Search results for: create a multi-successor planning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18435

Search results for: create a multi-successor planning approach

12225 New Environmental Culture in Algeria: Eco Design

Authors: S. Tireche, A. Tairi abdelaziz

Abstract:

Environmental damage has increased steadily in recent decades: Depletion of natural resources, destruction of the ozone layer, greenhouse effect, degradation of the quality of life, land use etc. New terms have emerged as: "Prevention rather than cure" or "polluter pays" falls within the principles of common sense, their practical implementation still remains fragmented. Among the avenues to be explored, one of the most promising is certainly one that focuses on product design. Indeed, where better than during the design phase, can reduce the source of future impacts on the environment? What choices or those of design, they influence more on the environmental characteristics of products? The most currently recognized at the international level is the analysis of the life cycle (LCA) and Life Cycle Assessment, subject to International Standardization (ISO 14040-14043). LCA provides scientific and objective assessment of potential impacts of the product or service, considering its entire life cycle. This approach makes it possible to minimize impacts to the source in pollution prevention. It is widely preferable to curative approach, currently majority in the industrial crops, led mostly by a report of pollution. The "product" is to reduce the environmental impacts of a given product, taking into account all or part of its life cycle. Currently, there are emerging tools, known as eco-design. They are intended to establish an environmental profile of the product to improve its environmental performance. They require a quantity sufficient information on the product for each phase of its life cycle: raw material extraction, manufacturing, distribution, usage, end of life (recycling or incineration or deposit) and all stages of transport. The assessment results indicate the sensitive points of the product studied, points on which the developer must act.

Keywords: eco design, impact, life cycle analysis (LCA), sustainability

Procedia PDF Downloads 416
12224 On Figuring the City Characteristics and Landscape in Overall Urban Design: A Case Study in Xiangyang Central City, China

Authors: Guyue Zhu, Liangping Hong

Abstract:

Chinese overall urban design faces a large number of problems such as the neglect of urban characteristics, generalization of content, and difficulty in implementation. Focusing on these issues, this paper proposes the main points of shaping urban characteristics in overall urban design: focuses on core problems in city function and scale, landscape pattern, historical culture, social resources and modern city style and digs the urban characteristic genes. Then, we put forward “core problem location and characteristic gene enhancement” as a kind of overall urban design technical method. Firstly, based on the main problems in urban space as a whole, for the operability goal, the method extracts the key genes and integrates into the multi-dimension system in a targeted manner. Secondly, hierarchical management and guidance system is established which may be in line with administrative management. Finally, by converting the results, action plan is drawn up that can be dynamically implemented. Based on the above idea and method, a practical exploration has been performed in the case of Xiangyang central city.

Keywords: city characteristics, overall urban design, planning implementation, Xiangyang central city

Procedia PDF Downloads 131
12223 A Study on Golden Ratio (ф) and Its Implications on Seismic Design Using ETABS

Authors: Vishal A. S. Salelkar, Sumitra S. Kandolkar

Abstract:

Golden ratio (ф) or Golden mean or Golden section, as it is often referred to, is a proportion or a mean, which is often used by architects while conceiving the aesthetics of a structure. Golden Ratio (ф) is an irrational number that can be roughly rounded to 1.618 and is derived out of quadratic equation x2-x-1=0. The use of Golden Ratio (ф) can be observed throughout history, as far as ancient Egyptians, which later peaked during the Greek golden age. The use of this design technique is very much prevalent. At present, architects around the world prefer this as one of the primary techniques to decide aesthetics. In this study, an analysis has been performed to investigate whether the use of the golden ratio while planning a structure has any effects on the seismic behavior of the structure. The structure is modeled and analyzed on ETABS (by Computers and Structures, Inc.) for Seismic requirements equivalent to Zone III (Region: Goa-India) as per Indian Standard Code IS-1893. The results were compared to that of an identical structure modeled along the lines of normal design philosophy, not using the Golden Ratio tools. The results were then compared for Story Shear, Story Drift, and Story Displacement Readings. Improvement in performance, although slight, but was observed. Similar improvements were also observed in subsequent iterations, performed using time-acceleration data of previous major earthquakes matched to Zone III as per IS-1893.

