Search results for: antibacterial textile materials
7072 Dyeability of Silk Fabric with Dactylopius coccus Costa and Quercus infectoria Olivier
Authors: Burcu Yilmaz Şahinbaşkan, Recep Karadağ, Emine Torgan
Abstract:
Nowadays, many natural dyes are used for colouration of textile materials. The natural dyes are friendly to human health and environment. Cochineal (Dactylopius coccus Costa) can be used with other natural dye plants for colouration of silk and wool fabrics. Almost never research works on the dyeing of silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier together. In this study, dyeability of 100 % silk fabric with Dactylopius coccus Costa and Quercus infectoria Olivier was studied. Optimum dyeing parameters were determined by using different concentration of Dactylopius coccus Costa (10%), Quercus infectoria Olivier (0,1,5 and 10%) and mordant salt (0 and 3%). The dyed silk fabrics were examined for their colorimetric and fastness properties. The fabrics were dyed succesfully dark colours with 10 % Dactylopius coccus Costa, 10 % Quercus infectoria Olivier and presence of mordanting after dyeing process (3% mordant salt). The washing and light colour fastness of the dyed fabrics were investigated and adequate results were obtained.Keywords: Dactylopius coccus Costa, Quercus infectoria Olivier, natural dye, dyeing, silk fabric
Procedia PDF Downloads 5977071 Phytochemical and in vitro Antimicrobial Screening of Extract of Sunflower Chrysanthlum indicum
Authors: I. Ibrahim, A. Mann
Abstract:
Phytochemical screening of crude Chrysanthlum Indicum revealed the presence of carbohydrates, flavonoids, saponins, tannins, alkanoids, steroidal nucleus and cardiac glycosides. The extract was evaluated against some pathogenic organisms by agar dilution method. The minimum inhibitory concentration and minimum bacteriocidal concentration (MBC) of the active extract of Chrysanthlum Indicum shows that its extract could be a potential source of antimicrobial agents.Keywords: extract, phytochemicals, antimicrobial, antibacterial, Chrysanthlum indicum
Procedia PDF Downloads 5707070 Device Modelling and Analysis of Eco-friendly Inverted Solar Cell Structure Using Valency Ordered Inorganic Double Perovskite Material
Authors: Sindhu S Nair, Atul Thakur, Preeti Thakur, Trukhanov Alex
Abstract:
Perovskite-based absorbing materials that are organic, inorganic, or hybrid have gained interest as an appealing candidate for the development of solar cell devices. Lead-based perovskites are among the most promising materials, but their application is plagued with toxicity and stability concerns. Most of the perovskite solar cell consists of conventional (n-i-p) structure with organic or inorganic charge transport materials. The commercial application of such device is limited due to higher J-V hysteresis and the need for high temperature during fabrication. This numerical analysis primarily directs to investigate the performance of various inorganic lead-free valency ordered double perovskite absorber materials and to develop an inverted perovskite solar cell device structure. Simulation efforts using SCAPS-1D was carried out with various organic and inorganic charge transport materials with absorber layer materials, and their performance has been evaluated for various factors of thickness, absorber thickness, absorber defect density, and interface defect density to achieve the optimized structure.Keywords: perovskite materials, solar cell, inverted solar cell, inorganic perovskite solar cell materials, cell efficiency
Procedia PDF Downloads 837069 Revising the Student Experiment Materials and Practices at the National University of Laos
Authors: Syhalath Xaphakdy, Toshio Nagata, Saykham Phommathat, Pavy Souwannavong, Vilayvanh Srithilat, Phoxay Sengdala, Bounaom Phetarnousone, Boualay Siharath, Xaya Chemcheng
Abstract:
The National University of Laos (NUOL) invited a group of volunteers from the Japan International Cooperation Agency (JICA) to revise the physics experiments to utilize the materials that were already available to students. The intension was to review and revise the materials regularly utilized in physics class. The project had access to limited materials and a small budget for the class in the unit; however, by developing experimental textbooks related to mechanics, electricity, and wave and vibration, the group found a way to apply them in the classroom and enhance the students teaching activities. The aim was to introduce a way to incorporate the materials and practices in the classroom to enhance the students learning and teaching skills, particularly when they graduate and begin working as high school teachers.Keywords: NUOL, JICA, physics experiment materials, small budget, mechanics, electricity
Procedia PDF Downloads 2367068 Efficient Synthesis of Thiourea Based Iminothiazoline Heterocycles
Authors: Hummera Rafique, Aamer Saeed
Abstract:
