presents an approach that utilizes the WRF (Weather Research and Forecasting )with that include a Wind Farm Parametrization model to simulate the dynamics around Parc Tramuntana project, a offshore wind farm to be located near the Gulf of Roses off the coast of Barcelona, Catalonia. The model incorporates parameterizations for wind turbines enabling a representation of the wind field and how it interacts with the infrastructure of the wind farm. Current results demonstrate that the model effectively captures variations in temeperature, pressure and in both wind speed and direction over time along with their resulting effects on power output from the wind farm. These findings are crucial for optimizing turbine placement and operation thus improving efficiency and sustainability of the wind farm. In addition to focusing on atmospheric interactions, this study delves into the wake effects within the turbines in the farm. A range of meteorological parameters were also considered to offer a comprehensive understanding of the farm's microclimate. The model was tested under different horizontal resolutions and farm layouts to scrutinize the wind farm's effects more closely. These experimental configurations allow for a nuanced understanding of how turbine wakes interact with each other and with the broader atmospheric and oceanic conditions. This modified approach serves as a potent tool for stakeholders in renewable energy, environmental protection, and marine spatial planning. environmental protection and marine spatial planning. It provides a range of information regarding the environmental and socio economic impacts of offshore wind energy projects.Keywords: weather research and forecasting, wind turbine wake effects, environmental impact, wind farm parametrization, sustainability analysis
Procedia PDF Downloads 721954 Development and Characterization of a Bio-Sourced Composite Material Based on Phase Change Material and Hemp Shives
Authors: Hachmi Toifane, Pierre Tittelein, Anh Dung Tran Le, Laurent Zalewsi
Abstract:
This study introduces a composite material composed of bio-sourced phase-change material (PCM) of plant origin combined with hemp shives, developed in response to environmental challenges in the construction sector. The state of the art emphasizes the low thermal storage capacity of bio-based materials and highlights increasing need for developing sustainable materials that offer optimal thermal, mechanical, and hydric performances. The combining of PCM's thermal properties and hygric properties of hemp shives results in a material that combines lightness, strength, and hygrothermal regulation. Various formulations are being assessed and compared to conventional hemp concrete. Thermal characterization includes the measurements of thermal conductivity and numerical simulations to evaluate the thermal storage capacity. The results indicate that the addition of PCM significantly enhances the material's thermal storage capacity, positioning this one as a promising, eco-friendly solution for sustainable construction and for improving the energy efficiency of buildings.Keywords: hemp composite, bio-sourced phase change material, thermal storage, hemp shives
Procedia PDF Downloads 451953 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 421952 Investigation of Heat Conduction through Particulate Filled Polymer Composite
Authors: Alok Agrawal, Alok Satapathy
Abstract:
In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite
Procedia PDF Downloads 3221951 A Composite Beam Element Based on Global-Local Superposition Theory for Prediction of Delamination in Composite Laminates
Authors: Charles Mota Possatti Júnior, André Schwanz de Lima, Maurício Vicente Donadon, Alfredo Rocha de Faria
Abstract:
An interlaminar damage model is combined with a beam element formulation based on global-local superposition to assess delamination in composite laminates. The variations in the mechanical properties in the laminate, generated by the presence of delamination, are calculated as a function of the displacements in the interface layers. The global-local superposition of displacement fields ensures the zig-zag behaviour of stresses and displacement, and the number of degrees of freedom (DOFs) is independent of the number of layers. The displacements and stresses are calculated as a function of DOFs commonly used in traditional beam elements. Finally, the finite element(FE) formulation is extended to handle cases of different thicknesses, and then the FE model predictions are compared with results obtained from analytical solutions and commercial finite element codes.Keywords: delamination, global-local superposition theory, single beam element, zig-zag, interlaminar damage model
Procedia PDF Downloads 1181950 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells
Authors: Christian C. Vaso, Rinlee Butch M. Cervera
Abstract:
Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia
Procedia PDF Downloads 3121949 High Toughening Effects of Polybenzoxazine Filled with Ultrafine Fully Vulcanized Powder Natural Rubber Grafted with Varied Monomers
Authors: A. Pattulee, I. Lawan, N. Boonnao, R. Gholami, P. Rimdusit, S. Rimdusit
Abstract:
Varied types and content of ultrafine vulcanized powdered natural rubbers (UFPNR) as toughening fillers of polybenzoxazine composite are investigated in this work. Four types of UFPNR were prepared by graft polymerization of acrylonitrile monomer (AN), styrene monomer (ST), styrene-acrylonitrile copolymer (ST/AN), and styrene-methyl methacrylate copolymer (ST/MMA) onto deproteinized natural rubber (DPNR). The solid UFPNR powders with different types of grafting were finally obtained by electron beam vulcanization and a spray-drying technique. Additionally, effects of various UFPNR contents (0, 5, 10, 15, 20, and 25 wt%) on toughness of polybenzoxazine composites were studied. It was observed that the UFPNR grafted with the styrene-methyl methacrylate copolymer (UFPNR-g-(PS-co-PMMA)) exhibited the most effective toughening agent for polybenzoxazine, whereas the rubber powder content of 25 wt% was found to be the optimal filler loading in enhancing the toughness of the resulting composite. The experimental results revealed an increase of 86% in toughness and 56% in impact strength at the above UFPNR-g- (PS-co-PMMA powdered rubber content. Interestingly, the utilization of the UFPNR-g-(PS-co-PMMA as toughening agent was found to increase thermal stability (degradation temperature at 5wt.% (Td5) and glass transition temperature (Tg) of the composite i.e. an increase of 8°C and 6 °C has been observed for the Td5 and Tg, respectively.Keywords: natural rubber, ultrafine fully vulcanized powder rubber, polybenzoxazine, polymer composite, toughening
Procedia PDF Downloads 71948 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: central composite design, CO2 liquefaction, latin hypercube sampling, simulation-based optimization
Procedia PDF Downloads 1661947 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels
Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan
Abstract:
The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.Keywords: aerogel, aramid fabric, flexibility, thermal resistance
Procedia PDF Downloads 1531946 Characterization of an Almond Shell Composite Based on PHBH
Authors: J. Ivorra-Martinez, L. Quiles-Carrillo, J. Gomez-Caturla, T. Boronat, R. Balart
Abstract:
The utilization of almond crop by-products to obtain PHBH-based composites was carried out by using an extrusion process followed by an injection to obtain test samples. To improve the properties of the resulting composite, the incorporation of OLA 8 as a coupling agent and plasticizer was additionally considered. A characterization process was carried out by the measurement of mechanical properties, thermal properties, surface morphology, and water absorption ability. The use of the almond residue allows obtaining composites based on PHBH with a higher environmental interest and lower cost.Keywords: almond shell, PHBH, composites, compatibilization
Procedia PDF Downloads 1021945 Non-Linear Regression Modeling for Composite Distributions
Authors: Mostafa Aminzadeh, Min Deng
Abstract:
Modeling loss data is an important part of actuarial science. Actuaries use models to predict future losses and manage financial risk, which can be beneficial for marketing purposes. In the insurance industry, small claims happen frequently while large claims are rare. Traditional distributions such as Normal, Exponential, and inverse-Gaussian are not suitable for describing insurance data, which often show skewness and fat tails. Several authors have studied classical and Bayesian inference for parameters of composite distributions, such as Exponential-Pareto, Weibull-Pareto, and Inverse Gamma-Pareto. These models separate small to moderate losses from large losses using a threshold parameter. This research introduces a computational approach using a nonlinear regression model for loss data that relies on multiple predictors. Simulation studies were conducted to assess the accuracy of the proposed estimation method. The simulations confirmed that the proposed method provides precise estimates for regression parameters. It's important to note that this approach can be applied to datasets if goodness-of-fit tests confirm that the composite distribution under study fits the data well. To demonstrate the computations, a real data set from the insurance industry is analyzed. A Mathematica code uses the Fisher information algorithm as an iteration method to obtain the maximum likelihood estimation (MLE) of regression parameters.Keywords: maximum likelihood estimation, fisher scoring method, non-linear regression models, composite distributions
Procedia PDF Downloads 341944 The Effect of Agricultural Waste as a Filler in Fibre Cement Board Reinforced with Natural Cellulosic Fibres
Authors: Anuoluwapo S. Taiwo, David S. Ayre, Morteza Khorami, Sameer S. Rahatekar
Abstract:
This investigation aims to characterize the effect of Corn Cob (CC), an agricultural waste, for potential use as a filler material, reducing cement in natural fibre-reinforced cement composite boards used for building applications in low-cost housing estates in developing countries. The corn cob is readily and abundantly available in many West African States. However, this agricultural waste product has not been put to any effective use. Hence, the objective of the current research is to convert this massive agro-waste resource into a potential material for use as filler materials reducing cement contents in fibre-cement board production. Kraft pulp fibre-reinforced cement composite boards were developed with the incorporation of the corn cob powder at varying percentages of 1 – 4% as filler materials to reduce the cement content, using a laboratory-simulated vacuum de-watering process. The mechanical properties of the developed cement boards were characterized through a three-point bending test, while the fractured morphology of the cement boards was examined through a Scanning Electron Microscope (SEM). Results revealed that the flexural strength of the composite board improved significantly with an optimum enhancement of 39% when compared to the reference sample without corn cob replacement, however, the flexural behaviour (ductility) of the composite board was slightly affected by the addition of the corn cob powder at higher percentage. SEM observation of the fractured surfaces revealed good bonding at the fibre-matrix interface as well as a ductile-to-brittle fracture mechanism. Overall, the composite board incorporated with 2% corn cob powder as filler materials had the optimum properties which satisfied the minimum requirements of relevant standards for fibre cement flat sheets.Keywords: agricultural waste, building applications, fibre-cement board, kraft pulp fibre, sustainability
