Search results for: unit load device
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6370

Search results for: unit load device

130 Sensing Study through Resonance Energy and Electron Transfer between Föster Resonance Energy Transfer Pair of Fluorescent Copolymers and Nitro-Compounds

Authors: Vishal Kumar, Soumitra Satapathi

Abstract:

Föster Resonance Energy Transfer (FRET) is a powerful technique used to probe close-range molecular interactions. Physically, the FRET phenomenon manifests as a dipole–dipole interaction between closely juxtaposed fluorescent molecules (10–100 Å). Our effort is to employ this FRET technique to make a prototype device for highly sensitive detection of environment pollutant. Among the most common environmental pollutants, nitroaromatic compounds (NACs) are of particular interest because of their durability and toxicity. That’s why, sensitive and selective detection of small amounts of nitroaromatic explosives, in particular, 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) has been a critical challenge due to the increasing threat of explosive-based terrorism and the need of environmental monitoring of drinking and waste water. In addition, the excessive utilization of TNP in several other areas such as burn ointment, pesticides, glass and the leather industry resulted in environmental accumulation, and is eventually contaminating the soil and aquatic systems. To the date, high number of elegant methods, including fluorimetry, gas chromatography, mass, ion-mobility and Raman spectrometry have been successfully applied for explosive detection. Among these efforts, fluorescence-quenching methods based on the mechanism of FRET show good assembly flexibility, high selectivity and sensitivity. Here, we report a FRET-based sensor system for the highly selective detection of NACs, such as TNP, DNT and TNT. The sensor system is composed of a copolymer Poly [(N,N-dimethylacrylamide)-co-(Boc-Trp-EMA)] (RP) bearing tryptophan derivative in the side chain as donor and dansyl tagged copolymer P(MMA-co-Dansyl-Ala-HEMA) (DCP) as an acceptor. Initially, the inherent fluorescence of RP copolymer is quenched by non-radiative energy transfer to DCP which only happens once the two molecules are within Förster critical distance (R0). The excellent spectral overlap (Jλ= 6.08×10¹⁴ nm⁴M⁻¹cm⁻¹) between donors’ (RP) emission profile and acceptors’ (DCP) absorption profile makes them an exciting and efficient FRET pair i.e. further confirmed by the high rate of energy transfer from RP to DCP i.e. 0.87 ns⁻¹ and lifetime measurement by time correlated single photon counting (TCSPC) to validate the 64% FRET efficiency. This FRET pair exhibited a specific fluorescence response to NACs such as DNT, TNT and TNP with 5.4, 2.3 and 0.4 µM LODs, respectively. The detection of NACs occurs with high sensitivity by photoluminescence quenching of FRET signal induced by photo-induced electron transfer (PET) from electron-rich FRET pair to electron-deficient NAC molecules. The estimated stern-volmer constant (KSV) values for DNT, TNT and TNP are 6.9 × 10³, 7.0 × 10³ and 1.6 × 104 M⁻¹, respectively. The mechanistic details of molecular interactions are established by time-resolved fluorescence, steady-state fluorescence and absorption spectroscopy confirmed that the sensing process is of mixed type, i.e. both dynamic and static quenching as lifetime of FRET system (0.73 ns) is reduced to 0.55, 0.57 and 0.61 ns DNT, TNT and TNP, respectively. In summary, the simplicity and sensitivity of this novel FRET sensor opens up the possibility of designing optical sensor of various NACs in one single platform for developing multimodal sensor for environmental monitoring and future field based study.

Keywords: FRET, nitroaromatic, stern-Volmer constant, tryptophan and dansyl tagged copolymer

Procedia PDF Downloads 108
129 Effect of Rolling Shear Modulus and Geometric Make up on the Out-Of-Plane Bending Performance of Cross-Laminated Timber Panel

Authors: Md Tanvir Rahman, Mahbube Subhani, Mahmud Ashraf, Paul Kremer

Abstract:

Cross-laminated timber (CLT) is made from layers of timber boards orthogonally oriented in the thickness direction, and due to this, CLT can withstand bi-axial bending in contrast with most other engineered wood products such as laminated veneer lumber (LVL) and glued laminated timber (GLT). Wood is cylindrically anisotropic in nature and is characterized by significantly lower elastic modulus and shear modulus in the planes perpendicular to the fibre direction, and is therefore classified as orthotropic material and is thus characterized by 9 elastic constants which are three elastic modulus in longitudinal direction, tangential direction and radial direction, three shear modulus in longitudinal tangential plane, longitudinal radial plane and radial tangential plane and three Poisson’s ratio. For simplification, timber materials are generally assumed to be transversely isotropic, reducing the number of elastic properties characterizing it to 5, where the longitudinal plane and radial planes are assumed to be planes of symmetry. The validity of this assumption was investigated through numerical modelling of CLT with both orthotropic mechanical properties and transversely isotropic material properties for three softwood species, which are Norway spruce, Douglas fir, Radiata pine, and three hardwood species, namely Victorian ash, Beech wood, and Aspen subjected to uniformly distributed loading under simply supported boundary condition. It was concluded that assuming the timber to be transversely isotropic results in a negligible error in the order of 1 percent. It was also observed that along with longitudinal elastic modulus, ratio of longitudinal shear modulus (GL) and rolling shear modulus (GR) has a significant effect on a deflection for CLT panels of lower span to depth ratio. For softwoods such as Norway spruce and Radiata pine, the ratio of longitudinal shear modulus, GL to rolling shear modulus GR is reported to be in the order of 12 to 15 times in literature. This results in shear flexibility in transverse layers leading to increased deflection under out-of-plane loading. The rolling shear modulus of hardwoods has been found to be significantly higher than those of softwoods, where the ratio between longitudinal shear modulus to rolling shear modulus as low as 4. This has resulted in a significant rise in research into the manufacturing of CLT from entirely from hardwood, as well as from a combination of softwood and hardwoods. The commonly used beam theory to analyze the performance of CLT panels under out-of-plane loads are the Shear analogy method, Gamma method, and k-method. The shear analogy method has been found to be the most effective method where shear deformation is significant. The effect of the ratio of longitudinal shear modulus and rolling shear modulus of cross-layer on the deflection of CLT under uniformly distributed load with respect to its length to depth ratio was investigated using shear analogy method. It was observed that shear deflection is reduced significantly as the ratio of the shear modulus of the longitudinal layer and rolling shear modulus of cross-layer decreases. This indicates that there is significant room for improvement of the bending performance of CLT through developing hybrid CLT from a mix of softwood and hardwood.

Keywords: rolling shear modulus, shear deflection, ratio of shear modulus and rolling shear modulus, timber

Procedia PDF Downloads 99
128 Prospective Analytical Cohort Study to Investigate a Physically Active Classroom-Based Wellness Programme to Propose a Mechanism to Meet Societal Need for Increased Physical Activity Participation and Positive Subjective Well-Being amongst Adolescent

Authors: Aileen O'loughlin

Abstract:

‘Is Everybody Going WeLL?’ (IEGW?) is a 33-hour classroom-based initiative created to a) explore values and how they impact on well-being, b) encourage adolescents to connect with their community, and c) provide them with the education to encourage and maintain a lifetime love of physical activity (PA) to ensure beneficial effects on their personal well-being. This initiative is also aimed at achieving sustainable education and aligning with the United Nation’s Sustainable Development Goals numbers 3 and 4. The classroom is a unique setting in which adolescents’ PA participation can be positively influenced through fun PA policies and initiatives. The primary purpose of this research is to evaluate a range of psychosocial and PA outcomes following the 33-hour education programme. This research examined the impact of a PA and well-being programme consisting of either a 60minute or 80minute class, depending on the timetable structure of the school, delivered once a week. Participant outcomes were measured using validated questionnaires regarding Self-esteem, Mental Health Literacy (MHL) and Daily Physical Activity Participation. These questionnaires were administered at three separate time points; baseline, mid-intervention, and post intervention. Semi-structured interviews with participating teachers regarding adherence and participants’ attitudes were completed post-intervention. These teachers were randomly selected for interview. This perspective analytical cohort study included 235 post-primary school students between 11-13 years of age (100 boys and 135 girls) from five public Irish post-primary schools. Three schools received the intervention only; a 33hour interactive well-being learning unit, one school formed a control group and one school had participants in both the intervention and control group. Participating schools were a convenience sample. Data presented outlines baseline data collected pre-participation (0 hours completed). N = 18 junior certificate students returned all three questionnaires fully completed for a 56.3% return rate from 1 school, Intervention School #3. 94.4% (n = 17) of participants enjoy taking part in some form of PA, however only 5.5% (n = 1) of the participants took part in PA every day of the previous 7 days and only 5.5% (n = 1) of those surveyed participated in PA every day during a normal week. 55% (n = 11) had a low level of self-esteem, 50% (n = 9) fall within the normal range of self-esteem, and n = 0 surveyed demonstrated a high level of self-esteem. Female participants’ Mean score was higher than their male counterparts when MHL was compared. Correlation analyses revealed a small association between Self-esteem and Happiness (r = 0.549). Positive correlations were also revealed between MHL and Happiness, MHL and Self-esteem and Self-esteem and 60+ minutes of PA completed daily. IEGW? is a classroom-based with simple methods easy to implement, replicate and financially viable to both public and private schools. It’s unique dataset will allow for the evaluation of a societal approach to the psycho-social well-being and PA participation levels of adolescents. This research is a work in progress and future work is required to learn how to best support the implementation of ‘Is Everybody Going WeLL?’ as part of the school curriculum.

Keywords: education, life-long learning, physical activity, psychosocial well-being

Procedia PDF Downloads 98
127 The Ductile Fracture of Armor Steel Targets Subjected to Ballistic Impact and Perforation: Calibration of Four Damage Criteria

Authors: Imen Asma Mbarek, Alexis Rusinek, Etienne Petit, Guy Sutter, Gautier List

Abstract:

Over the past two decades, the automotive, aerospace and army industries have been paying an increasing attention to Finite Elements (FE) numerical simulations of the fracture process of their structures. Thanks to the numerical simulations, it is nowadays possible to analyze several problems involving costly and dangerous extreme loadings safely and at a reduced cost such as blast or ballistic impact problems. The present paper is concerned with ballistic impact and perforation problems involving ductile fracture of thin armor steel targets. The target fracture process depends usually on various parameters: the projectile nose shape, the target thickness and its mechanical properties as well as the impact conditions (friction, oblique/normal impact...). In this work, the investigations are concerned with the normal impact of a conical head-shaped projectile on thin armor steel targets. The main aim is to establish a comparative study of four fracture criteria that are commonly used in the fracture process simulations of structures subjected to extreme loadings such as ballistic impact and perforation. Usually, the damage initiation results from a complex physical process that occurs at the micromechanical scale. On a macro scale and according to the following fracture models, the variables on which the fracture depends are mainly the stress triaxiality ƞ, the strain rate, temperature T, and eventually the Lode angle parameter Ɵ. The four failure criteria are: the critical strain to failure model, the Johnson-Cook model, the Wierzbicki model and the Modified Hosford-Coulomb model MHC. Using the SEM, the observations of the fracture facies of tension specimen and of armor steel targets impacted at low and high incident velocities show that the fracture of the specimens is a ductile fracture. The failure mode of the targets is petalling with crack propagation and the fracture facies are covered with micro-cavities. The parameters of each ductile fracture model have been identified for three armor steels and the applicability of each criterion was evaluated using experimental investigations coupled to numerical simulations. Two loading paths were investigated in this study, under a wide range of strain rates. Namely, quasi-static and intermediate uniaxial tension and quasi-static and dynamic double shear testing allow covering various values of stress triaxiality ƞ and of the Lode angle parameter Ɵ. All experiments were conducted on three different armor steel specimen under quasi-static strain rates ranging from 10-4 to 10-1 1/s and at three different temperatures ranging from 297K to 500K, allowing drawing the influence of temperature on the fracture process. Intermediate tension testing was coupled to dynamic double shear experiments conducted on the Hopkinson tube device, allowing to spot the effect of high strain rate on the damage evolution and the crack propagation. The aforementioned fracture criteria are implemented into the FE code ABAQUS via VUMAT subroutine and they were coupled to suitable constitutive relations allow having reliable results of ballistic impact problems simulation. The calibration of the four damage criteria as well as a concise evaluation of the applicability of each criterion are detailed in this work.

Keywords: armor steels, ballistic impact, damage criteria, ductile fracture, SEM

Procedia PDF Downloads 290
126 Content Analysis of Gucci’s ‘Blackface’ Sweater Controversy across Multiple Media Platforms

Authors: John Mark King

Abstract:

Beginning on Feb. 7, 2019, the luxury brand, Gucci, was met with a firestorm on social media over fashion runway images of its black balaclava sweater, which covered the bottom half of the face and featured large, shiny bright red lips surrounding the mouth cutout. Many observers on social media and in the news media noted the garment resembled racist “blackface.” This study aimed to measure how items were framed across multiple media platforms. The unit of analysis was any headline or lead paragraph published using the search terms “Gucci” and “sweater” or “jumper” or “balaclava” during the one-year timeframe of Feb. 7, 2019, to Feb. 6, 2020. Limitations included headlines and lead paragraphs published in English and indexed in the Lexis/Nexis database. Independent variables were the nation in which the item was published and the platform (newspapers, blogs, web-based publications, newswires, magazines, or broadcast news). Dependent variables were tone toward Gucci (negative, neutral or positive) and frame (blackface/racism/racist, boycott/celebrity boycott, sweater/balaclava/jumper/fashion, apology/pulling the product/diversity initiatives by Gucci or frames unrelated to the controversy but still involving Gucci sweaters) and word count. Two coders achieved 100% agreement on all variables except tone (94.2%) and frame (96.3%). The search yielded 276 items published from 155 sources in 18 nations. The tone toward Gucci during this period was negative (69.9%). Items that were neutral (16.3%) or positive (13.8%) toward the brand were overwhelmingly related to items about other Gucci sweaters worn by celebrities or fashion reviews of other Gucci sweaters. The most frequent frame was apology/pulling the product/diversity initiatives by Gucci (35.5%). The tone was most frequently negative across all continents, including the Middle East (83.3% negative), Asia (81.8%), North America (76.6%), Australia/New Zealand (66.7%), and Europe (59.8%). Newspapers/magazines/newswires/broadcast news transcripts (72.4%) were more negative than blogs/web-based publications (63.6%). The most frequent frames used by newspapers/magazines/newswires/broadcast news transcripts were apology/pulling the product/diversity initiatives by Gucci (38.7%) and blackface/racism/racist (26.1%). Blogs/web-based publications most frequently used frames unrelated to the controversial garment, but about other Gucci sweaters (42.9%) and apology/pulling the product/diversity initiatives by Gucci (27.3%). Sources in Western nations (34.7%) and Eastern nations (47.1%) most frequently used the frame of apology/pulling the product/diversity initiatives by Gucci. Mean word count was higher for negative items (583.58) than positive items (404.76). Items framed as blackface/racism/racist or boycott/celebrity boycott had higher mean word count (668.97) than items framed as sweater/balaclava/jumper/fashion or apology/pulling the product/diversity initiatives by Gucci (498.22). The author concluded that during the year-long period, Gucci’s image was likely damaged by the release of the garment at the center of the controversy due to near-universally negative items published, but Gucci’s apology/pulling the product off the market/diversity initiatives by Gucci and items about other Gucci sweaters worn by celebrities or fashion reviews of other Gucci sweaters were the most common frames across multiple media platforms, which may have mitigated the damage to the brand.