Thioureas are highly biologically active compounds, as many important applications are associated with this nucleus. They serve as exceptionally versatile building block for the synthesis of wide variety of heterocyclic systems, which also possess extensive range of bioactivities. These thioureas were converted into five-membered heterocycles with imino moiety like ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)]benzoates (2a-j) by base catalyzed cyclization of corresponding thioureas with 2-bromoacetone and triethylamine in good yields.Keywords: ethyl 4-[2-benzamido-4-methylthiazol-3(2H)-yl)]benzoates, ethyl 4-(3-benzoylthioureido) benzoates, antibacterial activity
Procedia PDF Downloads 3557067 Application of the Material Point Method as a New Fast Simulation Technique for Textile Composites Forming and Material Handling
Authors: Amir Nazemi, Milad Ramezankhani, Marian Kӧrber, Abbas S. Milani
Abstract:
The excellent strength to weight ratio of woven fabric composites, along with their high formability, is one of the primary design parameters defining their increased use in modern manufacturing processes, including those in aerospace and automotive. However, for emerging automated preform processes under the smart manufacturing paradigm, complex geometries of finished components continue to bring several challenges to the designers to cope with manufacturing defects on site. Wrinklinge. g. is a common defectoccurring during the forming process and handling of semi-finished textile composites. One of the main reasons for this defect is the weak bending stiffness of fibers in unconsolidated state, causing excessive relative motion between them. Further challenges are represented by the automated handling of large-area fiber blanks with specialized gripper systems. For fabric composites forming simulations, the finite element (FE)method is a longstanding tool usedfor prediction and mitigation of manufacturing defects. Such simulations are predominately meant, not only to predict the onset, growth, and shape of wrinkles but also to determine the best processing condition that can yield optimized positioning of the fibers upon forming (or robot handling in the automated processes case). However, the need for use of small-time steps via explicit FE codes, facing numerical instabilities, as well as large computational time, are among notable drawbacks of the current FEtools, hindering their extensive use as fast and yet efficient digital twins in industry. This paper presents a novel woven fabric simulation technique through the application of the material point method (MPM), which enables the use of much larger time steps, facing less numerical instabilities, hence the ability to run significantly faster and efficient simulationsfor fabric materials handling and forming processes. Therefore, this method has the ability to enhance the development of automated fiber handling and preform processes by calculating the physical interactions with the MPM fiber models and rigid tool components. This enables the designers to virtually develop, test, and optimize their processes based on either algorithmicor Machine Learning applications. As a preliminary case study, forming of a hemispherical plain weave is shown, and the results are compared to theFE simulations, as well as experiments.Keywords: material point method, woven fabric composites, forming, material handling
Procedia PDF Downloads 1817066 Desired Flow of Radioactive Materials from Logistics Service Quality Perspective
Authors: Tuğçe Yavaş Akış
Abstract:
In recent years, due to an increased use of radioactive materials, radioactive sources are constantly being transported via air, road and ocean ways for medical, industrial, research etc. purposes throughout the world. The quantity of radioactive materials transported all around the world varies from negligible quantities in shipments of consumer products to very large quantities in shipments of irradiated nuclear fuel. Radioactive materials have been less attractive for social science researchers in literature. In this study, it is aimed to discover desired flow of radioactive materials from logistics service quality (LSQ) perspective. In doing so, case study approach will be employed by using secondary data collected from one of the world’s leading transportation companies’ customer care system reports. Movement of radioactive cargoes containing IR-192 and logistics process will be analyzed with the help of logistics service quality dimensions. Based on the case study that will be conducted, interaction between dimensions, the importance of each dimension in desired flow, and their relevance with desired flow of radioactive materials will be explained. This study will bring out the desired flow of radioactive materials transportation and be a guide for all other companies, employees and researchers.Keywords: logistics service quality, LSQ dimension , radioactive material, transportation
Procedia PDF Downloads 2397065 Effects of Abiotic Stress on the Phytochemical Content and Bioactivity of Pistacia lentiscus L.
