Search results for: RP/SP fusion data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25438

Search results for: RP/SP fusion data

24838 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 349
24837 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 527
24836 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 560
24835 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 75
24834 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 94
24833 High Temperature Properties of Diffusion Brazed Joints of in 939 Ni-Base Superalloy

Authors: Hyunki Kang, Hi Won Jeong

Abstract:

The gas turbine operates for a long period of time under harsh, cyclic conditions of high temperature and pressure, where high turbine inlet temperature (TIT) can range from 1273 to 1873K. Therefore, Ni-base superalloys such as IN738, IN939, Rene 45, Rene 71, Rene 80, Mar M 247, CM 247, and CMSX-4 with excellent mechanical properties and resistance to creep, corrosion and oxidation at high temperatures are indeed used. Among the alloying additions for these alloys, aluminum (Al) and titanium (Ti) form gamma prime and enhance the high-temperature properties. However, when crack-damaged high-temperature turbine components such as blade and vane are repaired by fusion welding, they cause cracks. For example, when arc welding is applied to certain superalloys that contain Al and Ti with more than 3 wt.% and T3.5 wt%, respectively, such as IN738, IN939, Rene 80, Mar M 247, and CM 247, aging cracks occur. Therefore, repair technologies using diffusion brazing, which has less heat input into the base material, are being developed. Analysis of microstructural evolution of the brazed joints with a base metal of IN 939 Ni-base superalloy using brazing different filler metals was also carried out using X-ray diffraction, OEM, SEM-EDS, and EPMA. Stress rupture and high-temperature tensile strength properties were also measured to analyze the effects of different brazing heat cycles. The boron amount in the diffusion-affected zone (DAZ) was decreased towards the base metal and the formation of borides at grain boundaries was detected through EPMA.

Keywords: gas turbine, diffusion brazing, superalloy, gas turbine repair

Procedia PDF Downloads 40
24832 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme

Procedia PDF Downloads 379
24831 Protecting Privacy and Data Security in Online Business

Authors: Bilquis Ferdousi

Abstract:

With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.

Keywords: privacy, data security, legislation, online business

Procedia PDF Downloads 106
24830 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm

Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan

Abstract:

This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.

Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data

Procedia PDF Downloads 221
24829 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 382
24828 The Taste of Macau: An Exploratory Study of Destination Food Image

Authors: Jianlun Zhang, Christine Lim

Abstract:

Local food is one of the most attractive elements to tourists. The role of local cuisine in destination branding is very important because it is the distinctive identity that helps tourists remember the destination. The objectives of this study are: (1) Test the direct relation between the cognitive image of destination food and tourists’ intention to eat local food. (2) Examine the mediating effect of tourists’ desire to try destination food on the relationship between the cognitive image of local food and tourists’ intention to eat destination food. (3) Study the moderating effect of tourists’ perceived difficulties in finding local food on the relationship between tourists’ desire to try destination food and tourists’ intention to eat local food. To achieve the goals of this study, Macanese cuisine is selected as the destination food. Macau is located in Southeastern China and is a former colonial city of Portugal. The taste and texture of Macanese cuisine are unique because it is a fusion of cuisine from many countries and regions of mainland China. As people travel to seek authentically exotic experience, it is important to investigate if the food image of Macau leaves a good impression on tourists and motivate them to try local cuisine. A total of 449 Chinese tourists were involved in this study. To analyze the data collected, partial least square-structural equation modelling (PLS-SEM) technique is employed. Results suggest that the cognitive image of Macanese cuisine has a direct effect on tourists’ intention to eat Macanese cuisine. Tourists’ desire to try Macanese cuisine mediates the cognitive image-intention relationship. Tourists’ perceived difficulty of finding Macanese cuisine moderates the desire-intention relationship. The lower tourists’ perceived difficulty in finding Macanese cuisine is, the stronger the desire-intention relationship it will be. There are several practical implications of this study. First, the government tourism website can develop an authentic storyline about the evolvement of local cuisine, which provides an opportunity for tourists to taste the history of the destination and create a novel experience for them. Second, the government should consider the development of food events, restaurants, and hawker businesses. Third, to lower tourists’ perceived difficulty in finding local cuisine, there should be locations of restaurants and hawker stalls with clear instructions for finding them on the websites of the government tourism office, popular tourism sites, and public transportation stations in the destination. Fourth, in the post-COVID-19 era, travel risk will be a major concern for tourists. Therefore, when promoting local food, the government tourism website should post images that show food safety and hygiene.