Keywords: Blackface, branding, Gucci, media framing

Procedia PDF Downloads 123
125 Influence of Cryo-Grinding on Antioxidant Activity and Amount of Free Phenolic Acids, Rutin and Tyrosol in Whole Grain Buckwheat and Pumpkin Seed Cake

Authors: B. Voucko, M. Benkovic, N. Cukelj, S. Drakula, D. Novotni, S. Balbino, D. Curic

Abstract:

Oxidative stress is considered as one of the causes leading to metabolic disorders in humans. Therefore, the ability of antioxidants to inhibit free radical production is their primary role in the human organism. Antioxidants originating from cereals, especially flavonoids and polyphenols, are mostly bound and indigestible. Micronization damages the cell wall which consecutively results in bioactive material to be more accessible in vivo. In order to ensure complete fragmentation, micronization is often combined with high temperatures (e.g., for bran 200°C) which can lead to degradation of bioactive compounds. The innovative non-thermal technology of cryo-milling is an ultra-fine micronization method that uses liquid nitrogen (LN2) at a temperature of 195°C to freeze and cool the sample during milling. Freezing at such low temperatures causes the material to become brittle which ensures the generation of fine particles while preserving the bioactive content of the material. The aim of this research was to determine if production of ultra-fine material with cryo-milling will result in the augmentation of available bioactive compounds of buckwheat and pumpkin seed cake. For that reason, buckwheat and pumpkin seed cake were ground in a ball mill (CryoMill, Retch, Germany) with and without the use of LN2 for 8 minutes, in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm) at an oscillation frequency of 30 Hz. The cryo-milled samples were cooled with LN2 for 2 minutes prior to milling, followed by the first cycle of milling (4 minutes), intermediary cooling (2 minutes), and finally the second cycle of milling (further 4 minutes). A continuous process of milling was applied to the samples ground without freezing with LN2. Particle size distribution was determined using the Scirocco 2000 dry dispersion unit (Malvern Instruments, UK). Antioxidant activity was determined by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test and ferric reducing antioxidant power (FRAP) assay, while the total phenol content was determined using the Folin Ciocalteu method, using the ultraviolet-visible spectrophotometer (Specord 50 Plus, Germany). The content of the free phenolic acids, rutin in buckwheat, tyrosol in pumpkin seed cake, was determined with an HPLC-PDA method (Agilent 1200 series, Germany). Cryo-milling resulted in 11 times smaller size of buckwheat particles, and 3 times smaller size of pumpkin seed particles than milling without the use of LN2, but also, a lower uniformity of the particle size distribution. Lack of freezing during milling of pumpkin seed cake caused a formation of agglomerates due to its high-fat content (21 %). Cryo-milling caused augmentation of buckwheat flour antioxidant activity measured by DPPH test (23,9%) and an increase in available rutin content (14,5%). Also, it resulted in an augmentation of the total phenol content (36,9%) and available tyrosol content (12,5%) of pumpkin seed cake. Antioxidant activity measured with the FRAP test, as well as the content of phenolic acids remained unchanged independent of the milling process. The results of this study showed the potential of cryo-milling for complete raw material utilization in the food industry, as well as a tool for extraction of aimed bioactive components.

Keywords: bioactive, ball-mill, buckwheat, cryo-milling, pumpkin seed cake

Procedia PDF Downloads 115
124 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 115
123 Groundwater Arsenic Contamination in Gangetic Jharkhand, India: Risk Implications for Human Health and Sustainable Agriculture

Authors: Sukalyan Chakraborty

Abstract:

Arsenic contamination in groundwater has been a matter of serious concern worldwide. Globally, arsenic contaminated water has caused serious chronic human diseases and in the last few decades the transfer of arsenic to human beings via food chain has gained much attention because food represents a further potential exposure pathway to arsenic in instances where crops are irrigated with high arsenic groundwater, grown in contaminated fields or cooked with arsenic laden water. In the present study, the groundwater of Sahibganj district of Jharkhand has been analysed to find the degree of contamination and its probable associated risk due to direct consumption or irrigation. The present study area comprising of three blocks, namely Sahibganj, Rajmahal and Udhwa in Sahibganj district of Jharkhand state, India, situated in the western bank of river Ganga has been investigated for arsenic contamination in groundwater, soil and crops predominantly growing in the region. Associated physicochemical parameters of groundwater including pH, temperature, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), oxidation reduction potential (ORP), ammonium, nitrate and chloride were assessed to understand the mobilisation mechanism and chances of arsenic exposure from soil to crops and further into the food chain. Results suggested the groundwater to be dominantly Ca-HCO3- type with low redox potential and high total dissolved solids load. Major cations followed the order of Ca ˃ Na ˃ Mg ˃ K. The concentration of major anions was found in the order of HCO3− > Cl− > SO42− > NO3− > PO43− varied between 0.009 to 0.20 mg L-1. Fe concentrations of the groundwater samples were below WHO permissible limit varying between 54 to 344 µg L-1. Phosphate concentration was high and showed a significant positive correlation with arsenic. As concentrations ranged from 7 to 115 µg L-1 in premonsoon, between 2 and 98 µg L-1 in monsoon and 1 to 133µg L-1 in postmonsoon season. Arsenic concentration was found to be much higher than the WHO or BIS permissible limit in majority of the villages in the study area. Arsenic was also seen to be positively correlated with iron and phosphate. PCA results demonstrated the role of both geological condition and anthropogenic inputs to influence the water quality. Arsenic was also found to increase with depth up to 100 m from the surface. Calculation of carcinogenic and non-carcinogenic effects of the arsenic concentration in the communities exposed to the groundwater for drinking and other purpose indicated high risk with an average of more than 1 in a 1000 population. Health risk analysis revealed high to very high carcinogenic and non-carcinogenic risk for adults and children in the communities dependent on groundwater of the study area. Observation suggested the groundwater to be considerably polluted with arsenic and posing significant health risk for the exposed communities. The mobilisation mechanism of arsenic also could be identified from the results suggesting reductive dissolution of Fe oxyhydroxides due to high phosphate concentration from agricultural input arsenic release from the sediments along river Ganges.

Keywords: arsenic, physicochemical parameters, mobilisation, health effects

Procedia PDF Downloads 204
122 Competence of the Health Workers in Diagnosing and Managing Complicated Pregnancies: A Clinical Vignette Based Assessment in District and Sub-District Hospitals in Bangladesh

Authors: Abdullah Nurus Salam Khan, Farhana Karim, Mohiuddin Ahsanul Kabir Chowdhury, S. Masum Billah, Nabila Zaka, Alexander Manu, Shams El Arifeen

Abstract:

Globally, pre-eclampsia (PE) and ante-partum haemorrhage (APH) are two major causes of maternal mortality. Prompt identification and management of these conditions depend on competency of the birth attendants. Since these conditions are infrequent to be observed, clinical vignette based assessment could identify the extent of health worker’s competence in managing emergency obstetric care (EmOC). During June-August 2016, competence of 39 medical officers (MO) and 95 nurses working in obstetric ward of 15 government health facilities (3 district hospital, 12 sub-district hospital) was measured using clinical vignettes on PE and APH. The vignettes resulted in three outcome measures: total vignette scores, scores for diagnosis component, and scores for management component. T-test was conducted to compare mean vignette scores and linear regression was conducted to measure the strength and association of vignette scores with different cadres of health workers, facility’s readiness for EmOC and average annual utilization of normal deliveries after adjusting for type of health facility, health workers’ work experience, training status on managing maternal complication. For each of the seven component of EmOC items (administration of injectable antibiotics, oxytocic and anticonvulsant; manual removal of retained placenta, retained products of conception; blood transfusion and caesarean delivery), if any was practised in the facility within last 6 months, a point was added and cumulative EmOC readiness score (range: 0-7) was generated for each facility. The yearly utilization of delivery cases were identified by taking the average of all normal deliveries conducted during three years (2013-2015) preceding the survey. About 31% of MO and all nurses were female. Mean ( ± sd) age of the nurses were higher than the MO (40.0 ± 6.9 vs. 32.2 ± 6.1 years) and also longer mean( ± sd) working experience (8.9 ± 7.9 vs. 1.9 ± 3.9 years). About 80% health workers received any training on managing maternal complication, however, only 7% received any refresher’s training within last 12 months. The overall vignette score was 8.8 (range: 0-19), which was significantly higher among MO than nurses (10.7 vs. 8.1, p < 0.001) and the score was not associated with health facility types, training status and years of experience of the providers. Vignette score for management component (range: 0-9) increased with higher annual average number of deliveries in their respective working facility (adjusted β-coefficient 0.16, CI 0.03-0.28, p=0.01) and increased with each unit increase in EmOC readiness score (adjusted β-coefficient 0.44, CI 0.04-0.8, p=0.03). The diagnosis component of vignette score was not associated with any of the factors except it was higher among the MO than the nurses (adjusted β-coefficient 1.2, CI 0.13-2.18, p=0.03). Lack of competence in diagnosing and managing obstetric complication by the nurses than the MO is of concern especially when majority of normal deliveries are conducted by the nurses. Better EmOC preparedness of the facility and higher utilization of normal deliveries resulted in higher vignette score for the management component; implying the impact of experiential learning through higher case management. Focus should be given on improving the facility readiness for EmOC and providing the health workers periodic refresher’s training to make them more competent in managing obstetric cases.

