Search results for: activate carbon
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3153

Search results for: activate carbon

2553 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: DST, stainless steel, carbon steel, ABAQUS, straigh columns, tapered columns

Procedia PDF Downloads 360
2552 Fluorescence Effect of Carbon Dots Modified with Silver Nanoparticles

Authors: Anna Piasek, Anna Szymkiewicz, Gabriela Wiktor, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

Carbon dots (CDs) have great potential for application in many fields of science. They are characterized by fluorescent properties that can be manipulated. The nanomaterial has many advantages in addition to its unique properties. CDs may be obtained easily, and they undergo surface functionalization in a simple way. In addition, there is a wide range of raw materials that can be used for their synthesis. An interesting possibility is the use of numerous waste materials of natural origin. In the research presented here, the synthesis of CDs was carried out according to the principles of Green chemistry. Beet molasses was used as a natural raw material. It has a high sugar content. This makes it an excellent high-carbon precursor for obtaining CDs. To increase the fluorescence effect, we modified the surface of CDs with silver (Ag-CDs) nanoparticles. The process of obtaining CQD was based on the hydrothermal method by applying microwave radiation. Silver nanoparticles were formed via the chemical reduction method. The synthesis plans were performed on the Design of the Experimental method (DoE). Variable process parameters such as concentration of beet molasses, temperature and concentration of nanosilver were used in these syntheses. They affected the obtained properties and particle parameters. The Ag-CDs were analyzed by UV-vis spectroscopy. The fluorescence properties and selection of the appropriate excitation light wavelength were performed by spectrofluorimetry. Particle sizes were checked using the DLS method. The influence of the input parameters on the obtained results was also studied.

Keywords: fluorescence, modification, nanosilver, molasses, Green chemistry, carbon dots

Procedia PDF Downloads 59
2551 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 83
2550 Eresa, Hospital General Universitario de Elche

Authors: Ashish Kumar Singh, Mehak Gulati, Neelam Verma

Abstract:

Arginine majorly acts as a substrate for the enzyme nitric oxide synthase (NOS) for the production of nitric oxide, a strong vasodilator. Current study demonstrated a novel amperometric approach for estimation of arginine using nitric oxide synthase. The enzyme was co-immobilized in carbon paste electrode with NADP+, FAD and BH4 as cofactors. The detection principle of the biosensor is enzyme NOS catalyzes the conversion of arginine into nitric oxide. The developed biosensor could able to detect up to 10-9M of arginine. The oxidation peak of NO was observed at 0.65V. The developed arginine biosensor was used to monitor arginine content in fruit juices.

Keywords: arginine, biosensor, carbon paste elctrode, nitric oxide

Procedia PDF Downloads 396
2549 Corrosion Control of Carbon Steel Surface by Phosphonic Acid Nano-Layers

Authors: T. Abohalkuma, J. Telegdi

Abstract:

Preparation, characterization, and application of self-assembled monolayers (SAM) formed by fluorophosphonic and undecenyl phosphonic acids on carbon steel surfaces as anticorrosive nanocoatings were demonstrated. The anticorrosive efficacy of these SAM layers was followed by atomic force microscopy, as the change in the surface morphology caused by layer deposition and corrosion processes was monitored. The corrosion process was determined by electrochemical potentiodynamic polarization, whereas the surface wettability of the carbon steel samples was tested with the use of static and dynamic contact angle measurements. Results showed that both chemicals produced good protection against corrosion as they performed as anodic inhibitors, especially with increasing the time of layer formation, which results in a more compact molecular film. According to the atomic force microscope (AFM) images, the fluoro-phosphonic acid self-assembled molecular layer can control the general as well as the pitting corrosion, but the SAM layers of the undecenyl-phosphonic acid cannot inhibit the pitting corrosion. The AFM and the contact angle measurements confirmed the results achieved by electrochemical measurements.