Authors: S. Mamoucha, N. Tsafantakis, Α. Ioannidis, S. Chatzipanagiotou, C. Nikolaou, L. Skaltsounis, N. Fokialakis, N. Christodoulakis
Abstract:
Introduction: Plant secondary metabolites (SM) can be grouped into three chemically distinct groups: terpenes, phenolics, and nitrogen-containing compounds. For many years the adaptive significance of SM was unknown. They were thought to be functionless end-products. Currently it is accepted that many secondary metabolites (also known as natural products) have important ecological roles in plants. For instance, they serve as attractants (odor, color, taste) for pollinators and seed-dispersing animals. Moreover, they protect plants from herbivores, microbial pathogens and from environmental stress (high and low temperatures, drought, alkalinity, salinity, radiation etc). It is well known that both biotic and abiotic stress often increase the accumulation of SM. The local climatic conditions, seasonal changes, external factors such as light, temperature, humidity affect the biosynthesis and composition of secondary metabolites. A well known dioecious evergreen plant, Pistacia lentiscus L. (mastic tree), was selected in order to study the metabolic variations occur in response to the different climate conditions, due to the seasonal variation and its effect on the biosynthesis of bioactive compounds. Materials-methods: Young and mature leaves were collected in January and July 2014, dried and extracted by accelerated solvent extraction (Dionex ASE™ 350) using solvents of increased polarity (DCM, MeOH, and H2O). GC-MS and UHPLC-HRMS analysis were carried out in order to define the nature and the relative abundance of SM. The antibacterial activity was evaluated by using the Agar Disc Diffusion Assay against ATCC and clinical isolates strains: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, Streptococcus mutans and Klebsiella pneumoniae. All tests were carried out in duplicate and the average radii of the inhibition zones were calculated for each extract. Results: According to the phytochemical profile obtained from each extract, the biosynthesis of SM varied both qualitatively and quantitatively under the two different types of seasonal stress. With exception of the biologically inactive nonpolar DCM extract of July, all extracts inhibited the growth of most of the investigated microorganisms. A clear positive correlation has been observed between the relative abundance of SM and the bioactivity of the DCM extracts of January and July. Observed changes during phytochemical analysis were mainly focused on the triterpenoid content. On the other hand, the bioactivity of the polar extracts (MeOH and H2O) of January and July resulted practically invariable against most of the microorganisms, besides the significant variation of the SM content due to the seasonal variation. Conclusion: Our results clearly confirmed the hypothesis of abiotic stress as an important regulating factor that significantly affects the biosynthesis of secondary metabolites and thus the presence of bioactive compounds. Acknowledgment: This work was supported by IKY - State Scholarship Foundation, Athens, Greece.Keywords: antibacterial screening, phytochemical profile, Pistacia lentiscus, abiotic stress
Procedia PDF Downloads 2567064 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications
Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia
Abstract:
In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 567063 Amino Acid Based Biodegradable Poly (Ester-Amide)s and Their Potential Biomedical Applications as Drug Delivery Containers and Antibacterial
Authors: Nino Kupatadze, Tamar Memanishvili, Natia Ochkhikidze, David Tugushi, Zaal Kokaia, Ramaz Katsarava
Abstract:
Amino acid-based Biodegradable poly(ester-amide)s (PEAs) have gained considerable interest as a promising materials for numerous biomedical applications. These polymers reveal a high biocompatibility and easily form small particles suitable for delivery various biological, as well as elastic bio-erodible films serving as matrices for constructing antibacterial coatings. In the present work we have demonstrated a potential of the PEAs for two applications: 1. cell therapy for stroke as vehicles for delivery and sustained release of growth factors, 2. bactericidal coating as prevention biofilm and applicable in infected wound management. Stroke remains the main cause of adult disability with limited treatment options. Although stem cell therapy is a promising strategy, it still requires improvement of cell survival, differentiation and tissue modulation. .Recently, microspheres (MPs) made of biodegradable polymers have gained significant attention for providing necessary support of transplanted cells. To investigate this strategy in the cell therapy of stroke, MPs loaded with transcription factors Wnt3A/BMP4 were prepared. These proteins have been shown to mediate the maturation of the cortical neurons. We have suggested that implantation of these materials could create a suitable microenvironment for implanted cells. Particles with spherical shape, porous surface, and 5-40 m in size (monitored by scanning electron microscopy) were made