Keywords: Bangladesh, emergency obstetric care, clinical vignette, competence of health workers

Procedia PDF Downloads 165
121 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 116
120 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 305
119 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 110
118 Mental Health of Caregivers in Public Hospital Intensive Care Department: A Multicentric Cross-Sectional Study

Authors: Lamia Bouzgarrou, Amira Omrane, Naima Bouatay, Chaima Harrathi, Samia Machroughl, Ahmed Mhalla

Abstract:

Background and Aims: Professionals of health care sector are exposed to psychosocial constraints like stress, harassment, violence, which can lead to many mental health problems such as, depression, addictive behavior, and burn-out. Moreover, it’s well established that caregivers affected to intensive care units are more likely to experience such constraints and mental health problems. For these caregivers, the mental health state may affect care quality and patient’s safety. This study aims either to identify occupational psychosocial constraints and their mental health consequences among paramedical and medical caregivers affected to intensive units in Tunisian public hospital. Methods: An exhaustive three months cross-sectional study conducted among medical and paramedical staffs of intensive care units in three Tunisian university hospitals. After informed consent collection, we evaluated work-related stress, workplace harassment, depression, anxious troubles, addictive behavior, and self-esteems through an anonymous self-completed inquiry form. Five validated questionnaires and scales were included in this form: Karasek's Job Content Questionnaire, Negative Acts Questionnaire, Rosenberg, Beck depression inventory and Hamilton Anxiety scale. Results: We included 129 intensive unit caregivers; with a mean age of 36.1 ± 1.1 years and a sex ratio of 0.58. Among these caregivers, 30% were specialist or under-specialization doctors. The average seniority in the intensive care was 6.1 ± 1.2 (extremes=1 to 40 years). Atypical working schedules were noted among 36.7% of the subjects with an imposed choice in 52.4% of cases. During the last 12 months preceding the survey, 51.7% of care workers were absent from work because of a health problem with stops exceeding 15 days in 11.7%. Job strain was objective among 15% of caregivers and 38.33% of them were victims of moral harassment. A low or very low self-esteem was noted among 40% of respondents. Moreover, active smoking was reported by 20% subjects, alcohol consumption by 13.3% and psychotropic substance use by 1.7% of them. According to Beck inventory and Hamilton Anxiety scale, we concluded that 61.7% of intensive care providers were depressed, with 'severe' depression in 13.3% of cases and 49.9% of them present anxious disorders. Multivariate analysis objective that, job strain was correlated with young age (p=0.005) and shorter work seniority (p=0.001). Workplace and moral harassment was more prevalent among females (p=0.009), under-specialization doctor (p=0.021), those affected to atypical schedules (p=0.008). Concerning depression, it was more prevalent among staff in job strain situation (p = 0.004), among smokers caregivers (p = 0.048), and those with no leisure activity (p < 0.001). Anxious disorders were positively correlated to chronic diseases history (p = 0.001) and work-bullying exposure (p = 0.004). Conclusions: Our findings reflected a high frequency of caregivers who are under stress at work and those who are victims of moral harassment. These health professionals were at increased risk for developing psychiatric illness such depressive and anxious disorders and addictive behavior. Our results suggest the necessity of preventive strategies of occupational psychosocial constraints in order to preserve professional’s mental health and maximize patient safety and quality of care.

Keywords: health care sector, intensive care units, mental health, psychosocial constraints

Procedia PDF Downloads 132
117 Pre-Cancerigene Injuries Related to Human Papillomavirus: Importance of Cervicography as a Complementary Diagnosis Method

Authors: Denise De Fátima Fernandes Barbosa, Tyane Mayara Ferreira Oliveira, Diego Jorge Maia Lima, Paula Renata Amorim Lessa, Ana Karina Bezerra Pinheiro, Cintia Gondim Pereira Calou, Glauberto Da Silva Quirino, Hellen Lívia Oliveira Catunda, Tatiana Gomes Guedes, Nicolau Da Costa

Abstract:

The aim of this study is to evaluate the use of Digital Cervicography (DC) in the diagnosis of precancerous lesions related to Human Papillomavirus (HPV). Cross-sectional study with a quantitative approach, of evaluative type, held in a health unit linked to the Pro Dean of Extension of the Federal University of Ceará, in the period of July to August 2015 with a sample of 33 women. Data collecting was conducted through interviews with enforcement tool. Franco (2005) standardized the technique used for DC. Polymerase Chain Reaction (PCR) was performed to identify high-risk HPV genotypes. DC were evaluated and classified by 3 judges. The results of DC and PCR were classified as positive, negative or inconclusive. The data of the collecting instruments were compiled and analyzed by the software Statistical Package for Social Sciences (SPSS) with descriptive statistics and cross-references. Sociodemographic, sexual and reproductive variables were analyzed through absolute frequencies (N) and their respective percentage (%). Kappa coefficient (κ) was applied to determine the existence of agreement between the DC of reports among evaluators with PCR and also among the judges about the DC results. The Pearson's chi-square test was used for analysis of sociodemographic, sexual and reproductive variables with the PCR reports. It was considered statistically significant (p<0.05). Ethical aspects of research involving human beings were respected, according to 466/2012 Resolution. Regarding the socio-demographic profile, the most prevalent ages and equally were those belonging to the groups 21-30 and 41-50 years old (24.2%). The brown color was reported in excess (84.8%) and 96.9% out of them had completed primary and secondary school or studying. 51.5% were married, 72.7% Catholic, 54.5% employed and 48.5% with income between one and two minimum wages. As for the sexual and reproductive characteristics, prevailed heterosexual (93.9%) who did not use condoms during sexual intercourse (72.7%). 51.5% had a previous history of Sexually Transmitted Infection (STI), and HPV the most prevalent STI (76.5%). 57.6% did not use contraception, 78.8% underwent examination Cancer Prevention Uterus (PCCU) with shorter time interval or equal to one year, 72.7% had no cases of Cervical Cancer in the family, 63.6% were multiparous and 97% were not vaccinated against HPV. DC identified good level of agreement between raters (κ=0.542), had a specificity of 77.8% and sensitivity of 25% when compared their results with PCR. Only the variable race showed a statistically significant association with CRP (p=0.042). DC had 100% acceptance amongst women in the sample, revealing the possibility of other experiments in using this method so that it proves as a viable technique. The DC positivity criteria were developed by nurses and these professionals also perform PCCU in Brazil, which means that DC can be an important complementary diagnostic method for the appreciation of these professional’s quality of examinations.