Keywords: ETABS, golden ratio, seismic design, structural behavior

Procedia PDF Downloads 172
12222 Impact of Organic Architecture in Building Design

Authors: Zainab Yahaya Suleiman

Abstract:

Physical fitness, as one of the most important keys to a healthy wellbeing, is the basis of dynamic and creative intellectual activity. As a result, the fitness world is expanding every day. It is believed that a fitness centre is a place of healing and also the natural environment is vital to speedy recovery. The aim of this paper is to propose and designs a suitable location for a fitness centre in Batagarawa metropolis. Batagarawa city is enriched with four tertiary institutions with diverse commerce and culture but lacks the facility of a well-equipped fitness centre. The proposed fitness centre intends to be an organically sound centre that will make use of principles of organic architecture to create a new pleasant environment between man and his environments. Organic architecture is the science of designing a building within pleasant natural resources and features surrounding the environment. It is regarded as visual poetry and reinterpretation of nature’s principles; as well as embodies a settlement of person, place, and materials. Using organic architecture, the design was interlaced with the dynamic, organic and monumental features surrounding the environment. The city has inadequate/no facility that is considered organic where one can keep fit in a friendly, conducive and adequate location. Thus, the need for establishing a fitness centre to cater for this need cannot be over-emphasised. Conclusively, a fitness centre will be an added advantage to this fast growing centre of learning.

Keywords: organic architecture, fitness center, environment, natural resources, natural features, building design

Procedia PDF Downloads 404
12221 Promoting Environmental Sustainability in Rural Areas with CMUH Green Experiential Education Center

Authors: Yi-Chu Liu, Hsiu-Huei Hung, Li-Hui Yang, Ming-Jyh Chen

Abstract:

introduction: To promote environmental sustainability, the hospital formed a corporate volunteer team in 2016 to build the Green Experiential Education Center. Our green creation center utilizes attic space to achieve sustainability objectives such as energy efficiency and carbon reduction. Other than executing sustainable plans, the center emphasizes experiential education. We invite our community to actively participate in building a sustainable, economically viable environment. Since 2020, the China Medical University Hospital has provided medical care to the Tgbin community in Taichung City's Heping District. The tribe, primarily composed of Atayal people, the elderly comprise 18% of the total population, and these families' per capita income is relatively low compared to Taiwanese citizens elsewhere. Purpose / Methods: With the experiences at the Green Experiential Education Center, CMUH team identifies the following objectives: Create an aquaponic system to supply vulnerable local households with food. Create a solar renewable energy system to meet the electricity needs of vulnerable local households. Promote the purchase of green electricity certificates to reduce the hospital's carbon emissions and generate additional revenue for the local community. Materials and Methods: In March 2020, we visited the community and installed The aquaponic system in January 2021. CMUH spent 150,000NT (approximately 5000US dollars) in March 2021 to build a 100-square-meter aquaponic system. The production of vegetables and fish caught determines the number of vulnerable families that can be supported. The aquaponics system is a kind of Low energy consumption and environmentally friendly production method, and can simultaneously achieve energy saving, water saving, and fertilizer saving .In September 2023, CMUH will complete a solar renewable energy system. The system will cover an area of 308 square meters and costs approximately NT$240,000 (approximately US$8,000). The installation of electricity meters will enable statistical analysis of power generation. And complete the Taiwan National Renewable Energy Certificate application process. The green electricity certificate will be obtained based on the monthly power generation from the solar renewable energy system. Results: I Food availability and access are crucial considering the remote location and aging population. By creating a fish and vegetable symbiosis system, the vegetables and catches produced will enable economically disadvantaged families to lower food costs. In 2021 and 2022, the aquaponic system produced 52 kilograms of vegetables and 75 kilograms of catch. The production ensures the daily needs of 8 disadvantaged families. Conclusions: The hospital serves as a fortress for public health and the ideal setting for corporate social responsibility. China Medical University Hospital and the Green Experiential Education Center work to strengthen ties with rural communities and offer top-notch specialty medical care. We are committed to assisting people in escaping poverty and hunger as part of the 2030 Sustainable Development Goals.