Keywords: nanolayers, corrosion, phosphonic acids, coatings

Procedia PDF Downloads 155
2548 Morphology Feature of Nanostructure Bainitic Steel after Tempering Treatment

Authors: Chih Yuan Chen, Chien Chon Chen, Jin-Shyong Lin

Abstract:

The microstructure characterization of tempered nanocrystalline bainitic steel is investigated in the present study. It is found that two types of plastic relaxation, dislocation debris and nanotwin, occurs in the displacive transformation due to relatively low transformation temperature and high carbon content. Because most carbon atoms trap in the dislocation, high dislocation density can be sustained during the tempering process. More carbides only can be found in the high tempered temperature due to intense recovery progression.

Keywords: nanostructure bainitic steel, tempered, TEM, nano-twin, dislocation debris, accommodation

Procedia PDF Downloads 510
2547 Relation of Black Carbon Aerosols and Atmospheric Boundary Layer Height during Wet Removal Processes over a Semi Urban Location

Authors: M. Ashok Williams, T. V. Lakshmi Kumar

Abstract:

The life cycle of Black carbon aerosols depends on their physical removal processes from the atmosphere during the precipitation events. Black Carbon (BC) mass concentration has been analysed during rainy and non-rainy days of Northeast (NE) Monsoon months of the years 2015 and 2017 over a semi-urban environment near Chennai (12.81 N, 80.03 E), located on the east coast of India. BC, measured using an Aethalometer (AE-31) has been related to the atmospheric boundary layer height (BLH) obtained from the ERA Interim Reanalysis data during rainy and non-rainy days on monthly mean basis to understand the wet removal of BC over the study location. The study reveals that boundary layer height has a profound effect on the BC concentration on rainy days and non rainy days. It is found that the BC concentration in the night time is lower on rainy days compared to non rainy days owing to wash out on rainy days and the boundary layer height remaining nearly the same on rainy and non rainy days. On the other hand, in the daytime, it is found that the BC concentration remains nearly the same on rainy and non rainy days whereas the boundary layer height is lower on rainy days compared to non rainy days. This reveals that in daytime, lower boundary layer heights compensate for the wet removal effect on BC concentration on rainy days. A quantitative relation is found between the product of BC and BLH during rainy and non-rainy days which indicates the extent of redistribution of BC during non-rainy days when compared to the rainy days. Further work on the wet removal processes of the BC is in progress considering the individual rain events and other related parameters like wind speed.

Keywords: black carbon aerosols, atmospheric boundary layer, scavenging processes, tropical coastal location

Procedia PDF Downloads 134
2546 Fabrication of Functionalized Multi-Walled Carbon-Nanotubes Paper Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid

Authors: Tze-Sian Pui, Aung Than, Song-Wei Loo, Yuan-Li Hoe

Abstract:

A paper-based electrode devised from an array of carboxylated multi-walled carbon nanotubes (MWNTs) and poly (diallyldimethylammonium chloride) (PDDA) has been successfully developed for the simultaneous detection of dopamine (DA) and ascorbic acid (AA) in 0.1 M phosphate buffer solution (PBS). The PDDA/MWNTs electrodes were fabricated by allowing PDDA to absorb onto the surface of carboxylated MWNTs, followed by drop-casting the resulting mixture onto a paper. Cyclic voltammetry performed using 5 mM [Fe(CN)₆]³⁻/⁴⁻ as the redox marker showed that the PDDA/MWNTs electrode has higher redox activity compared to non-functionalized carboxylated MWNT electrode. Differential pulse voltammetry was conducted with DA concentration ranging from 2 µM to 500 µM in the presence of 1 mM AA. The distinctive potential of 0.156 and -0.068 V (vs. Ag/AgCl) measured on the surface of the PDDA/MWNTs electrode revealed that both DA and AA were oxidized. The detection limit of DA was estimated to be 0.8 µM. This nanocomposite paper-based electrode has great potential for future applications in bioanalysis and biomedicine.