on the basis of the original PEA composed of adipic acid, L-phenylalanine and 1,4-butanediol. After 4 months transplantation of MPs in rodent brain, no inflammation was observed. Additionally, factors were successfully released from MPs and affected neuronal cell differentiation in in vitro. The in vivo study using loaded MPs is in progress. Another severe problem in biomedicine is prevention of surgical devices from biofilm formation. Antimicrobial polymeric coatings are most effective “shields” to protect surfaces/devices from biofilm formation. Among matrices for constructing the coatings preference should be given to bio-erodible polymers. Such types of coatings will play a role of “unstable seating” that will not allow bacteria to occupy the surface. In other words, bio-erodible coatings would be discomfort shelter for bacteria that along with releasing “killers of bacteria” should prevent the formation of biofilm. For this purpose, we selected an original biodegradable PEA composed of L-leucine, 1,6-hexanediol and sebacic acid as a bio-erodible matrix, and nanosilver (AgNPs) as a bactericidal agent (“killer of bacteria”). Such nanocomposite material is also promising in treatment of superficial wound and ulcer. The solubility of the PEA in ethanol allows to reduce AgNO3 to NPs directly in the solution, where the solvent served as a reductive agent, and the PEA served as NPs stabilizer. The photochemical reduction was selected as a basic method to form NPs. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscope (TEM), and dynamic light scattering (DLS). According to the UV-data and TEM data the photochemical reduction resulted in spherical AgNPs with wide particle size distribution with a high contribution of the particles below 10 nm that are known as responsible for bactericidal activity of AgNPs. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within ca. 50 nm.Keywords: biodegradable polymers, microparticles, nanocomposites, stem cell therapy, stroke
Procedia PDF Downloads 3957062 Evaluation of the Elastic Mechanical Properties of a Hybrid Adhesive Material
Authors: Moudar H. A. Zgoul, Amin Al Zamer
Abstract:
Adhesive materials and adhesion have been the focal point of multiple research works related to numerous applications, particularly, aerospace, and aviation industries. To enhance the properties of conventional adhesive materials, additives have been introduced to the mix in order to enhance their mechanical and physical properties by creating a hybrid adhesive material. The evaluation of the mechanical properties of such hybrid adhesive materials is thus of an essential requirement for the purpose of properly modeling their behavior accurately. This paper presents an approach/tool to simulate the behavior such hybrid adhesives in a way that will allow researchers to better understand their behavior while in service.Keywords: adhesive materials, analysis, hybrid adhesives, mechanical properties, simulation
Procedia PDF Downloads 4207061 Integration of Constraints Related to Composite Materials in the Design of Industrial Products
Authors: A. Boumedine, K. Benfriha, S. Lecheb
Abstract:
Manufacturing methods for products and structures made of composite materials reduce the number of parts and integrate technical functions, this advantage of composite materials leads to a lot of innovation but also to a reduction of costs and a gain in quality. A material has attributes: its density, it’s resistance, it’s cost, it’s resistance to corrosion. For the design of a product, a certain profile of these attributes is required: low density, resistance removed, low cost. The problem is then to identify this attribute profile and to compare it with those of the materials, in order to find the one that comes closest. The aim of this work is to demonstrate the feasibility of characterizing a mini turbine made of 3D printed fiber-filled composite material by the process of additive manufacturing, then compare the performance of the alloy turbine with the composite turbine according to the results of the simulation by Abaqus software.Keywords: additive manufacturing, composite materials, design, 3D printer, turbine
Procedia PDF Downloads 1347060 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 1067059 Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain
Authors: Madiha El Awamie, Catherine Rees
Abstract:
Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of Glycyrrhiza glabra (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis. The Gram-negative bacteria tested include Pseudomonas aeruginosa, Escherichia coli and Salmonella typhimurium but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml-1 was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of Listeria transformed with the bioluminescence genes luxABCDE indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml-1 of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane.Keywords: antibacterial activity, bioluminescence, Glycyrrhiza glabra, natural preservative
Procedia PDF Downloads 3407058 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry
Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati
Abstract:
One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.Keywords: nanofabrication, cement replacement materials, activation, concrete
Procedia PDF Downloads 6137057 Prevalence of Plastic Use in Building and Construction: An Analysis of 250 Common Building Materials
Authors: Teresa McGrath, Ryan Johnson, Rebecca Stamm, Cassidy Clarity, Wei Yung Lui
Abstract:
Building and construction is the second largest plastic user behind packaging, accounting for 16% of plastic production. Building and construction is also by far the largest user of one of the most impactful plastics, polyvinyl chloride (aka vinyl or PVC), accounting for 69% of PVC production. Building materials also have an outsized contribution to plastic pollution, including microplastic pollution. Yet building materials are often overlooked in plastic waste and pollution reduction efforts. Habitable will present a plastics and petrochemical analysis of over 250 common building material types and demonstrate how changes to building material selection towards safer, renewable, and lower carbon materials can reduce global consumption of plastics and associated pollution.Keywords: building materials, fenceline communities, microplastics, safer alternatives, embodied carbon, life cycle analysis, petrochemicals, green chemistry
Procedia PDF Downloads 237056 Phytochemical Screening and Antimicrobial Activity of Limeum indicum and Euphorbia granulata
Authors: Noshaba Dilbar, Hina Ashraf
Abstract:
Medicinal plants are considered as rich source of ingredients which can be used in drug development and synthesis. Moreover, these plants play a vital role in the development of human culture of using ayurvedic medicines around the whole world. Among all plants, dessert plants are being proved as effective source of ayurvedic medicines and remedy against many diseases. Considering the fact, two plant species Limium indicum and Euphorbia granulata were taken from Cholistan dessert of Bahawalpur, Pakistan. Firstly, phytochemical screening was done by making dry and fresh plant extracts in five different solvents i.e Petroleum ether, benzene, chloroform, ethanol and methanol. Standard confirmation tests for all compounds were applied for analysis. Results revealed the presence of high range of bioactive compounds such as alakaloids, terpenoids, glycosides, steroids, flavonoids, saponins, phytosterols, oxalic acid, anthocyanin and quinone in both plants. Best results were obtained by methanolic, chloroform and petroleum ether extracts and methanolic, ethanolic and benzene extracts of Limium indicum and Euphorbia granulate respectively. Considering the results, methanolic extracts of both plants were further analysed for antibacterial activity. Plants were analysed against four pathogens including Escherchia coli, Proteus vulgaris, Klebsiella pneumonia and Pseudomonas aruginosa using disc diffusion method. Limium indicum showed highly significant activity against all pathogens while Euphorbia granulata showed significant activity against Klebsiella pneumonia and Proteus vulgaris but lesser against Escherchia coli and Pseudomonas aruginosa. MIC of extracts against each positive bacterium was calculated and recorded. Present plants can be considered for making useful drugs but further studies are needed to isolate active agents from plant extracts for drug development.Keywords: antibacterial activity, Euphorbia granulata, Limium indicum, medicinal plants, phytochemical screening
Procedia PDF Downloads 1177055 Characterization of 3D Printed Re-Entrant Chiral Auxetic Geometries
Authors: Tatheer Zahra
Abstract:
Auxetic materials have counteractive properties due to re-entrant geometry that enables them to possess Negative Poisson’s Ratio (NPR). These materials have better energy absorbing and shock resistance capabilities as compared to conventional positive Poisson’s ratio materials. The re-entrant geometry can be created through 3D printing for convenient application of these materials. This paper investigates the mechanical properties of 3D printed chiral auxetic geometries of various sizes. Small scale samples were printed using an ordinary 3D printer and were tested under compression and tension to ascertain their strength and deformation characteristics. A maximum NPR of -9 was obtained under compression and tension. The re-entrant chiral cell size has been shown to affect the mechanical properties of the re-entrant chiral auxetics.Keywords: auxetic materials, 3D printing, Negative Poisson’s Ratio, re-entrant chiral auxetics
Procedia PDF Downloads 1227054 Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials
Authors: Yusuf Emirov, Abdullatif Hakami, Prasanta K Biswas, Elias K Stefanakos, Sesha S Srinivasan
Abstract:
This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles.Keywords: core-shell thermochromic materials, core-shell microstructure formation, thermal and color chromic behavior of core-shell microcapsules, development micro-capsulated thermochromic materials
Procedia PDF Downloads 1587053 CICAP: Promising Wound Healing Gel from Bee Products and Medicinal Plants
Authors: Laïd Boukraâ
Abstract:
Complementary and Alternative Medicine is an inclusive term that describes treatments, therapies, and modalities that are not accepted as components of mainstream education or practice, but that are performed on patients by some practitioners. While these treatments and therapies often form part of post-graduate education, study and writing, they are generally viewed as alternatives or complementary to more universally accepted treatments. Ancient civilizations used bee products and medicinal plants, but modern civilization and ‘education’ have seriously lessened our natural instinctive ability and capability. Despite the fact that the modern Western establishment appears to like to relegate apitherapy and aromatherapy to the status of 'folklore' or 'old wives' tales', they contain a vast spread of pharmacologically-active ingredients and each one has its own unique combination and properties. They are classified in modern herbal medicine according to their spheres of action. Bee products and medicinal plants are well-known natural product for their healing properties and their increasing popularity recently as they are widely used in wound healing. Honey not only has antibacterial properties which can help as an antibacterial agent but also has chemical properties which may further help in the wound healing process. A formulation with honey as its main component was produced into a honey gel. This new formulation has enhanced texture and is more user friendly for usage as well. This new formulation would be better than other formulas as it is hundred percent consisting of natural products and has been made into a better formulation. In vitro assay, animal model study and clinical trials have shown the effectiveness of LEADERMAX for the treatment of diabetic foot, burns, leg ulcer and bed sores. This one hundred percent natural product could be the best alternative to conventional products for wound and burn management. The advantages of the formulation are: 100% natural, affordable, easy to use, strong power of absorption, dry surface on the wound making a film, will not stick to the wound bed; helps relieve wound pain, inflammation, edema and bruising while improving comfort.Keywords: bed sore bee products, burns, diabetic foot, medicinal plants, leg ulcer, wounds
Procedia PDF Downloads 3377052 Determination of the Oxidative Potential of Organic Materials: Method Development
Authors: Jui Afrin, Akhtarul Islam
Abstract:
In this paper, the solution of glucose, yeast and glucose yeast mixture are being used as sample solution for determining the chemical oxygen demand (COD). In general COD determination method used to determine the different rang of oxidative potential. But in this work has shown to determine the definite oxidative potential for different concentration for known COD value and wanted to see the difference between experimental value and the theoretical value for evaluating the method drawbacks. In this study, made the values of oxidative potential like 400 mg/L, 500 mg/L, 600 mg/L, 700 mg/L and 800mg/L for various sample solutions and determined the oxidative potential according to our developed method. Plotting the experimental COD values vs. sample solutions of various concentrations in mg/L to draw the curve. From these curves see that the curves for glucose solution is not linear; its deviate from linearity for the lower concentration and the reason for this deviation is unknown. If these drawback can be removed this method can be effectively used to determine Oxidative Potential of Industrial wastewater (such as: Leather industry wastewater, Municipal wastewater, Food industry wastewater, Textile wastewater, Pharmaceuticals waste water) that’s why more experiment and study required.Keywords: bod (biological oxygen demand), cod (chemical oxygen demand), oxidative potential, titration, waste water, development
Procedia PDF Downloads 2297051 Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials
Authors: Mahan Qwamizadeh, Kun Zhou, Zuoqi Zhang, Yong Wei Zhang
Abstract:
Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories.Keywords: load-bearing biological materials, nanostructure, staggered structure, stress wave decay
Procedia PDF Downloads 4577050 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018
Authors: Jasvinder Singh, Manjinder Singh
Abstract:
Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness
Procedia PDF Downloads 5387049 Forensic Investigation Into the Variation of Geological Properties of Soils Bintulu, Sarawak
Authors: Jaithish John
Abstract:
In this paper a brief overview is provided of the developments in interdisciplinary knowledge exchange with use of soil and geological (earth) materials in the search for evidence. The aim is to provide background information on the role and value of understanding ‘earth materials’ from the crime scene through to microscopic scale investigations to support law enforcement agencies in solving criminal and environmental concerns and investigations. This involves the sampling, analysis, interpretation and explanation presentation of all these evidences. In this context, field and laboratory methods are highlighted for the controlled / referenced sample, alibi sample and questioned sample. The aim of forensic analyses of earth materials is to associate these samples taken from a questioned source to determine if there are similar and outstanding characteristics features of earth materials crucial to support the investigation to the questioned earth materials and compare it to the controlled / referenced sample and alibi samples.Keywords: soil, texture, grain, microscopy