Keywords: cognitive image of destination food, desire to try destination food, intention to eat food in the destination, perceived difficulties of finding local cuisine, PLS-SEM

Procedia PDF Downloads 189
24827 Cognitive Science Based Scheduling in Grid Environment

Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya

Abstract:

Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.

Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence

Procedia PDF Downloads 394
24826 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 138
24825 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption

Authors: Darusalam, Jorish Hulstijn, Marijn Janssen

Abstract:

Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.

Keywords: open data, accountability, anti-corruption, framework

Procedia PDF Downloads 336
24824 Effects of in silico (Virtual Lab) And in vitro (inside the Classroom) Labs in the Academic Performance of Senior High School Students in General Biology

Authors: Mark Archei O. Javier

Abstract:

The Fourth Industrial Revolution (FIR) is a major industrial era characterized by the fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. Since this era teaches us how to thrive in the fast-paced developing world, it is important to be able to adapt. With this, there is a need to make learning and teaching in the bioscience laboratory more challenging and engaging. The goal of the research is to find out if using in silico and in vitro laboratory activities compared to the conventional conduct laboratory activities would have positive impacts on the academic performance of the learners. The potential contribution of the research is that it would improve the teachers’ methods in delivering the content to the students when it comes to topics that need laboratory activities. This study will develop a method by which teachers can provide learning materials to the students. A one-tailed t-Test for independent samples was used to determine the significant difference in the pre- and post-test scores of students. The tests of hypotheses were done at a 0.05 level of significance. Based on the results of the study, the gain scores of the experimental group are greater than the gain scores of the control group. This implies that using in silico and in vitro labs for the experimental group is more effective than the conventional method of doing laboratory activities.

Keywords: academic performance, general biology, in silico laboratory, in vivo laboratory, virtual laboratory

Procedia PDF Downloads 189
24823 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 58
24822 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 116
24821 New Chinese Landscapes in the Works of the Chinese Photographer Yao Lu

Authors: Xiaoling Dai

Abstract:

Many Chinese artists have used digital photography to create works with features of Chinese landscape paintings since the 20th century. The ‘New Mountains and Water’ works created by digital techniques reflect the fusion of photographic techniques and traditional Chinese aesthetic thoughts. Borrowing from Chinese landscape paintings in the Song Dynasty, the Chinese photographer Yao Lu uses digital photography to reflect contemporary environmental construction in his series New Landscapes. By portraying a variety of natural environments brought by urbanization in the contemporary period, Lu deconstructs traditional Chinese paintings and reconstructs contemporary photographic practices. The primary object of this study is to investigate how Chinese photographer Yao Lu redefines and re-interprets the relationship between tradition and contemporaneity. In this study, Yao Lu’s series work New Landscapes is used for photo elicitation, which seeks to broaden understanding of the development of Chinese landscape photography. Furthermore, discourse analysis will be used to evaluate how Chinese social developments influence the creation of photographic practices. Through visual and discourse analysis, this study aims to excavate the relationship between tradition and contemporaneity in Lu’s works. According to New Landscapes, the study argues that in Lu’s interpretations of landscapes, tradition and contemporaneity are seen to establish a new relationship. Traditional approaches to creation do not become obsolete over time. On the contrary, traditional notions and styles of creation can shed new light on contemporary issues or techniques.