Keywords: dopamine, differential pulse voltammetry, paper sensor, carbon nanotube

Procedia PDF Downloads 120
2545 Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract

Authors: Hadjer Didouh, Mohammed Hadj Melliani, Izzeddine Sameut Bouhaik

Abstract:

Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel.

Keywords: attachment, bio-corrosion, biofilm, metal/bacteria interface

Procedia PDF Downloads 50
2544 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons

Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul

Abstract:

Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.

Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment

Procedia PDF Downloads 129
2543 Simulation of 'Net' Nutrients Removal by Green Mussel (Perna viridis) in Estuarine and Coastal Areas

Authors: Chayarat Tantanasarit, Sandhya Babel

Abstract:

Green mussels (Perna viridis) can effectively remove nutrients from seawater through their filtration process. This study aims to estimate 'net' nutrient removal rate by green mussel through calculation of nutrient uptake and release. Nutrients (carbon, nitrogen, and phosphorus) uptake was calculated based on the mussel filtration rate. Nutrient release was evaluated from carbon, nitrogen, and phosphorus released as mussel feces. By subtracting nutrient release from nutrient uptake, net nutrient removal by green mussel can be found as 3302, 380 and 124 mg/year/indv. Mass balance model was employed to simulate nutrient removal in actual green mussel farming conditions. Mussels farm area, seawater flow rate and amount of mussels were considered in the model. Results show that although larger quantity of green mussel farms lead to higher nutrient removal rate, the maximum green mussel cultivation should be taken into consideration as nutrients released through mussel excretion can strongly affect marine ecosystem.

Keywords: carbon, ecretion, filtration, nitrogen, phosphorus

Procedia PDF Downloads 378
2542 Utilization of Low-Cost Adsorbent Fly Ash for the Removal of Phenol from Water

Authors: Ihsanullah, Muataz Ali Atieh

Abstract:

In this study, a low-cost adsorbent carbon fly ash (CFA) was used for the removal of Phenol from the water. The adsorbent characteristics were observed by the Thermogravimetric Analysis (TGA), BET specific surface area analyzer, Zeta Potential and Field Emission Scanning Electron Microscopy (FE-SEM). The effect of pH, agitation speed, contact time, adsorbent dosage, and initial concentration of phenol were studied on the removal of phenol from the water. The optimum values of these variables for maximum removal of phenol were also determined. Both Freundlich and Langmuir isotherm models were successfully applied to describe the experimental data. Results showed that low-cost adsorbent phenol can be successfully applied for the removal of Phenol from the water.

Keywords: phenol, fly ash, adsorption, carbon adsorbents

Procedia PDF Downloads 301
2541 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 119
2540 Sensitive Determination of Copper(II) by Square Wave Anodic Stripping Voltammetry with Tetracarbonylmolybdenum(0) Multiwalled Carbon Nanotube Paste Electrode

Authors: Illyas Md Isa, Mohamad Idris Saidin, Mustaffa Ahmad, Norhayati Hashim

Abstract:

A highly selective and sensitive carbon paste electrode modified with multiwall carbon nanotubes and 2,6–diacetylpyridine-di-(1R)–(-)–fenchone diazine tetracarbonylmolybdenum(0) complex was used for determination of trace amounts of Cu(II) using square wave anodic stripping voltammetry (SWASV). The influences of experimental variables on the proposed electrode such as pH, supporting electrolyte, preconcentration potential and time, and square wave parameters were investigated. Under optimal conditions, the proposed electrode showed a linear relationship with concentration in the range of 1.0 × 10–10 to 1.0 × 10– 6 M Cu(II) with a limit of detection 8.0 × 10–11 M. The relative standard deviation (n = 5) for a solution containing 1.0 × 10– 6 M of Cu(II) was 0.036. The presence of various cations (in 10 and 100-folds concentration) did not interfere. Electrochemical impedance spectroscopy (EIS) showed that the charge transfer at the electrode-solution interface was favourable. The proposed electrode was applied for the determination of Cu(II) in several water samples. Results agreed very well with those obtained by inductively coupled plasma-optical emission spectrometry. The modified electrode was then proposed as an alternative for determination of Cu(II).