Keywords: gynecological examination, human papillomavirus, nursing, papillomavirus infections, uterine lasmsneop

Procedia PDF Downloads 274
116 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications

Authors: Swati Mishra

Abstract:

In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.

Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy

Procedia PDF Downloads 119
115 Conceptual Methods of Mitigating Matured Urban Tree Roots Surviving in Conflicts Growth within Built Environment: A Review

Authors: Mohd Suhaizan Shamsuddin

Abstract:

Urbanization exacerbates the environment quality and pressures of matured urban trees' growth and development in changing environment. The growth of struggled matured urban tree-roots by spreading within the existences of infrastructures, resulting in large damage to the structured and declined growth. Many physiological growths declined or damages by the present and installations of infrastructures within and nearby root zone. Afford to remain both matured urban tree and infrastructures as a service provider causes damage and death, respectively. Inasmuch, spending more expenditure on fixing both or removing matured urban trees as risky to the future environment as the mitigation methods to reduce the problems are unconcerned. This paper aims to explain mitigation method practices of reducing the encountered problems of matured urban tree-roots settling and infrastructures while modified urban soil to sustain at an optimum level. Three categories capturing encountered conflicts growth of matured urban tree-roots growth within and nearby infrastructures by mitigating the problems of limited soil spaces, poor soil structures and soil space barrier installations and maintenance. The limited soil space encountered many conflicts and identified six methods that mitigate the survival tree-roots, such as soil volume/mounding, soil replacement/amendment for the radial trench, soil spacing-root bridge, root tunneling, walkway/pavement rising/diverted, and suspended pavement. The limited soil spaces are mitigation affords of inadequate soil-roots and spreading root settling and modification of construction soil media since the barrier existed and installed in root trails or zones. This is the reason for enabling tree-roots spreading and finds adequate sources (nutrients, water uptake and oxygen), spaces and functioning to stability stand of root anchorage since the matured tree grows larger. The poor soil structures were identified as three methods to mitigate soil materials' problems, and fewer soil voids comprise skeletal soil, structural soil, and soil cell. Mitigation of poor soil structure is altering the existing and introducing new structures by modifying the quantities and materials ratio allowing more voids beneath for roots spreading by considering the above structure of foot and vehicle traffics functioning or load-bearing. The soil space barrier installations and maintenance recognized to sustain both infrastructures and tree-roots grown in limited spaces and its benefits, the root barrier installations and root pruning are recommended. In conclusion, these recommended methods attempt to mitigate the present problems encountered at a particular place and problems among tree-roots and infrastructures exist. The combined method is the best way to alleviates the conflicts since the recognized conflicts are between tree-roots and man-made while the urban soil is modified. These presenting methods are most considered to sustain the matured urban trees' lifespan growth in the urban environment.

Keywords: urban tree-roots, limited soil spaces, poor soil structures, soil space barrier and maintenance

Procedia PDF Downloads 168
114 Fe Modified Tin Oxide Thin Film Based Matrix for Reagentless Uric Acid Biosensing

Authors: Kashima Arora, Monika Tomar, Vinay Gupta

Abstract:

Biosensors have found potential applications ranging from environmental testing and biowarfare agent detection to clinical testing, health care, and cell analysis. This is driven in part by the desire to decrease the cost of health care and to obtain precise information more quickly about the health status of patient by the development of various biosensors, which has become increasingly prevalent in clinical testing and point of care testing for a wide range of biological elements. Uric acid is an important byproduct in human body and a number of pathological disorders are related to its high concentration in human body. In past few years, rapid growth in the development of new materials and improvements in sensing techniques have led to the evolution of advanced biosensors. In this context, metal oxide thin film based matrices due to their bio compatible nature, strong adsorption ability, high isoelectric point (IEP) and abundance in nature have become the materials of choice for recent technological advances in biotechnology. In the past few years, wide band-gap metal oxide semiconductors including ZnO, SnO₂ and CeO₂ have gained much attention as a matrix for immobilization of various biomolecules. Tin oxide (SnO₂), wide band gap semiconductor (Eg =3.87 eV), despite having multifunctional properties for broad range of applications including transparent electronics, gas sensors, acoustic devices, UV photodetectors, etc., it has not been explored much for biosensing purpose. To realize a high performance miniaturized biomolecular electronic device, rf sputtering technique is considered to be the most promising for the reproducible growth of good quality thin films, controlled surface morphology and desired film crystallization with improved electron transfer property. Recently, iron oxide and its composites have been widely used as matrix for biosensing application which exploits the electron communication feature of Fe, for the detection of various analytes using urea, hemoglobin, glucose, phenol, L-lactate, H₂O₂, etc. However, to the authors’ knowledge, no work is being reported on modifying the electronic properties of SnO₂ by implanting with suitable metal (Fe) to induce the redox couple in it and utilizing it for reagentless detection of uric acid. In present study, Fe implanted SnO₂ based matrix has been utilized for reagentless uric acid biosensor. Implantation of Fe into SnO₂ matrix is confirmed by energy-dispersive X-Ray spectroscopy (EDX) analysis. Electrochemical techniques have been used to study the response characteristics of Fe modified SnO₂ matrix before and after uricase immobilization. The developed uric acid biosensor exhibits a high sensitivity to about 0.21 mA/mM and a linear variation in current response over concentration range from 0.05 to 1.0 mM of uric acid besides high shelf life (~20 weeks). The Michaelis-Menten kinetic parameter (Km) is found to be relatively very low (0.23 mM), which indicates high affinity of the fabricated bioelectrode towards uric acid (analyte). Also, the presence of other interferents present in human serum has negligible effect on the performance of biosensor. Hence, obtained results highlight the importance of implanted Fe:SnO₂ thin film as an attractive matrix for realization of reagentless biosensors towards uric acid.

Keywords: Fe implanted tin oxide, reagentless uric acid biosensor, rf sputtering, thin film

Procedia PDF Downloads 151
113 The Pore–Scale Darcy–Brinkman–Stokes Model for the Description of Advection–Diffusion–Precipitation Using Level Set Method

Authors: Jiahui You, Kyung Jae Lee

Abstract:

Hydraulic fracturing fluid (HFF) is widely used in shale reservoir productions. HFF contains diverse chemical additives, which result in the dissolution and precipitation of minerals through multiple chemical reactions. In this study, a new pore-scale Darcy–Brinkman–Stokes (DBS) model coupled with Level Set Method (LSM) is developed to address the microscopic phenomena occurring during the iron–HFF interaction, by numerically describing mass transport, chemical reactions, and pore structure evolution. The new model is developed based on OpenFOAM, which is an open-source platform for computational fluid dynamics. Here, the DBS momentum equation is used to solve for velocity by accounting for the fluid-solid mass transfer; an advection-diffusion equation is used to compute the distribution of injected HFF and iron. The reaction–induced pore evolution is captured by applying the LSM, where the solid-liquid interface is updated by solving the level set distance function and reinitialized to a signed distance function. Then, a smoothened Heaviside function gives a smoothed solid-liquid interface over a narrow band with a fixed thickness. The stated equations are discretized by the finite volume method, while the re-initialized equation is discretized by the central difference method. Gauss linear upwind scheme is used to solve the level set distance function, and the Pressure–Implicit with Splitting of Operators (PISO) method is used to solve the momentum equation. The numerical result is compared with 1–D analytical solution of fluid-solid interface for reaction-diffusion problems. Sensitivity analysis is conducted with various Damkohler number (DaII) and Peclet number (Pe). We categorize the Fe (III) precipitation into three patterns as a function of DaII and Pe: symmetrical smoothed growth, unsymmetrical growth, and dendritic growth. Pe and DaII significantly affect the location of precipitation, which is critical in determining the injection parameters of hydraulic fracturing. When DaII<1, the precipitation uniformly occurs on the solid surface both in upstream and downstream directions. When DaII>1, the precipitation mainly occurs on the solid surface in an upstream direction. When Pe>1, Fe (II) transported deeply into and precipitated inside the pores. When Pe<1, the precipitation of Fe (III) occurs mainly on the solid surface in an upstream direction, and they are easily precipitated inside the small pore structures. The porosity–permeability relationship is subsequently presented. This pore-scale model allows high confidence in the description of Fe (II) dissolution, transport, and Fe (III) precipitation. The model shows fast convergence and requires a low computational load. The results can provide reliable guidance for injecting HFF in shale reservoirs to avoid clogging and wellbore pollution. Understanding Fe (III) precipitation, and Fe (II) release and transport behaviors give rise to a highly efficient hydraulic fracture project.