Keywords: environmental education, sustainability, energy conservation, carbon emissions, rural area development

Procedia PDF Downloads 70
12220 Computer-Integrated Surgery of the Human Brain, New Possibilities

Authors: Ugo Galvanetto, Pirto G. Pavan, Mirco Zaccariotto

Abstract:

The discipline of Computer-integrated surgery (CIS) will provide equipment able to improve the efficiency of healthcare systems and, which is more important, clinical results. Surgeons and machines will cooperate in new ways that will extend surgeons’ ability to train, plan and carry out surgery. Patient specific CIS of the brain requires several steps: 1 - Fast generation of brain models. Based on image recognition of MR images and equipped with artificial intelligence, image recognition techniques should differentiate among all brain tissues and segment them. After that, automatic mesh generation should create the mathematical model of the brain in which the various tissues (white matter, grey matter, cerebrospinal fluid …) are clearly located in the correct positions. 2 – Reliable and fast simulation of the surgical process. Computational mechanics will be the crucial aspect of the entire procedure. New algorithms will be used to simulate the mechanical behaviour of cutting through cerebral tissues. 3 – Real time provision of visual and haptic feedback A sophisticated human-machine interface based on ergonomics and psychology will provide the feedback to the surgeon. The present work will address in particular point 2. Modelling the cutting of soft tissue in a structure as complex as the human brain is an extremely challenging problem in computational mechanics. The finite element method (FEM), that accurately represents complex geometries and accounts for material and geometrical nonlinearities, is the most used computational tool to simulate the mechanical response of soft tissues. However, the main drawback of FEM lies in the mechanics theory on which it is based, classical continuum Mechanics, which assumes matter is a continuum with no discontinuity. FEM must resort to complex tools such as pre-defined cohesive zones, external phase-field variables, and demanding remeshing techniques to include discontinuities. However, all approaches to equip FEM computational methods with the capability to describe material separation, such as interface elements with cohesive zone models, X-FEM, element erosion, phase-field, have some drawbacks that make them unsuitable for surgery simulation. Interface elements require a-priori knowledge of crack paths. The use of XFEM in 3D is cumbersome. Element erosion does not conserve mass. The Phase Field approach adopts a diffusive crack model instead of describing true tissue separation typical of surgical procedures. Modelling discontinuities, so difficult when using computational approaches based on classical continuum Mechanics, is instead easy for novel computational methods based on Peridynamics (PD). PD is a non-local theory of mechanics formulated with no use of spatial derivatives. Its governing equations are valid at points or surfaces of discontinuity, and it is, therefore especially suited to describe crack propagation and fragmentation problems. Moreover, PD does not require any criterium to decide the direction of crack propagation or the conditions for crack branching or coalescence; in the PD-based computational methods, cracks develop spontaneously in the way which is the most convenient from an energy point of view. Therefore, in PD computational methods, crack propagation in 3D is as easy as it is in 2D, with a remarkable advantage with respect to all other computational techniques.

Keywords: computational mechanics, peridynamics, finite element, biomechanics

Procedia PDF Downloads 68
12219 Improving Carbon Fiber Structural Battery Performance with Polymer Interface

Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint

Abstract:

This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.

Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries

Procedia PDF Downloads 97
12218 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis

Authors: Fazilet Alachaher (Benzerdjeb)

Abstract:

From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.

Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning

Procedia PDF Downloads 450
12217 Restructuring the College Classroom: Scaffolding Student Learning and Engagement in Higher Education

Authors: Claire Griffin

Abstract:

Recent years have witnessed a surge in the use of innovative teaching approaches to support student engagement and higher-order learning within higher education. This paper seeks to explore the use of collaborative, interactive teaching and learning strategies to support student engagement in a final year undergraduate Developmental Psychology module. In particular, the use of the jigsaw method, in-class presentations and online discussion fora were adopted in a ‘lectorial’ style teaching approach, aimed at scaffolding learning, fostering social interdependence and supporting various levels of student engagement in higher education. Using the ‘Student Course Engagement Questionnaire’, the impact of such teaching strategies on students’ college classroom experience was measured, with additional qualitative student feedback gathered. Results illustrate the positive impact of the teaching methodologies on students’ levels of engagement, with positive implications emerging across the four engagement factors: skills engagement, emotional engagement, participation/interaction engagement and performance engagement. Thematic analysis on students’ qualitative comments also provided greater insight into the positive impact of the ‘lectorial’ teaching approach on students’ classroom experience within higher level education. Implications of the findings are presented in terms of informing effective teaching practices within higher education. Additional avenues for future research and strategy usage will also be discussed, in light of evolving practice and cutting edge literature within the field.