Procedia PDF Downloads 951943 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection
Authors: Yuan Li, Yitao Han, Zhao Zhu
Abstract:
In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT
Procedia PDF Downloads 961942 Preparation and Characterization of Silk/Diopside Composite Nanofibers via Electrospinning for Tissue Engineering Application
Authors: Abbas Teimouri, Leila Ghorbanian, Iren Dabirian
Abstract:
This work focused on preparation and characterizations of silk fibroin (SF)/nanodiopside nanoceramic via electrospinning process. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD). The results confirmed that fabricated SF/diopside scaffolds improved cell attachment and proliferation. The results indicated that the electrospun of SF/nanodiopside nanofibrous scaffolds could be considered as ideal candidates for tissue engineering.Keywords: electrospinning, nanofibers, silk fibroin, diopside, composite scaffold
Procedia PDF Downloads 2781941 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3051940 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material
Authors: S. Boria
Abstract:
In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.Keywords: composite material, crashworthiness, finite element analysis, optimization
Procedia PDF Downloads 2561939 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades
Authors: Chi Zhang, Hua-Peng Chen
Abstract:
With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.
Procedia PDF Downloads 4131938 Comparison between Experimental and Numerical Studies of Fully Encased Composite Columns
Authors: Md. Soebur Rahman, Mahbuba Begum, Raquib Ahsan
Abstract:
Composite column is a structural member that uses a combination of structural steel shapes, pipes or tubes with or without reinforcing steel bars and reinforced concrete to provide adequate load carrying capacity to sustain either axial compressive loads alone or a combination of axial loads and bending moments. Composite construction takes the advantages of the speed of construction, light weight and strength of steel, and the higher mass, stiffness, damping properties and economy of reinforced concrete. The most usual types of composite columns are the concrete filled steel tubes and the partially or fully encased steel profiles. Fully encased composite column (FEC) provides compressive strength, stability, stiffness, improved fire proofing and better corrosion protection. This paper reports experimental and numerical investigations of the behaviour of concrete encased steel composite columns subjected to short-term axial load. In this study, eleven short FEC columns with square shaped cross section were constructed and tested to examine the load-deflection behavior. The main variables in the test were considered as concrete compressive strength, cross sectional size and percentage of structural steel. A nonlinear 3-D finite element (FE) model has been developed to analyse the inelastic behaviour of steel, concrete, and longitudinal reinforcement as well as the effect of concrete confinement of the FEC columns. FE models have been validated against the current experimental study conduct in the laboratory and published experimental results under concentric load. It has been observed that FE model is able to predict the experimental behaviour of FEC columns under concentric gravity loads with good accuracy. Good agreement has been achieved between the complete experimental and the numerical load-deflection behaviour in this study. The capacities of each constituent of FEC columns such as structural steel, concrete and rebar's were also determined from the numerical study. Concrete is observed to provide around 57% of the total axial capacity of the column whereas the steel I-sections contributes to the rest of the capacity as well as ductility of the overall system. The nonlinear FE model developed in this study is also used to explore the effect of concrete strength and percentage of structural steel on the behaviour of FEC columns under concentric loads. The axial capacity of FEC columns has been found to increase significantly by increasing the strength of concrete.Keywords: composite, columns, experimental, finite element, fully encased, strength
Procedia PDF Downloads 2901937 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites
Authors: A. Mimaroglu, H. Unal
Abstract:
In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.Keywords: nano, epoxy, composite, fillers, clay
Procedia PDF Downloads 3911936 Use of Nanoclay in Various Modified Polyolefins
Authors: Michael Tupý, Alice Tesaříková-Svobodová, Dagmar Měřínská, Vít Petránek
Abstract:
Polyethylene (PE), Polypropylene (PP), Polyethylene (vinyl acetate) (EVA) and Surlyn (modif-PE) nano composite samples were prepared with montmorillonite fillers Cloisite 93A and Dellite 67G. The amount of modified Na+ montmorillonite (MMT) was fixed to 5 % (w/w). For the compounding of polymer matrix and chosen nano fillers twin-screw kneader was used. The level of MMT intercalation or exfoliation in the nano composite systems was studied by transmission electron microscopy (TEM) observations. The properties of samples were evaluated by dynamical mechanical analysis (E* modulus at 30 °C) and by the measurement of tensile properties (stress and strain at break).Keywords: polyethylene, polypropylene, polyethylene(vinyl acetate), clay, nanocomposite, montmorillonite