Keywords: Chinese aesthetics, Yao Lu, new landscapes, tradition, contemporaneity

Procedia PDF Downloads 79
24820 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

Authors: Yuyun Wabula, B. J. Dewancker

Abstract:

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Keywords: geolocation, Twitter, distribution analysis, human mobility

Procedia PDF Downloads 314
24819 Analysis and Rule Extraction of Coronary Artery Disease Data Using Data Mining

Authors: Rezaei Hachesu Peyman, Oliyaee Azadeh, Salahzadeh Zahra, Alizadeh Somayyeh, Safaei Naser

Abstract:

Coronary Artery Disease (CAD) is one major cause of disability in adults and one main cause of death in developed. In this study, data mining techniques including Decision Trees, Artificial neural networks (ANNs), and Support Vector Machine (SVM) analyze CAD data. Data of 4948 patients who had suffered from heart diseases were included in the analysis. CAD is the target variable, and 24 inputs or predictor variables are used for the classification. The performance of these techniques is compared in terms of sensitivity, specificity, and accuracy. The most significant factor influencing CAD is chest pain. Elderly males (age > 53) have a high probability to be diagnosed with CAD. SVM algorithm is the most useful way for evaluation and prediction of CAD patients as compared to non-CAD ones. Application of data mining techniques in analyzing coronary artery diseases is a good method for investigating the existing relationships between variables.

Keywords: classification, coronary artery disease, data-mining, knowledge discovery, extract

Procedia PDF Downloads 657
24818 Sensor Data Analysis for a Large Mining Major

Authors: Sudipto Shanker Dasgupta

Abstract:

One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up.

Keywords: streaming analytics, data science, big data, Hadoop, high throughput, sensor data

Procedia PDF Downloads 404
24817 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 82
24816 Efficacy of Hemi-Facetectomy in Treatment of Lumbar Foraminal Stenosis

Authors: Manoj Deepak, N. Mathivanan, K. Venkatachalam

Abstract:

Nerve root stenosis is one of the main cause for back pain. There are many methods both conservative and surgical to treat this disease. It is pertinent to decompress the spine to a proper extent so as to avoid the recurrence of symptoms. But too much of an aggressive approach also has its disadvantages. We present one of the methods to effectively decompress the nerve with better results. Our study was carried out in 52 patients with foramina stenosis between 2008 to 2011.We carried out the surgical procedure of shaving off the medial part of the facet joint so as to decompress the root. We selected those patients who had symptoms of claudication for more than 2 years. They had no signs of instability and they underwent conservative treatment for a period of 2 months before the procedure. Oswersty scoring was used to record the functional level of the patient before and after the procedure. All patients were followed up for a period of minimum 2.5 years. After evaluation for a minimum of 2.5 years, 34 patients had no evidence of recurrence of symptoms with improvement in the functional level.7 patients complained of minimal pain but their functional quality had improved postop. Six patients had symptoms of lumbar canal disease which reduced with conservative treatment. 5 patients required spinal fusion surgeries in the later period. Conclusion: Thus, we can effectively conclude that our procedure is safe and effective in reducing the symptoms in those patients with neurogenic claudication.

Keywords: facetectoemy, stenosis, decompression, Lumbar Foraminal Stenosis, hemi-facetectomy

Procedia PDF Downloads 350
24815 Regulation on the Protection of Personal Data Versus Quality Data Assurance in the Healthcare System Case Report

Authors: Elizabeta Krstić Vukelja

Abstract:

Digitization of personal data is a consequence of the development of information and communication technologies that create a new work environment with many advantages and challenges, but also potential threats to privacy and personal data protection. Regulation (EU) 2016/679 of the European Parliament and of the Council is becoming a law and obligation that should address the issues of personal data protection and information security. The existence of the Regulation leads to the conclusion that national legislation in the field of virtual environment, protection of the rights of EU citizens and processing of their personal data is insufficiently effective. In the health system, special emphasis is placed on the processing of special categories of personal data, such as health data. The healthcare industry is recognized as a particularly sensitive area in which a large amount of medical data is processed, the digitization of which enables quick access and quick identification of the health insured. The protection of the individual requires quality IT solutions that guarantee the technical protection of personal categories. However, the real problems are the technical and human nature and the spatial limitations of the application of the Regulation. Some conclusions will be drawn by analyzing the implementation of the basic principles of the Regulation on the example of the Croatian health care system and comparing it with similar activities in other EU member states.