Keywords: learning, higher education, scaffolding, student engagement

Procedia PDF Downloads 370
12216 Political Economy of Social Movements: The Influence of Capitalism on the Emergence of the Feminist Movement in Ukraine

Authors: Nadiya Didyk

Abstract:

This thesis deals with the unique history of the emergence of the Ukrainian feminist movement. Ukrainian feminism is still in its making, so the field is under-investigated in general. Nevertheless, the perspective of political economy and the enabling and constraining effects of capitalist dynamics are almost absent from the research on the emergence and the development of the feminist movement in Ukraine. This research was inspired by Hetland and Goodwin’s approach and an attempt to test their approach on the case of the Ukrainian feminist movement. Hetland and Goodwin claim that many scholars tend to neglect political economy from analysis of feminism as a new social movements, namely because such movement are not about class or materialist concerns, and thus have no discernible connection to capitalism. Both scholars, however, point out that there at least four ways in which capitalism has been of high importance for any social movement. Accordingly, the following issues are analysed in this paper: capitalism as the facilitator of the emergence and development of Ukrainian feminism; the influence of class balance in society on the formation of the Ukrainian feminist movement, and the ways in which class divisions within the movement shape its goals and strategies. This paper also focuses on the role of capitalist institutions and free wage labour expansion in shaping collective feminist identities and solidarities. Specific attention is paid to the representativeness of women in the highest echelons in business and politics under the capitalist systems. This study shows that there is a significant hole in the literature regarding the feminist movement in Ukraine and aims to motivate further detailed research.

Keywords: feminism, hetland, goodwin, new soical movements, political economy

Procedia PDF Downloads 307
12215 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.

Keywords: base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability

Procedia PDF Downloads 272
12214 Evaluation of Three Commercially Available Materials in Reducing the White Spot Lesions During Fixed Orthodontic Treatment: A Prospective Randomized Controlled Trial

Authors: Sayeeda Laeque Bangi

Abstract:

Objectives: Treating white spot lesions (WSL) to create a sound and esthetically pleasing enamel surface is a question yet to be fully answered. The objective of this randomized controlled trial was to measure and compare the degree of regression of WSL during orthodontic treatment achieved by using three commercially available materials. Methods: A single-blinded randomized prospective clinical trial, comprising 80 patients categorized into four groups (one control group and three experimental groups, with 20 subjects per group) using block randomization, was conducted. Group A (control group): Colgate strong toothpaste; and experiments groups were Group B: GC tooth mousse, Group C: Phos-Flur mouthwash and Group D: SHY-NM. Subjects were instructed to use the designated dentifrice/mouthwash and photographs were taken at baseline, third and sixth months, and white spot lesions were reassessed in the maxillomandibular anterior teeth. Results: All the three groups had shown an improvement in WSL. But Group B has shown the greatest difference in mean values of decalcification index (DI) scores. Conclusion: All three commercially available products showed a regression of WSL over a 6-month duration. GC tooth mousse proved to be the most effective means of treating WSL over other regimens.

Keywords: white spot lesions, dentifrices, orthodontic therapy, remineralization

Procedia PDF Downloads 185
12213 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 110
12212 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 179
12211 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading

Authors: Eda Gök

Abstract:

Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.

Keywords: non-local continuum mechanics, peridynamic theory, solid structures, tensile loading, flexural loading

Procedia PDF Downloads 112
12210 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 244
12209 A Comprehensive Evaluation of the Bus Rapid Transit Project from Gazipur to Airport at Dhaka Focusing on Environmental Impacts

Authors: Swapna Begum, Higano Yoshiro

Abstract:

Dhaka is the capital city of Bangladesh. It is considered as one of the traffic congested cities in the world. The growth of the population of this city is increasing day by day. The land use pattern and the increased socio-economic characteristics increase the motor vehicle ownership of this city. The rapid unplanned urbanization and poor transportation planning have deteriorated the transport environment of this city. Also, the huge travel demand with non-motorized traffics on streets is accounted for enormous traffic congestion in this city. The land transport sector in Dhaka is mainly dependent on road transport comprised of both motorized and non-motorized modes of travel. This improper modal mix and the un-integrated system have resulted in huge traffic congestion in this city. Moreover, this city has no well-organized public transport system and any Mass Transit System to cope with this ever increasing demand. Traffic congestion causes serious air pollution and adverse impact on the economy by deteriorating the accessibility, level of service, safety, comfort and operational efficiency. Therefore, there is an imperative need to introduce a well-organized, properly scheduled mass transit system like (Bus Rapid Transit) BRT minimizing the existing problems.