Procedia PDF Downloads 5351935 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base
Procedia PDF Downloads 5221934 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria
Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah
Abstract:
The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models
Procedia PDF Downloads 351933 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch
Procedia PDF Downloads 1891932 Determination of ILSS of Composite Materials Using Micromechanical FEA Analysis
Authors: K. Rana, H.A.Saeed, S. Zahir
Abstract:
Inter Laminar Shear Stress (ILSS) is a main key parameter which quantify the properties of composite materials. These properties can ascertain the use of material for a specific purpose like aerospace, automotive etc. A modelling approach for determination of ILSS is presented in this paper. Geometric modelling of composite material is performed in TEXGEN software where reinforcement, cured matrix and their interfaces are modelled separately as per actual geometry. Mechanical properties of matrix and reinforcements are modelled separately which incorporated anisotropy in the real world composite material. ASTM D2344 is modelled in ANSYS for ILSS. In macroscopic analysis model approximates the anisotropy of the material and uses orthotropic properties by applying homogenization techniques. Shear Stress analysis in that case does not show the actual real world scenario and rather approximates it. In this paper actual geometry and properties of reinforcement and matrix are modelled to capture the actual stress state during the testing of samples as per ASTM standards. Testing of samples is also performed in order to validate the results. Fibre volume fraction of yarn is determined by image analysis of manufactured samples. Fibre volume fraction data is incorporated into the numerical model for correction of transversely isotropic properties of yarn. A comparison between experimental and simulated results is presented.Keywords: ILSS, FEA, micromechanical, fibre volume fraction, image analysis
Procedia PDF Downloads 3731931 The Term Spread Impact on Economic Activity for Transition Economies: Case of Georgia
Authors: L. Totladze
Abstract:
The role of financial sector in supporting economic growth and development is well acknowledged. The term spread (the difference between the yields on long-term and short-term Treasury securities) has been found useful for predicting economic variables as output growth, inflation, industrial production, consumption. The temp spread is one of the leading economic indicators according to NBER methodology. Leading economic indicators are widely used in forecasting of economic activity. Many empirical studies find that the term spread predicts future economic activity. The article shortly explains how the term spread might predict future economic activity. This paper analyses the dynamics of the spread between short and long-term interest rates in countries with transition economies. The research paper analyses term spread dynamics in Georgia and compare it with post-communist countries and transition economies spread dynamics. In Georgia, the banking sector plays an important and dominant role in the financial sector, especially with respect to the mobilization of savings and provision of credit and may impact on economic activity. For this purpose, we study the impact of the term spread on economic growth in Georgia.Keywords: forecasting, leading economic indicators, term spread, transition economies
Procedia PDF Downloads 1761930 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre
Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar
Abstract:
This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres
Procedia PDF Downloads 2941929 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers
Authors: Mochamad Chalid, Imam Prabowo
Abstract:
The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom
Procedia PDF Downloads 3701928 Unconventional Composite Inorganic Membrane Fabrication for Carbon Emissions Mitigation
Authors: Ngozi Nwogu, Godson Osueke, Mamdud Hossain, Edward Gobina
Abstract:
An unconventional composite inorganic ceramic membrane capable in carbon dioxide emission decline was fabricated and tested at laboratory scale to develop in conformism to various environmental guidelines to mitigate the effect of global warming. A review of the existing membrane technologies for carbon capture including the relevant gas transport mechanisms are presented and discussed. Single gas separation experiments using silica modified ceramic membrane with internal diameter 20mm, outside diameter 25mm and length of 368mm deposited on a macro porous supported reactor.was carried out to investigate individual gas permeation behaviours at different pressures and membrane efficiency after a dip coating method. Nitrogen, Carbon dioxide, Argon, Oxygen and Methane pure gases were used to investigate their individual permeation rates at various pressures. Results show that the gas flow rate increases with pressure drop. However at above a pressure of 3bar, CO2 permeability ratio to than the other gases indicated control of a more selective surface adsorptive transport mechanism.Keywords: carbon dioxide, composite membranes, permeability, transport mechanisms
Procedia PDF Downloads 504