Keywords: chemically modified electrode, Cu(II), square wave anodic stripping voltammetry, tetracarbonylmolybdenum(0)

Procedia PDF Downloads 250
2539 Recovery of Boron from Industrial Wastewater by Chemical Oxo-Precipitation

Authors: Yao-Hui Huang, Ming-Chun Yen, Jui-Yen Lin, Yu-Jen Shih

Abstract:

This work investigated the reclamation of boron in industrial wastewaters by a chemical oxo-precipitation (COP) technique at room temperature. In COP, the boric acid was pretreated with H₂O₂, yielding various perborate anions. Afterwards, calcium chloride was used to efficiently remove boron through precipitation of calcium perborate. The important factors included reacted pH and the molar ratio of [Ca]/[B]. Under conditions of pH 11 and [Ca]/[B] of 1, the boron concentration could be reduced immediately from 600 ppm to 50 ppm in 10 minutes. The boron removal was enhanced with a higher [Ca]/[B], which further reduced boron to 20 ppm in 10 minutes. Nevertheless, the dissolution of carbon dioxide potentially affected the efficacy of COP and increased the boron concentration after 10 minutes.

Keywords: chemical oxo-precipitation, boron, carbon dioxide, hydrogen peroxide

Procedia PDF Downloads 262
2538 Hepatoprotective Activity of Sharbat Deenar, against Carbon Tetrachloride-Induced Hepatotoxicity in Rats

Authors: Nazmul Huda, Ashik Mosaddik, Abdul Awal, Shafiqur Rahman, Rukhsana Shaheen, Mustofa Nabi

Abstract:

Polyherbal formulation Sharbat Deenar is a very popular unani medicine in Bangladesh. It is usually used for different kinds of liver disorders. In absence of reliable and inadequate hepatoprotective agents in conventional medicine, the herbal preparations are preferred for liver diseases. The present study was designed to evaluate the hepatoprotective activity of Sharbat Deenar on carbon tetrachloride (CCl4) induced hepatotoxicity in male Long-Evans albino rats. Group I served as normal control and received neither formulation nor carbon tetrachloride. Group II received only CCl4 1mL/kg body weight of rat intraperitoneally for consecutive 14 days. Group III received CCl4 1mL/kg body weight of rat intraperitoneally and Silymarin, in dose 50mg/kg body weight of rat orally. Group IV received CCl4 1mL/kg body weight of rat intraperitoneally and Sharbat Deenar 1mL/kg body weight of rat for the same 14 consecutive days. At the end of the study, hepatoprotective activity was evaluated by the levels of total bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Histopathological study of rat liver was also carried out. The results showed that polyherbal formulation Sharbat Deenar exhibited a significant hepatoprotective effect. Such an outcome seems to be the synergistic effect of all ingredients of tested herbal formulation. Although this study suggests that Sharbat Deenar may be used to cure or minimize various liver diseases, it needs further study to attain the clarity of mechanism and safety.

Keywords: polyherbal formulation, sharbat deenar, carbon tetrachloride, silymarin, hepatoprotective

Procedia PDF Downloads 529
2537 Effects of Soil Neutron Irradiation in Soil Carbon Neutron Gamma Analysis

Authors: Aleksandr Kavetskiy, Galina Yakubova, Nikolay Sargsyan, Stephen A. Prior, H. Allen Torbert

Abstract:

The carbon sequestration question of modern times requires the development of an in-situ method of measuring soil carbon over large landmasses. Traditional chemical analytical methods used to evaluate large land areas require extensive soil sampling prior to processing for laboratory analysis; collectively, this is labor-intensive and time-consuming. An alternative method is to apply nuclear physics analysis, primarily in the form of pulsed fast-thermal neutron-gamma soil carbon analysis. This method is based on measuring the gamma-ray response that appears upon neutron irradiation of soil. Specific gamma lines with energies of 4.438 MeV appearing from neutron irradiation can be attributed to soil carbon nuclei. Based on measuring gamma line intensity, assessments of soil carbon concentration can be made. This method can be done directly in the field using a specially developed pulsed fast-thermal neutron-gamma system (PFTNA system). This system conducts in-situ analysis in a scanning mode coupled with GPS, which provides soil carbon concentration and distribution over large fields. The system has radiation shielding to minimize the dose rate (within radiation safety guidelines) for safe operator usage. Questions concerning the effect of neutron irradiation on soil health will be addressed. Information regarding absorbed neutron and gamma dose received by soil and its distribution with depth will be discussed in this study. This information was generated based on Monte-Carlo simulations (MCNP6.2 code) of neutron and gamma propagation in soil. Received data were used for the analysis of possible induced irradiation effects. The physical, chemical and biological effects of neutron soil irradiation were considered. From a physical aspect, we considered neutron (produced by the PFTNA system) induction of new isotopes and estimated the possibility of increasing the post-irradiation gamma background by comparisons to the natural background. An insignificant increase in gamma background appeared immediately after irradiation but returned to original values after several minutes due to the decay of short-lived new isotopes. From a chemical aspect, possible radiolysis of water (presented in soil) was considered. Based on stimulations of radiolysis of water, we concluded that the gamma dose rate used cannot produce gamma rays of notable rates. Possible effects of neutron irradiation (by the PFTNA system) on soil biota were also assessed experimentally. No notable changes were noted at the taxonomic level, nor was functional soil diversity affected. Our assessment suggested that the use of a PFTNA system with a neutron flux of 1e7 n/s for soil carbon analysis does not notably affect soil properties or soil health.

Keywords: carbon sequestration, neutron gamma analysis, radiation effect on soil, Monte-Carlo simulation

Procedia PDF Downloads 113
2536 Thermal Method for Testing Small Chemisorbent Samples on the Base of Potassium Superoxide

Authors: Pavel V. Balabanov, Daria A. Liubimova, Aleksandr P. Savenkov

Abstract:

The increase of technogenic and natural accidents, accompanied by air pollution, for example, by combustion products, leads to the necessity of respiratory protection. This work is devoted to the development of a calorimetric method and a device which allow investigating quickly the kinetics of carbon dioxide sorption by chemo-sorbents on the base of potassium superoxide in order to assess the protective properties of respiratory protective closed-circuit apparatus. The features of the traditional approach for determining the sorption properties in a thin layer of chemo-sorbent are described, as well as methods and devices, which can be used for the sorption kinetics study. The authors of the paper developed an approach (as opposed to the traditional approach) based on the power measurement of internal heat sources in the chemo-sorbent layer. The emergence of the heat sources is a result of the exothermic reaction of carbon dioxide sorption. This approach eliminates the necessity of chemical analysis of samples and can significantly reduce the time and material expenses during chemo-sorbents testing. The error of determining the volume fraction of adsorbed carbon dioxide by the developed method does not exceed 12%. Taking into account the efficiency of the method, we consider that it is a good alternative to traditional methods of chemical analysis under the assessment of the protection sorbents quality.

Keywords: carbon dioxide chemisorption, exothermic reaction, internal heat sources, respiratory protective apparatus

Procedia PDF Downloads 390
2535 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide

Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović

Abstract:

Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.