Keywords: air pollution, BRT, mass transit, traffic congestion

Procedia PDF Downloads 397
12208 Utilization of Multi-Criteria Evaluation in Forensic Engineering and the Expertise outside Wall Subsystem

Authors: Tomas Barnak, Libor Matejka

Abstract:

The aim of this study is to create a standard application using multi-criteria evaluation in the field of forensic engineering. This situation can occur in the professional assessment in several cases such as when it is necessary to consider more criteria variant of the structural subsystems, more variants according to several criteria based on a court claim, which requires expert advice. A problematic situation arises when it is necessary to clearly determine the ranking of the options according to established criteria, and reduce subjective evaluation. For the procurement in the field of construction which is based on the prepared text of the law not only economic criteria but also technical, technological and environmental criteria will be determined. This fact substantially changes the style of evaluation of individual bids. For the above-mentioned needs of procurement, the unification of expert’s decisions and the use of multi-criteria assessment seem to be a reasonable option. In the case of experimental verification when using multi-criteria evaluation of alternatives construction subsystem the economic, technical, technological and environmental criteria will be compared. The core of the solution is to compare a selected number of set criteria, application methods and evaluation weighting based on the weighted values assigned to each of the criteria to use multi-criteria evaluation methods. The sequence of individual variations is determined by the evaluation of the importance of the values of corresponding criteria concerning expertise in the problematic of outside wall constructional subsystems.

Keywords: criteria, expertise, multi-criteria evaluation, outside wall subsystems

Procedia PDF Downloads 321
12207 Internet of Things Edge Device Power Modelling and Optimization Simulator

Authors: Cian O'Shea, Ross O'Halloran, Peter Haigh

Abstract:

Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries, including health care, building energy management, and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provide a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver, and microcontroller as well as the energy source components (batteries, solar cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user-defined devices. The goal of this simulation tool is to predict the lifetime of a device and scope for extension using ambient energy sources.

Keywords: Wireless Sensor Network, IoT, edge device, simulation, solar cells, TEG, supercapacitor, energy harvesting

Procedia PDF Downloads 123
12206 Business Education and Passion: The Place of Amore, Consciousness, Discipline, and Commitment as Holonomic Constructs in Pedagogy, A Conceptual Exploration

Authors: Jennifer K. Bowerman, Rhonda L. Reich

Abstract:

The purpose of this paper is to explore the concepts ACDC (Amore, Consciousness, Discipline, and Commitment) which the authors first discovered as a philosophy and framework for recruitment and organizational development in a successful start-up tech company in Brazil. This paper represents an exploration of these concepts as a potential pedagogical foundation for undergraduate business education in the classroom. It explores whether their application has potential to build emotional and practical resilience in the face of constant organizational and societal change. Derived from Holonomy this paper explains the concepts and develops a narrative around how change influences the operation of organizations. Using examples from leading edge organizational theorists, it explains why a different educational approach grounded in ACDC concepts may not only have relevance for the working world, but also for undergraduates about to enter that world. The authors propose that in the global context of constant change, it makes sense to develop an approach to education, particularly business education, beyond cognitive knowledge, models and tools, in such a way that emotional and practical resilience and creative thinking may be developed. Using the classroom as an opportunity to explore these concepts, and aligning personal passion with the necessary discipline and commitment, may provide students with a greater sense of their own worth and potential as they venture into their ever-changing futures.

Keywords: ACDC, holonomic thinking, organizational learning, organizational change, business pedagogy

Procedia PDF Downloads 235
12205 Optimizing Residential Housing Renovation Strategies at Territorial Scale: A Data Driven Approach and Insights from the French Context

Authors: Rit M., Girard R., Villot J., Thorel M.