Keywords: reactive-transport , Shale, Kerogen, precipitation

Procedia PDF Downloads 146
112 Relevance of Dosing Time for Everolimus Toxicity in Respect to the Circadian P-Glycoprotein Expression in Mdr1a::Luc Mice

Authors: Narin Ozturk, Xiao-Mei Li, Sylvie Giachetti, Francis Levi, Alper Okyar

Abstract:

P-glycoprotein (P-gp, MDR1, ABCB1) is a transmembrane protein acting as an ATP-dependent efflux pump and functions as a biological barrier by extruding drugs and xenobiotics out of cells in healthy tissues especially in intestines, liver and brain as well as in tumor cells. The circadian timing system controls a variety of biological functions in mammals including xenobiotic metabolism and detoxification, proliferation and cell cycle events, and may affect pharmacokinetics, toxicity and efficacy of drugs. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is active against many cancers, and its pharmacokinetics depend on P-gp. The aim of this study was to investigate the dosing time-dependent toxicity of everolimus with respect to the intestinal P-gp expression rhythms in mdr1a::Luc mice using Real Time-Biolumicorder (RT-BIO) System. Mdr1a::Luc male mice were synchronized with 12 h of Light and 12 h of Dark (LD12:12, with Zeitgeber Time 0 – ZT0 – corresponding Light onset). After 1-week baseline recordings, everolimus (5 mg/kg/day x 14 days) was administered orally at ZT1-resting period- and ZT13-activity period- to mdr1a::Luc mice singly housed in an innovative monitoring device, Real Time-Biolumicorder units which let us monitor real-time and long-term gene expression in freely moving mice. D-luciferin (1.5 mg/mL) was dissolved in drinking water. Mouse intestinal mdr1a::Luc oscillation profile reflecting P-gp gene expression and locomotor activity pattern were recorded every minute with the photomultiplier tube and infrared sensor respectively. General behavior and clinical signs were monitored, and body weight was measured every day as an index of toxicity. Drug-induced body weight change was expressed relative to body weight on the initial treatment day. Statistical significance of differences between groups was validated with ANOVA. Circadian rhythms were validated with Cosinor Analysis. Everolimus toxicity changed as a function of drug timing, which was least following dosing at ZT13, near the onset of the activity span in male mice. Mean body weight loss was nearly twice as large in mice treated with 5 mg/kg everolimus at ZT1 as compared to ZT13 (8.9% vs. 5.4%; ANOVA, p < 0.001). Based on the body weight loss and clinical signs upon everolimus treatment, tolerability for the drug was best following dosing at ZT13. Both rest-activity and mdr1a::Luc expression displayed stable 24-h periodic rhythms before everolimus and in both vehicle-treated controls. Real-time bioluminescence pattern of mdr1a revealed a circadian rhythm with a 24-h period with an acrophase at ZT16 (Cosinor, p < 0.001). Mdr1a expression remained rhythmic in everolimus-treated mice, whereas down-regulation was observed in P-gp expression in 2 of 4 mice. The study identified the circadian pattern of intestinal P-gp expression with an unprecedented precision. The circadian timing depending on the P-gp expression rhythms may play a crucial role in the tolerability/toxicity of everolimus. The circadian changes in mdr1a genes deserve further studies regarding their relevance for in vitro and in vivo chronotolerance of mdr1a-transported anticancer drugs. Chronotherapy with P-gp-effluxed anticancer drugs could then be applied according to their rhythmic patterns in host and tumor to jointly maximize treatment efficacy and minimize toxicity.

Keywords: circadian rhythm, chronotoxicity, everolimus, mdr1a::Luc mice, p-glycoprotein

Procedia PDF Downloads 317
111 Thermal Securing of Electrical Contacts inside Oil Power Transformers

Authors: Ioan Rusu

Abstract:

In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.

Keywords: power transformer, oil insulatation, electric contacts, Bucholtz relay

Procedia PDF Downloads 133
110 Geochemical Evaluation of Metal Content and Fluorescent Characterization of Dissolved Organic Matter in Lake Sediments

Authors: Fani Sakellariadou, Danae Antivachis

Abstract:

Purpose of this paper is to evaluate the environmental status of a coastal Mediterranean lake, named Koumoundourou, located in the northeastern coast of Elefsis Bay, in the western region of Attiki in Greece, 15 km far from Athens. It is preserved from ancient times having an important archaeological interest. Koumoundourou lake is also considered as a valuable wetland accommodating an abundant flora and fauna, with a variety of bird species including a few world’s threatened ones. Furthermore, it is a heavily modified lake, affected by various anthropogenic pollutant sources which provide industrial, urban and agricultural contaminants. The adjacent oil refineries and the military depot are the major pollution providers furnishing with crude oil spills and leaks. Moreover, the lake accepts a quantity of groundwater leachates from the major landfill of Athens. The environmental status of the lake results from the intensive land uses combined with the permeable lithology of the surrounding area and the existence of karstic springs which discharge calcareous mountains. Sediment samples were collected along the shoreline of the lake using a Van Veen grab stainless steel sampler. They were studied for the determination of the total metal content and the metal fractionation in geochemical phases as well as the characterization of the dissolved organic matter (DOM). These constituents have a significant role in the ecological consideration of the lake. Metals may be responsible for harmful environmental impacts. The metal partitioning offers comprehensive information for the origin, mode of occurrence, biological and physicochemical availability, mobilization and transport of metals. Moreover, DOM has a multifunctional importance interacting with inorganic and organic contaminants leading to biogeochemical and ecological effects. The samples were digested using microwave heating with a suitable laboratory microwave unit. For the total metal content, the samples were treated with a mixture of strong acids. Then, a sequential extraction procedure was applied for the removal of exchangeable, carbonate hosted, reducible, organic/sulphides and residual fractions. Metal content was determined by an ICP-MS (Perkin Elmer, ICP MASS Spectrophotometer NexION 350D). Furthermore, the DOM was removed via a gentle extraction procedure and then it was characterized by fluorescence spectroscopy using a Perkin-Elmer LS 55 luminescence spectrophotometer equipped with the WinLab 4.00.02 software for data processing (Agilent, Cary Eclipse Fluorescence). Mono dimensional emission, excitation, synchronous-scan excitation and total luminescence spectra were recorded for the classification of chromophoric units present in the aqueous extracts. Total metal concentrations were determined and compared with those of the Elefsis gulf sediments. Element partitioning showed the anthropogenic sources and the contaminant bioavailability. All fluorescence spectra, as well as humification indices, were evaluated in detail to find out the nature and origin of DOM. All the results were compared and interpreted to evaluate the environmental quality of Koumoundourou lake and the need for environmental management and protection.