Keywords: ANN regression, GC/MS, Satureja montana, terpenes

Procedia PDF Downloads 430
2534 Rotterdam in Transition: A Design Case for a Low-Carbon Transport Node in Lombardijen

Authors: Halina Veloso e Zarate, Manuela Triggianese

Abstract:

The urban challenges posed by rapid population growth, climate adaptation, and sustainable living have compelled Dutch cities to reimagine their built environment and transportation systems. As a pivotal contributor to CO₂ emissions, the transportation sector in the Netherlands demands innovative solutions for transitioning to low-carbon mobility. This study investigates the potential of transit oriented development (TOD) as a strategy for achieving carbon reduction and sustainable urban transformation. Focusing on the Lombardijen station area in Rotterdam, which is targeted for significant densification, this paper presents a design-oriented exploration of a low-carbon transport node. By employing a research-by-design methodology, this study delves into multifaceted factors and scales, aiming to propose future scenarios for Lombardijen. Drawing from a synthesis of existing literature, applied research, and practical insights, a robust design framework emerges. To inform this framework, governmental data concerning the built environment and material embodied carbon are harnessed. However, the restricted access to crucial datasets, such as property ownership information from the cadastre and embodied carbon data from De Nationale Milieudatabase, underscores the need for improved data accessibility, especially during the concept design phase. The findings of this research contribute fundamental insights not only to the Lombardijen case but also to TOD studies across Rotterdam's 13 nodes and similar global contexts. Spatial data related to property ownership facilitated the identification of potential densification sites, underscoring its importance for informed urban design decisions. Additionally, the paper highlights the disparity between the essential role of embodied carbon data in environmental assessments for building permits and its limited accessibility due to proprietary barriers. Although this study lays the groundwork for sustainable urbanization through TOD-based design, it acknowledges an area of future research worthy of exploration: the socio-economic dimension. Given the complex socio-economic challenges inherent in the Lombardijen area, extending beyond spatial constraints, a comprehensive approach demands integration of mobility infrastructure expansion, land-use diversification, programmatic enhancements, and climate adaptation. While the paper adopts a TOD lens, it refrains from an in-depth examination of issues concerning equity and inclusivity, opening doors for subsequent research to address these aspects crucial for holistic urban development.

Keywords: Rotterdam zuid, transport oriented development, carbon emissions, low-carbon design, cross-scale design, data-supported design

Procedia PDF Downloads 60
2533 Effects of Medium Composition on the Production of Biomass and a Carbohydrate Isomerase by a Novel Strain of Lactobacillus

Authors: M. Miriam Hernández-Arroyo, Ivonne Caro-Gonzales, Miguel Ángel Plascencia-Espinosa, Sergio R. Trejo-Estrada

Abstract:

A large biodiversity of Lactobacillus strains has been detected in traditional foods and beverages from Mexico. A selected strain of Lactobacillus sp - PODI-20, used for the obtained from an artisanal fermented beverage was cultivated in different carbon sources in a complex medium, in order to define which carbon sourced induced more effectively the isomerization of arabinose by cell fractions obtained by fermentation. Four different carbon sources were tested in a medium containing peptone and yeast extract and mineral salts. Glucose, galactose, arabinose, and lactose were tested individually at three different concentrations: 3.5, 6, and 10% w/v. The biomass yield ranged from 1.72 to 17.6 g/L. The cell pellet was processed by mechanical homogenization. Both fractions, the cellular debris, and the lysis supernatant were tested for their ability to isomerize arabinose into ribulose. The highest yield of isomer was 12 % of isomerization in the supernatant fractions; whereas up to 9.3% was obtained by the use of cell debris. The isomerization of arabinose has great significance in the production of lactic acid by fermentation of complex carbohydrate hydrolysates.

Keywords: isomerase, tagatose, aguamiel, isomerization

Procedia PDF Downloads 320
2532 Mass-Transfer Processes of Textile Dyes Adsorption onto Food Waste Adsorbent

Authors: Amel Asselah, Nadia Chabli, Imane Haddad

Abstract:

The adsorption of methylene blue and congo red dyes in an aqueous solution, on a food waste adsorbent: potato peel, and on a commercial adsorbent: activated carbon powder, was investigated using batch experiments. The objective of this study is the valorization of potato peel by its application in the elimination of these dyes. A comparison of the adsorption efficiency with a commercial adsorbent was carried out. Characterization of the potato peel adsorbent was performed by scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy, Fourier transforms infrared spectroscopy, X-ray diffraction, and X-ray fluorescence. Various parameters were analyzed, in particular: the adsorbent mass, the initial dye concentration, the contact time, the pH, and the temperature. The results reveal that it is about 98% for methylene blue-potato peel, 84% for congo red-potato peel, 84% for methylene blue-activated carbon, and 66% for congo red-activated carbon. The kinetic data were modeled by different equations and revealed that the adsorption of textile dyes on adsorbents follows the model pseudo-second-order, and the particular extra diffusion governs the adsorption mechanism. It has been found that the adsorption process could be described by the Langmuir isotherm.

Keywords: bioadsorbent, waste valorization, adsorptio, textile dyes

Procedia PDF Downloads 67
2531 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 162
2530 Carbon Coated Yarn Supercapacitors: Parametric Study of Performance Output

Authors: Imtiaz Ahmed Khan, Sabu John, Sania Waqar, Lijing Wang, Mac Fergusson, Ilija Najdovski

Abstract:

Evolution of textiles, from its orthodox to more interactive role has stirred the researchers to uncover its application in numerous arenas. The idea of using textile based materials for wearable energy harvesting and storage devices have gained immense popularity. This is mainly due to textile comfort and flexibility features. In this work, nano-carbonous materials were infused on cellulosic fibers using caustic soda treatment. This paper presents the complete procedure of yarn supercapacitors fabrication process through dip coating technique and its characterization method. The main objective is to study, the effect of varying caustic soda concentration on mass loading of activated carbon on yarns and the related capacitance output of the designed yarn supercapacitor. Polyvinyl alcohol and Phosphoric acid were used as electrolyte in a two-electrode cell assembly to measure device electrochemical performance. The results show a promising increase in capacitance value using this technique.

Keywords: yarn supercapacitors, activated carbon, dip coating, caustic soda, electrolyte, electrochemical characterization

Procedia PDF Downloads 444
2529 Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants

Authors: A. Asselah, A. Khalfi, M. A.Toumi, A.Tazerouti

Abstract:

The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant.

Keywords: carbon steel, oilfield, corrosion, anionic surfactants

Procedia PDF Downloads 72
2528 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics

Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis

Abstract:

We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.

Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics

Procedia PDF Downloads 350
2527 Adsorption of Chlorinated Pesticides in Drinking Water by Carbon Nanotubes

Authors: Hacer Sule Gonul, Vedat Uyak

Abstract:

Intensive use of pesticides in agricultural activity causes mixing of these compounds into water sources with surface flow. Especially after the 1970s, a number of limitations imposed on the use of chlorinated pesticides that have a carcinogenic risk potential and regulatory limit have been established. These chlorinated pesticides discharge to water resources, transport in the water and land environment and accumulation in the human body through the food chain raises serious health concerns. Carbon nanotubes (CNTs) have attracted considerable attention from on all because of their excellent mechanical, electrical, and environmental characteristics. Due to CNT particles' high degree of hydrophobic surfaces, these nanoparticles play critical role in the removal of water contaminants of natural organic matters, pesticides and phenolic compounds in water sources. Health concerns associated with chlorinated pesticides requires the removal of such contaminants from aquatic environment. Although the use of aldrin and atrazine was restricted in our country, repatriation of illegal entry and widespread use of such chemicals in agricultural areas cause increases for the concentration of these chemicals in the water supply. In this study, the compounds of chlorinated pesticides such as aldrin and atrazine compounds would be tried to eliminate from drinking water with carbon nanotube adsorption method. Within this study, 2 different types of CNT would be used including single-wall (SWCNT) and multi-wall (MWCNT) carbon nanotubes. Adsorption isotherms within the scope of work, the parameters affecting the adsorption of chlorinated pesticides in water are considered as pH, contact time, CNT type, CNT dose and initial concentration of pesticides. As a result, under conditions of neutral pH conditions with MWCNT respectively for atrazine and aldrin obtained adsorption capacity of determined as 2.24 µg/mg ve 3.84 µg/mg. On the other hand, the determined adsorption capacity rates for SWCNT for aldrin and atrazine has identified as 3.91 µg/mg ve 3.92 µg/mg. After all, each type of pesticide that provides superior performance in relieving SWCNT particles has emerged.