Keywords: regulation, healthcare system, personal dana protection, quality data assurance

Procedia PDF Downloads 38
24814 Parallel Vector Processing Using Multi Level Orbital DATA

Authors: Nagi Mekhiel

Abstract:

Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations.

Keywords: Memory Organization, Parallel Processors, Serial Code, Vector Processing

Procedia PDF Downloads 270
24813 Reconstructability Analysis for Landslide Prediction

Authors: David Percy

Abstract:

Landslides are a geologic phenomenon that affects a large number of inhabited places and are constantly being monitored and studied for the prediction of future occurrences. Reconstructability analysis (RA) is a methodology for extracting informative models from large volumes of data that work exclusively with discrete data. While RA has been used in medical applications and social science extensively, we are introducing it to the spatial sciences through applications like landslide prediction. Since RA works exclusively with discrete data, such as soil classification or bedrock type, working with continuous data, such as porosity, requires that these data are binned for inclusion in the model. RA constructs models of the data which pick out the most informative elements, independent variables (IVs), from each layer that predict the dependent variable (DV), landslide occurrence. Each layer included in the model retains its classification data as a primary encoding of the data. Unlike other machine learning algorithms that force the data into one-hot encoding type of schemes, RA works directly with the data as it is encoded, with the exception of continuous data, which must be binned. The usual physical and derived layers are included in the model, and testing our results against other published methodologies, such as neural networks, yields accuracy that is similar but with the advantage of a completely transparent model. The results of an RA session with a data set are a report on every combination of variables and their probability of landslide events occurring. In this way, every combination of informative state combinations can be examined.

Keywords: reconstructability analysis, machine learning, landslides, raster analysis

Procedia PDF Downloads 65
24812 The Power of Geography in the Multipolar World Order

Authors: Norbert Csizmadia

Abstract:

The paper is based on a thorough investigation regarding the recent global, social and geographical processes. The ‘Geofusion’ book series by the author guides the readers with the help of newly illustrated “associative” geographic maps of the global world in the 21st century through the quest for the winning nations, communities, leaders and powers of this age. Hence, the above mentioned represent the research objectives, the preliminary findings of which are presented in this paper. The most significant recognition is that scientists who are recognized as explorers, geostrategists of this century, in this case, are expected to present guidelines for our new world full of global social and economic challenges. To do so, new maps are needed which do not miss the wisdom and tools of the old but complement them with the new structure of knowledge. Using the lately discovered geographic and economic interrelations, the study behind this presentation tries to give a prognosis of the global processes. The methodology applied contains the survey and analysis of many recent publications worldwide regarding geostrategic, cultural, geographical, social, and economic surveys structured into global networks. In conclusion, the author presents the result of the study, which is a collage of the global map of the 21st century as mentioned above, and it can be considered as a potential contribution to the recent scientific literature on the topic. In summary, this paper displays the results of several-year-long research giving the audience an image of how economic navigation tools can help investors, politicians and travelers to get along in the changing new world.