Keywords: anthropogenic contaminant, dissolved organic matter, lake, metal, pollution

Procedia PDF Downloads 130
109 Solar and Galactic Cosmic Ray Impacts on Ambient Dose Equivalent Considering a Flight Path Statistic Representative to World-Traffic

Authors: G. Hubert, S. Aubry

Abstract:

The earth is constantly bombarded by cosmic rays that can be of either galactic or solar origin. Thus, humans are exposed to high levels of galactic radiation due to altitude aircraft. The typical total ambient dose equivalent for a transatlantic flight is about 50 μSv during quiet solar activity. On the contrary, estimations differ by one order of magnitude for the contribution induced by certain solar particle events. Indeed, during Ground Level Enhancements (GLE) event, the Sun can emit particles of sufficient energy and intensity to raise radiation levels on Earth's surface. Analyses of GLE characteristics occurring since 1942 showed that for the worst of them, the dose level is of the order of 1 mSv and more. The largest of these events was observed on February 1956 for which the ambient dose equivalent rate is in the orders of 10 mSv/hr. The extra dose at aircraft altitudes for a flight during this event might have been about 20 mSv, i.e. comparable with the annual limit for aircrew. The most recent GLE, occurred on September 2017 resulting from an X-class solar flare, and it was measured on the surface of both the Earth and Mars using the Radiation Assessment Detector on the Mars Science Laboratory's Curiosity Rover. Recently, Hubert et al. proposed a GLE model included in a particle transport platform (named ATMORAD) describing the extensive air shower characteristics and allowing to assess the ambient dose equivalent. In this approach, the GCR is based on the Force-Field approximation model. The physical description of the Solar Cosmic Ray (i.e. SCR) considers the primary differential rigidity spectrum and the distribution of primary particles at the top of the atmosphere. ATMORAD allows to determine the spectral fluence rate of secondary particles induced by extensive showers, considering altitude range from ground to 45 km. Ambient dose equivalent can be determined using fluence-to-ambient dose equivalent conversion coefficients. The objective of this paper is to analyze the GCR and SCR impacts on ambient dose equivalent considering a high number statistic of world-flight paths. Flight trajectories are based on the Eurocontrol Demand Data Repository (DDR) and consider realistic flight plan with and without regulations or updated with Radar Data from CFMU (Central Flow Management Unit). The final paper will present exhaustive analyses implying solar impacts on ambient dose equivalent level and will propose detailed analyses considering route and airplane characteristics (departure, arrival, continent, airplane type etc.), and the phasing of the solar event. Preliminary results show an important impact of the flight path, particularly the latitude which drives the cutoff rigidity variations. Moreover, dose values vary drastically during GLE events, on the one hand with the route path (latitude, longitude altitude), on the other hand with the phasing of the solar event. Considering the GLE occurred on 23 February 1956, the average ambient dose equivalent evaluated for a flight Paris - New York is around 1.6 mSv, which is relevant to previous works This point highlights the importance of monitoring these solar events and of developing semi-empirical and particle transport method to obtain a reliable calculation of dose levels.

Keywords: cosmic ray, human dose, solar flare, aviation

Procedia PDF Downloads 189
108 Comparative Characteristics of Bacteriocins from Endemic Lactic Acid Bacteria

Authors: K. Karapetyan, F. Tkhruni, A. Aghajanyan, T. S. Balabekyan, L. Arstamyan

Abstract:

Introduction: Globalization of the food supply has created the conditions favorable for the emergence and spread of food-borne and especially dangerous pathogens (EDP) in developing countries. The fresh-cut fruit and vegetable industry is searching for alternatives to replace chemical treatments with biopreservative approaches that ensure the safety of the processed foods product. Antimicrobial compounds of lactic acid bacteria (LAB) possess bactericidal or bacteriostatic activity against intestinal pathogens, spoilage organisms and food-borne pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella. Endemic strains of LAB were isolated. The strains, showing broad spectrum of antimicrobial activity against food spoiling microorganisms, were selected. The genotyping by 16S rRNA sequencing, GS-PCR, RAPD PCR methods showed that they were presented by Lactobacillus rhamnosus109, L.plantarum 65, L.plantarum 66 and Enterococcus faecium 64 species. LAB are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB strains were isolated from different dairy products from rural households from the highland regions of Armenia. Serially diluted samples were spread on MRS (Merck, Germany) and hydrolyzed milk agar (1,2 % w/v). Single colonies from each LAB were individually inoculated in liquid MRS medium and incubated at 37oC for 24 hours. Culture broth with biomass was centrifuged at 10,000 g during 20 min for obtaining of cell free culture broth (CFC). The antimicrobial substances from CFC broth were purified by the combination of adsorption-desorption and ion-exchange chromatography methods. Separation of bacteriocins was performed using a HPLC method on "Avex ODS" C18 column. Mass analysis of peptides recorded on the device API 4000 in the electron ionization mode. The spot-on-lawn method on the test culture plated in the solid medium was applied. The antimicrobial activity is expressed in arbitrary units (AU/ml). Results. Purification of CFC broth of LAB allowed to obtain partially purified antimicrobial preparations which contains bacteriocins with broad spectrum of antimicrobial activity. Investigation of their main biochemical properties shown, that inhibitory activity of preparations is partially reduced after treatment with proteinase K, trypsin, pepsin, suggesting a proteinaceous nature of bacteriocin-like substances containing in CFC broth. Preparations preserved their activity after heat treatment (50-121 oC, 20 min) and were stable in the pH range 3–8. The results of SDS PAAG electrophoresis show that L.plantarum 66 and Ent.faecium 64 strains have one bacteriocin (BCN) with maximal antimicrobial activity with approximate molecular weight 2.0-3.0 kDa. From L.rhamnosus 109 two BCNs were obtained. Mass spectral analysis indicates that these bacteriocins have peptide bonds and molecular weight of BCN 1 and BCN 2 are approximately 1.5 kDa and 700 Da. Discussion: Thus, our experimental data shown, that isolated endemic strains of LAB are able to produce bacteriocins with high and different inhibitory activity against broad spectrum of microorganisms of different taxonomic group, such as Salmonella sp., Esherichia coli, Bacillus sp., L.monocytogenes, Proteus mirabilis, Staph. aureus, Ps. aeruginosa. Obtained results proved the perspectives for use of endemic strains in the preservation of foodstuffs. Acknowledgments: This work was realized with financial support of the Project Global Initiatives for Preliferation Prevention (GIPP) T2- 298, ISTC A-1866.

Keywords: antimicrobial activity, bacteriocins, endemic strains, food safety

Procedia PDF Downloads 543
107 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population

Authors: Ye Xue, Zhenhua Deng

Abstract:

Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.

Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool

Procedia PDF Downloads 36
106 The Effects of Aging on Visuomotor Behaviors in Reaching

Authors: Mengjiao Fan, Thomson W. L. Wong

Abstract:

It is unavoidable that older adults may have to deal with aging-related motor problems. Aging is highly likely to affect motor learning and control as well. For example, older adults may suffer from poor motor function and quality of life due to age-related eye changes. These adverse changes in vision results in impairment of movement automaticity. Reaching is a fundamental component of various complex movements, which is therefore beneficial to explore the changes and adaptation in visuomotor behaviors. The current study aims to explore how aging affects visuomotor behaviors by comparing motor performance and gaze behaviors between two age groups (i.e., young and older adults). Visuomotor behaviors in reaching under providing or blocking online visual feedback (simulated visual deficiency) conditions were investigated in 60 healthy young adults (Mean age=24.49 years, SD=2.12) and 37 older adults (Mean age=70.07 years, SD=2.37) with normal or corrected-to-normal vision. Participants in each group were randomly allocated into two subgroups. Subgroup 1 was provided with online visual feedback of the hand-controlled mouse cursor. However, in subgroup 2, visual feedback was blocked to simulate visual deficiency. The experimental task required participants to complete 20 times of reaching to a target by controlling the mouse cursor on the computer screen. Among all the 20 trials, start position was upright in the center of the screen and target appeared at a randomly selected position by the tailor-made computer program. Primary outcomes of motor performance and gaze behaviours data were recorded by the EyeLink II (SR Research, Canada). The results suggested that aging seems to affect the performance of reaching tasks significantly in both visual feedback conditions. In both age groups, blocking online visual feedback of the cursor in reaching resulted in longer hand movement time (p < .001), longer reaching distance away from the target center (p<.001) and poorer reaching motor accuracy (p < .001). Concerning gaze behaviors, blocking online visual feedback increased the first fixation duration time in young adults (p<.001) but decreased it in older adults (p < .001). Besides, under the condition of providing online visual feedback of the cursor, older adults conducted a longer fixation dwell time on target throughout reaching than the young adults (p < .001) although the effect was not significant under blocking online visual feedback condition (p=.215). Therefore, the results suggested that different levels of visual feedback during movement execution can affect gaze behaviors differently in older and young adults. Differential effects by aging on visuomotor behaviors appear on two visual feedback patterns (i.e., blocking or providing online visual feedback of hand-controlled cursor in reaching). Several specific gaze behaviors among the older adults were found, which imply that blocking of visual feedback may act as a stimulus to seduce extra perceptive load in movement execution and age-related visual degeneration might further deteriorate the situation. It indeed provides us with insight for the future development of potential rehabilitative training method (e.g., well-designed errorless training) in enhancing visuomotor adaptation for our aging population in the context of improving their movement automaticity by facilitating their compensation of visual degeneration.