Keywords: pesticide, drinking water, carbon nanotube, adsorption

Procedia PDF Downloads 150
2526 Heavy Oil Recovery with Chemical Viscosity-Reduction: An Innovative Low-Carbon and Low-Cost Technology

Authors: Lin Meng, Xi Lu, Haibo Wang, Yong Song, Lili Cao, Wenfang Song, Yong Hu

Abstract:

China has abundant heavy oil resources, and thermal recovery is the main recovery method for heavy oil reservoirs. However, high energy consumption, high carbon emission and high production costs make heavy oil thermal recovery unsustainable. It is urgent to explore a replacement for developing technology. A low Carbon and cost technology of heavy oil recovery, chemical viscosity-reduction in layer (CVRL), is developed by the petroleum exploration and development research institute of Sinopec via investigated mechanisms, synthesized products, and improved oil production technologies, as follows: (1) Proposed a cascade viscous mechanism of heavy oil. Asphaltene and resin grow from free molecules to associative structures further to bulk aggregations by π - π stacking and hydrogen bonding, which causes the high viscosity of heavy oil. (2) Aimed at breaking the π - π stacking and hydrogen bond of heavy oil, the copolymer of N-(3,4-dihydroxyphenethyl) acryl amide and 2-Acrylamido-2-methylpropane sulfonic acid was synthesized as a viscosity reducer. It achieves a viscosity reduction rate of>80% without shearing for heavy oil (viscosity < 50000 mPa‧s), of which fluidity is evidently improved in the layer. (3) Synthesized hydroxymethyl acrylamide-maleic acid-decanol ternary copolymer self-assembly plugging agent. The particle size is 0.1 μm-2 mm adjustable, and the volume is 10-500 times controllable, which can achieve the efficient transportation of viscosity reducer to enriched oil areas. CVRL has applied 400 wells until now, increasing oil production by 470000 tons, saving 81000 tons of standard coal, reducing CO2 emissions by 174000 tons, and reducing production costs by 60%. It promotes the transformation of heavy oil towards low energy consumption, low carbon emissions, and low-cost development.

Keywords: heavy oil, chemical viscosity-reduction, low carbon, viscosity reducer, plugging agent

Procedia PDF Downloads 53
2525 JENOSYS: Application of a Web-Based Online Energy Performance Reporting Tool for Government Buildings in Malaysia

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Faiz Fadzil, Mohd Yusof Aizad Mukhtar

Abstract:

One of the areas that present an opportunity to reduce the national carbon emission is the energy management of public buildings. To our present knowledge, there is no easy-to-use and centralized mechanism that enables the government to monitor the overall energy performance, as well as the carbon footprint, of Malaysia’s public buildings. Therefore, the Public Works Department Malaysia, or PWD, has developed a web-based energy performance reporting tool called JENOSYS (JKR Energy Online System), which incorporates a database of utility account numbers acquired from the utility service provider for analysis and reporting. For test case purposes, 23 buildings under PWD were selected and monitored for their monthly energy performance (in kWh), carbon emission reduction (in tCO₂eq) and utility cost (in MYR), against the baseline. This paper demonstrates the simplicity with which buildings without energy metering can be monitored centrally and the benefits that can be accrued by the government in terms of building energy disclosure and concludes with the recommendation of expanding the system to all the public buildings in Malaysia.

Keywords: energy-efficient buildings, energy management systems, government buildings, JENOSYS

Procedia PDF Downloads 148
2524 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada

Authors: Clince Rodrigues

Abstract:

Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.

Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban

Procedia PDF Downloads 133