Abstract:

In a scenario of extensive residential housing renovation, stakeholders need models that support decision-making through a deep understanding of the existing building stock and accurate energy demand simulations. To address this need, we have modified an optimization model using open data that enables the study of renovation strategies at both territorial and national scales. This approach provides (1) a definition of a strategy to simplify decision trees from theoretical combinations, (2) input to decision makers on real-world renovation constraints, (3) more reliable identification of energy-saving measures (changes in technology or behaviour), and (4) discrepancies between currently planned and actually achieved strategies. The main contribution of the studies described in this document is the geographic scale: all residential buildings in the areas of interest were modeled and simulated using national data (geometries and attributes). These buildings were then renovated, when necessary, in accordance with the environmental objectives, taking into account the constraints applicable to each territory (number of renovations per year) or at the national level (renovation of thermal deficiencies (Energy Performance Certificates F&G)). This differs from traditional approaches that focus only on a few buildings or archetypes. This model can also be used to analyze the evolution of a building stock as a whole, as it can take into account both the construction of new buildings and their demolition or sale. Using specific case studies of French territories, this paper highlights a significant discrepancy between the strategies currently advocated by decision-makers and those proposed by our optimization model. This discrepancy is particularly evident in critical metrics such as the relationship between the number of renovations per year and achievable climate targets or the financial support currently available to households and the remaining costs. In addition, users are free to seek optimizations for their building stock across a range of different metrics (e.g., financial, energy, environmental, or life cycle analysis). These results are a clear call to re-evaluate existing renovation strategies and take a more nuanced and customized approach. As the climate crisis moves inexorably forward, harnessing the potential of advanced technologies and data-driven methodologies is imperative.

Keywords: residential housing renovation, MILP, energy demand simulations, data-driven methodology

Procedia PDF Downloads 63
12204 The Valuation of Employees Provident Fund on Long Term Care Cost among Elderly in Malaysia

Authors: Mazlynda Md Yusuf, Wafa' Mahadzir, Mohamad Yazis Ali Basah

Abstract:

Nowadays, financing long-term care for elderly people is a crucial issue, either towards the family members or the care institution. Corresponding with the growing number of ageing population in Malaysia, there’s a need of concern on the uncertaintiness of future family care and the need for long-term care services. Moreover, with the increasing cost of living, children feels the urge of needing to work and receive a fixed monthly income that results to sending their elderly parents to care institutions. Currently, in Malaysia, the rates for private nursing homes can amount up to RM 4,000 per month excluding medical treatments and other recurring expenses. These costs are expected to be paid using their Employees Provident Fund (EPF) savings that they accumulate during their working years, especially for those working under private sectors. Hence, this study identifies the adequacy of EPF in funding the cost of long-term care service during old age. This study used a hypothetical simulation model to simulate different scenarios. The findings of this study could be used for individuals to prepare on the importance of planning for retirement, especially with the increasing cost of long-term care services.

Keywords: long-term care cost, employees provident fund Malaysia, ageing population, Malaysian elderly

Procedia PDF Downloads 335
12203 Physical Characterization of a Watershed for Correlation with Parameters of Thomas Hydrological Model and Its Application in Iber Hidrodinamic Model

Authors: Carlos Caro, Ernest Blade, Nestor Rojas

Abstract:

This study determined the relationship between basic geo-technical parameters and parameters of the hydro logical model Thomas for water balance of rural watersheds, as a methodological calibration application, applicable in distributed models as IBER model, which represents a distributed system simulation models for unsteady flow numerical free surface. There was an exploration in 25 points (on 15 sub) basin of Rio Piedras (Boy.) obtaining soil samples, to which geo-technical characterization was performed by laboratory tests. Thomas model has a physical characterization of the input area by only four parameters (a, b, c, d). Achieve measurable relationship between geo technical parameters and 4 values of hydro logical parameters helps to determine subsurface, underground and surface flow more agile manner. It is intended in this way to reach some solutions regarding limits initial model parameters on the basis of Thomas geo-technical characterization. In hydro geological models of rural watersheds, calibration is an important process in the characterization of the study area. This step can require a significant computational cost and time, especially if the initial values or parameters before calibration are outside of the geo-technical reality. A better approach in these initial values means optimization of these process through a geo-technical materials area, where is obtained an important approach to the study as in the starting range of variation for the calibration parameters.