Keywords: aging effect, movement automaticity, reaching, visuomotor behaviors, visual degeneration

Procedia PDF Downloads 291
105 Optimal-Based Structural Vibration Attenuation Using Nonlinear Tuned Vibration Absorbers

Authors: Pawel Martynowicz

Abstract:

Vibrations are a crucial problem for slender structures such as towers, masts, chimneys, wind turbines, bridges, high buildings, etc., that is why most of them are equipped with vibration attenuation or fatigue reduction solutions. In this work, a slender structure (i.e., wind turbine tower-nacelle model) equipped with nonlinear, semiactive tuned vibration absorber(s) is analyzed. For this study purposes, magnetorheological (MR) dampers are used as semiactive actuators. Several optimal-based approaches to structural vibration attenuation are investigated against the standard ‘ground-hook’ law and passive tuned vibration absorber(s) implementations. The common approach to optimal control of nonlinear systems is offline computation of the optimal solution, however, so determined open loop control suffers from lack of robustness to uncertainties (e.g., unmodelled dynamics, perturbations of external forces or initial conditions), and thus perturbation control techniques are often used. However, proper linearization may be an issue for highly nonlinear systems with implicit relations between state, co-state, and control. The main contribution of the author is the development as well as numerical and experimental verification of the Pontriagin maximum-principle-based vibration control concepts that produce directly actuator control input (not the demanded force), thus force tracking algorithm that results in control inaccuracy is entirely omitted. These concepts, including one-step optimal control, quasi-optimal control, and optimal-based modified ‘ground-hook’ law, can be directly implemented in online and real-time feedback control for periodic (or semi-periodic) disturbances with invariant or time-varying parameters, as well as for non-periodic, transient or random disturbances, what is a limitation for some other known solutions. No offline calculation, excitations/disturbances assumption or vibration frequency determination is necessary, moreover, all of the nonlinear actuator (MR damper) force constraints, i.e., no active forces, lower and upper saturation limits, hysteresis-type dynamics, etc., are embedded in the control technique, thus the solution is optimal or suboptimal for the assumed actuator, respecting its limitations. Depending on the selected method variant, a moderate or decisive reduction in the computational load is possible compared to other methods of nonlinear optimal control, while assuring the quality and robustness of the vibration reduction system, as well as considering multi-pronged operational aspects, such as possible minimization of the amplitude of the deflection and acceleration of the vibrating structure, its potential and/or kinetic energy, required actuator force, control input (e.g. electric current in the MR damper coil) and/or stroke amplitude. The developed solutions are characterized by high vibration reduction efficiency – the obtained maximum values of the dynamic amplification factor are close to 2.0, while for the best of the passive systems, these values exceed 3.5.

Keywords: magnetorheological damper, nonlinear tuned vibration absorber, optimal control, real-time structural vibration attenuation, wind turbines

Procedia PDF Downloads 101
104 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Control Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, and natural compared to carbon nanotubes; its price is lower than carbon nanotubes and is cost-effective for industrialization. On the other hand, the presence of highly effective surfaces and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer 1 method. In comparison with the initial graphene, the resulting graphene oxide is heavier and has carboxyl, hydroxyl, and epoxy groups. Therefore, graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. On the other hand, because the hydroxyl, carboxyl, and epoxy groups created on the surface are highly reactive, they have the ability to work with other functional groups such as amines, esters, polymers, etc. Connect and bring new features to the surface of graphene. In fact, it can be concluded that the creation of hydroxyl groups, Carboxyl, and epoxy and in fact graphene oxidation is the first step and step in creating other functional groups on the surface of graphene. Chitosan is a natural polymer and does not cause toxicity in the body. Due to its chemical structure and having OH and NH groups, it is suitable for binding to graphene oxide and increasing its solubility in aqueous solutions. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of chitosan, the amino reaction was performed to form amide transplantation, and the doxorubicin was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX characterized by FT-IR, RAMAN, TGA, and SEM. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin

Procedia PDF Downloads 98
103 Auto Rickshaw Impacts with Pedestrians: A Computational Analysis of Post-Collision Kinematics and Injury Mechanics

Authors: A. J. Al-Graitti, G. A. Khalid, P. Berthelson, A. Mason-Jones, R. Prabhu, M. D. Jones

Abstract:

Motor vehicle related pedestrian road traffic collisions are a major road safety challenge, since they are a leading cause of death and serious injury worldwide, contributing to a third of the global disease burden. The auto rickshaw, which is a common form of urban transport in many developing countries, plays a major transport role, both as a vehicle for hire and for private use. The most common auto rickshaws are quite unlike ‘typical’ four-wheel motor vehicle, being typically characterised by three wheels, a non-tilting sheet-metal body or open frame construction, a canvas roof and side curtains, a small drivers’ cabin, handlebar controls and a passenger space at the rear. Given the propensity, in developing countries, for auto rickshaws to be used in mixed cityscapes, where pedestrians and vehicles share the roadway, the potential for auto rickshaw impacts with pedestrians is relatively high. Whilst auto rickshaws are used in some Western countries, their limited number and spatial separation from pedestrian walkways, as a result of city planning, has not resulted in significant accident statistics. Thus, auto rickshaws have not been subject to the vehicle impact related pedestrian crash kinematic analyses and/or injury mechanics assessment, typically associated with motor vehicle development in Western Europe, North America and Japan. This study presents a parametric analysis of auto rickshaw related pedestrian impacts by computational simulation, using a Finite Element model of an auto rickshaw and an LS-DYNA 50th percentile male Hybrid III Anthropometric Test Device (dummy). Parametric variables include auto rickshaw impact velocity, auto rickshaw impact region (front, centre or offset) and relative pedestrian impact position (front, side and rear). The output data of each impact simulation was correlated against reported injury metrics, Head Injury Criterion (front, side and rear), Neck injury Criterion (front, side and rear), Abbreviated Injury Scale and reported risk level and adds greater understanding to the issue of auto rickshaw related pedestrian injury risk. The parametric analyses suggest that pedestrians are subject to a relatively high risk of injury during impacts with an auto rickshaw at velocities of 20 km/h or greater, which during some of the impact simulations may even risk fatalities. The present study provides valuable evidence for informing a series of recommendations and guidelines for making the auto rickshaw safer during collisions with pedestrians. Whilst it is acknowledged that the present research findings are based in the field of safety engineering and may over represent injury risk, compared to “Real World” accidents, many of the simulated interactions produced injury response values significantly greater than current threshold curves and thus, justify their inclusion in the study. To reduce the injury risk level and increase the safety of the auto rickshaw, there should be a reduction in the velocity of the auto rickshaw and, or, consideration of engineering solutions, such as retro fitting injury mitigation technologies to those auto rickshaw contact regions which are the subject of the greatest risk of producing pedestrian injury.

Keywords: auto rickshaw, finite element analysis, injury risk level, LS-DYNA, pedestrian impact

Procedia PDF Downloads 169
102 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism

Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman

Abstract:

Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.

Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator

Procedia PDF Downloads 349
101 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 301