Keywords: geography, economic geography, geo-fusion, geostrategy

Procedia PDF Downloads 131
24811 Data Analytics in Hospitality Industry

Authors: Tammy Wee, Detlev Remy, Arif Perdana

Abstract:

In the recent years, data analytics has become the buzzword in the hospitality industry. The hospitality industry is another example of a data-rich industry that has yet fully benefited from the insights of data analytics. Effective use of data analytics can change how hotels operate, market and position themselves competitively in the hospitality industry. However, at the moment, the data obtained by individual hotels remain under-utilized. This research is a preliminary research on data analytics in the hospitality industry, using an in-depth face-to-face interview on one hotel as a start to a multi-level research. The main case study of this research, hotel A, is a chain brand of international hotel that has been systematically gathering and collecting data on its own customer for the past five years. The data collection points begin from the moment a guest book a room until the guest leave the hotel premises, which includes room reservation, spa booking, and catering. Although hotel A has been gathering data intelligence on its customer for some time, they have yet utilized the data to its fullest potential, and they are aware of their limitation as well as the potential of data analytics. Currently, the utilization of data analytics in hotel A is limited in the area of customer service improvement, namely to enhance the personalization of service for each individual customer. Hotel A is able to utilize the data to improve and enhance their service which in turn, encourage repeated customers. According to hotel A, 50% of their guests returned to their hotel, and 70% extended nights because of the personalized service. Apart from using the data analytics for enhancing customer service, hotel A also uses the data in marketing. Hotel A uses the data analytics to predict or forecast the change in consumer behavior and demand, by tracking their guest’s booking preference, payment preference and demand shift between properties. However, hotel A admitted that the data they have been collecting was not fully utilized due to two challenges. The first challenge of using data analytics in hotel A is the data is not clean. At the moment, the data collection of one guest profile is meaningful only for one department in the hotel but meaningless for another department. Cleaning up the data and getting standards correctly for usage by different departments are some of the main concerns of hotel A. The second challenge of using data analytics in hotel A is the non-integral internal system. At the moment, the internal system used by hotel A do not integrate with each other well, limiting the ability to collect data systematically. Hotel A is considering another system to replace the current one for more comprehensive data collection. Hotel proprietors recognized the potential of data analytics as reported in this research, however, the current challenges of implementing a system to collect data come with a cost. This research has identified the current utilization of data analytics and the challenges faced when it comes to implementing data analytics.

Keywords: data analytics, hospitality industry, customer relationship management, hotel marketing

Procedia PDF Downloads 179
24810 Realization of a (GIS) for Drilling (DWS) through the Adrar Region

Authors: Djelloul Benatiallah, Ali Benatiallah, Abdelkader Harouz

Abstract:

Geographic Information Systems (GIS) include various methods and computer techniques to model, capture digitally, store, manage, view and analyze. Geographic information systems have the characteristic to appeal to many scientific and technical field, and many methods. In this article we will present a complete and operational geographic information system, following the theoretical principles of data management and adapting to spatial data, especially data concerning the monitoring of drinking water supply wells (DWS) Adrar region. The expected results of this system are firstly an offer consulting standard features, updating and editing beneficiaries and geographical data, on the other hand, provides specific functionality contractors entered data, calculations parameterized and statistics.

Keywords: GIS, DWS, drilling, Adrar

Procedia PDF Downloads 309
24809 Generic Data Warehousing for Consumer Electronics Retail Industry

Authors: S. Habte, K. Ouazzane, P. Patel, S. Patel

Abstract:

The dynamic and highly competitive nature of the consumer electronics retail industry means that businesses in this industry are experiencing different decision making challenges in relation to pricing, inventory control, consumer satisfaction and product offerings. To overcome the challenges facing retailers and create opportunities, we propose a generic data warehousing solution which can be applied to a wide range of consumer electronics retailers with a minimum configuration. The solution includes a dimensional data model, a template SQL script, a high level architectural descriptions, ETL tool developed using C#, a set of APIs, and data access tools. It has been successfully applied by ASK Outlets Ltd UK resulting in improved productivity and enhanced sales growth.

Keywords: consumer electronics, data warehousing, dimensional data model, generic, retail industry

Procedia PDF Downloads 411