Procedia PDF Downloads 847048 The Need for the Utilization of Instructional Materials on the Teaching and Learning of Agricultural Science Education in Developing Countries
Authors: Ogoh Andrew Enokela
Abstract:
This paper dwelt on the need for the utilization of instructional materials with highlights on the type of instructional materials, selection, uses and their importance on the learning and teaching of Agricultural Science Education in developing countries. It further discussed the concept of improvisation with some recommendation in terms of availability, utilization on the teaching and learning of Agricultural Science Education.Keywords: instructional materials, agricultural science education, improvisation, teaching and learning
Procedia PDF Downloads 3227047 Valorization of Waste and By-products for Protein Extraction and Functional Properties
Authors: Lorena Coelho, David Ramada, Catarina Nobre, Joaquim Gaião, Juliana Duarte
Abstract:
The development of processes that allows the valorization of waste and by-products generated by industries is crucial to promote symbiotic relationships between different sectors and is mandatory to “close the loop” in the circular economy paradigm. In recent years, by-products and waste from agro-food and forestry sector have attracted attention due to their potential application and technical characteristics. The extraction of bio-based active compounds to be reused is in line with the circular bioeconomy concept trends, combining the use of renewable resources with the process’s circularity, aiming the waste reduction and encouraging reuse and recycling. Among different types of bio-based materials, which are being explored and can be extracted, proteins fractions are becoming an attractive new raw material. Within this context, BioTrace4Leather project, a collaboration between two Technological Centres – CeNTI and CTIC, and a company of Tanning and Finishing of Leather – Curtumes Aveneda, aims to develop innovative and biologically sustainable solutions for leather industry and accomplish the market circularity trends. Specifically, it aims to the valorisation of waste and by-products from the tannery industry through proteins extraction and the development of an innovative and biologically sustainable materials. The achieved results show that keratin, gelatine, and collagen fractions can be successfully extracted from hair and leather bovine waste. These products could be reintegrated into the industrial manufacturing process to attain innovative and functional textile and leather substrates. ACKNOWLEDGEMENT This work has been developed under BioTrace4Leather scope, a project co-funded by Operational Program for Competitiveness and Internationalization (COMPETE) of PORTUGAL2020, through the European Regional Development Fund (ERDF), under grant agreement Nº POCI-01-0247-FEDER-039867.Keywords: leather by-products, circular economy, sustainability, protein fractions
Procedia PDF Downloads 1587046 Environmental Limits of Using Newly Developed Progressive Polymer Protection and Repair Systems
Authors: Jana Hodna, Bozena Vacenovska, Vit Petranek
Abstract:
The paper is focused on the identification of limiting environmental factors of individual industrial floors on which newly developed polymer protection and repair systems with the use of secondary raw materials will be used. These mainly include floors with extreme stresses and special requirements for materials used. In relation to the environment of a particular industrial floor, it is necessary to ensure, for example, chemical stability, resistance to higher temperatures, resistance to higher mechanical stress, etc. for developed materials, which is reflected in the demands for the developed material systems. The paper describes individual environments and, in relation to them, also requirements for individual components of the developed materials and for the developed materials as a whole.Keywords: limits, environment, polymer, industrial floors, recycling, secondary raw material, protective system
Procedia PDF Downloads 2707045 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications
Authors: Mahmoud Elrouby
Abstract:
Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.Keywords: electrodeposition, metal chacogenides, semiconductors, applications
Procedia PDF Downloads 2987044 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres
Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif
Abstract:
With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite
Procedia PDF Downloads 2557043 Recycling Construction Waste Materials to Reduce the Environmental Pollutants
Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb
Abstract:
There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.Keywords: civil engineering, environment, recycling, construction waste
Procedia PDF Downloads 304