Keywords: distributed hydrology, hydrological and geotechnical characterization, Iber model

Procedia PDF Downloads 516
12202 Dynamic Facades: A Literature Review on Double-Skin Façade with Lightweight Materials

Authors: Victor Mantilla, Romeu Vicente, António Figueiredo, Victor Ferreira, Sandra Sorte

Abstract:

Integrating dynamic facades into contemporary building design is shaping a new era of energy efficiency and user comfort. These innovative facades, often constructed using lightweight construction systems and materials, offer an opportunity to have a responsive and adaptive nature to the dynamic behavior of the outdoor climate. Therefore, in regions characterized by high fluctuations in daily temperatures, the ability to adapt to environmental changes is of paramount importance and a challenge. This paper presents a thorough review of the state of the art on double-skin facades (DSF), focusing on lightweight solutions for the external envelope. Dynamic facades featuring elements like movable shading devices, phase change materials, and advanced control systems have revolutionized the built environment. They offer a promising path for reducing energy consumption while enhancing occupant well-being. Lightweight construction systems are increasingly becoming the choice for the constitution of these facade solutions, offering benefits such as reduced structural loads and reduced construction waste, improving overall sustainability. However, the performance of dynamic facades based on low thermal inertia solutions in climatic contexts with high thermal amplitude is still in need of research since their ability to adapt is traduced in variability/manipulation of the thermal transmittance coefficient (U-value). Emerging technologies can enable such a dynamic thermal behavior through innovative materials, changes in geometry and control to optimize the facade performance. These innovations will allow a facade system to respond to shifting outdoor temperature, relative humidity, wind, and solar radiation conditions, ensuring that energy efficiency and occupant comfort are both met/coupled. This review addresses the potential configuration of double-skin facades, particularly concerning their responsiveness to seasonal variations in temperature, with a specific focus on addressing the challenges posed by winter and summer conditions. Notably, the design of a dynamic facade is significantly shaped by several pivotal factors, including the choice of materials, geometric considerations, and the implementation of effective monitoring systems. Within the realm of double skin facades, various configurations are explored, encompassing exhaust air, supply air, and thermal buffering mechanisms. According to the review places a specific emphasis on the thermal dynamics at play, closely examining the impact of factors such as the color of the facade, the slat angle's dimensions, and the positioning and type of shading devices employed in these innovative architectural structures.This paper will synthesize the current research trends in this field, with the presentation of case studies and technological innovations with a comprehensive understanding of the cutting-edge solutions propelling the evolution of building envelopes in the face of climate change, namely focusing on double-skin lightweight solutions to create sustainable, adaptable, and responsive building envelopes. As indicated in the review, flexible and lightweight systems have broad applicability across all building sectors, and there is a growing recognition that retrofitting existing buildings may emerge as the predominant approach.

Keywords: adaptive, control systems, dynamic facades, energy efficiency, responsive, thermal comfort, thermal transmittance

Procedia PDF Downloads 69
12201 Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation

Authors: Dilin Chen, Kang Luo, Jian Wu, Chun Yang, Hongliang Yi

Abstract:

Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics.

Keywords: non-Newtonian fluid, electroosmotic flow, electrohydrodynamic, viscoelastic liquids, heat transfer

Procedia PDF Downloads 59
12200 Yoga as a Tool for Public Health

Authors: Divya Kanchibhotla

Abstract:

Of all the major health threats to emerge, none has challenged the very foundation of public health so profoundly as the rise of non-communicable diseases (NCD). Encouraging a holistic health approach encompasses the community’s well-being. Competent public health grounded with holistic health approach can lay a better foundation in the modern world. Yoga has been increasingly explored as an adjunct therapy to major disorders. This study explores the efficacy of Yoga as a tool for public health. A survey was administered to 5500 adults, and 300 teens were selected from 25 states of India. The study explored the differences in health, happiness, and sustainable living between Yoga-practitioners and Non-yoga practitioners. The study also explored the practice and habits of yoga practitioners (frequency, place, reasons to practice) and Health, Happiness, and Sustainable Living. The subjects were grouped based on age, education, experience in yoga (years of practice), and occupational background. The study population comprised of 54% males and 46% females. Majority of the respondents (59%) were from 18 to 30 years age group. The study indicated that 96.4% of the total respondents have heard of Yoga. However, only 46.8% of the total study population practice yoga (YP) and the rest 53.2% were non-practitioners (NP). From a perspective of how Yoga and health, 72.7% yoga practitioners asserted a peaceful and happy life, 71.9% yoga practitioners felt satisfaction in life, and 70.2 % yoga practitioners had satisfactory health. 61.9% of yoga practitioners report being vegetarian, not eating junk food, and not drinking alcohol than 38.1% Non-Practitioners population. 47% of yoga practitioners found themselves to be more sensitive to the environment compared to only 40% of non-practitioners. India has been witnessing an unprecedented rise in the NCDs, accounting for 61% deaths. The importance of yoga as an adjunct therapy for various disorders and diseases is gaining momentum across the globe. There are various studies on yoga that have indicated benefits of yoga as a unique holistic approach towards lifestyle and a consistent, complementary solution that could be adopted for long-term viability for a well being. The comprehensive study is the first of its kind that takes a holistic look at the prevalence of Yoga for public health in India. Our study is unique and stands out as it is detailed in its outlook with extensive coverage of almost the whole country (surveying 25 out of 29 states) and contemplates on the benefits to an individual at the grass-root level – physical, mental and social outlook. The insights from the study will enable the health care systems and grassroots organizations to make the holistic practice of Yoga accessible to spread sustainable living for a healthy community.

Keywords: non-communicable disease (NCD), sustainable development goal (SDG 3), public health, healthy living

Procedia PDF Downloads 185
12199 'Sit Down, Breathe, and Feel What?' Bringing a Contemplative Intervention into a Public Urban Middle School

Authors: Lunthita M. Duthely, John T. Avella, John Ganapati Coleman

Abstract:

For as many as one in three adolescents living in the United States, the adolescent years is a period of low well-being and mental health challenges—from depressive symptoms to mild to moderate psychological diagnoses. Longitudinal population health studies demonstrated that these challenges persist in young adulthood, and beyond. The positive psychology (PS) approach is a more preventative approach to well-being, which contrasts the traditional, deficits approach to curing mental illness. The research among adult populations formed the basis for PS studies among adolescents. The empirical evidence for the effectiveness of PS interventions exists for both adult and youth populations. Positive Psychology interventions target individuals’ strengths, such as hope and optimism, and positive emotions, such as gratitude. Positive psychology interventions such as increasing gratitude, proved effective in many outcomes among youth, including psychological, social, and academically-related outcomes. Although gratitude-inducing studies have been conducted for the past decade in the United States, few studies have been conducted among samples of urban youth, particularly youth of diverse cultural backgrounds. For nearly two decades, the secular practice of meditation has been tested among adults and more recently among youth, focused mostly among clinical samples. The field of Contemplative Sciences explores practices such as Hatha Yoga, Tai Chi, and Meditation, as preventative practices among children and adolescents. A more recent initiative is to explore Contemplative Practices in the school environment. Contemplative Practices yield a variety of positive outcomes, including academic, social, psychological, physiological, and neurological changes among children and adolescents. Again, few studies were conducted among adolescents of diverse cultural backgrounds. The purpose of this doctoral dissertation research study was to test a gratitude-meditation intervention among middle school students attending a public charter school, located in an urban region of Metropolitan Miami. The objective of this presentation is to summarize the challenges and success of bringing a positive psychology and meditation intervention into an urban middle school. Also, the most recent findings on positive psychology and meditation interventions conducted in school environments will be presented as well.

Keywords: adolescents, contemplative intervention, gratitude, secular meditation, positive psychology, school engagement, Sri Chinmoy

Procedia PDF Downloads 388
12198 Museums: The Roles of Lighting in Design

Authors: Fernanda S. Oliveira

Abstract:

The architectural science of lighting has been mainly concerned with technical aspects and has tended to ignore the psychophysical. There is a growing evidence that adopting passive design solutions may contribute to higher satisfaction. This is even more important in countries with higher solar radiation, which should take advantage of favourable daylighting conditions. However, in art museums, the same light that stimulates vision can also cause permanent damage to the exhibits. Not only the visitors want to see the objects, but also to understand their nature and the artist’s intentions. This paper examines the hypothesis that the more varied and exciting the lighting (and particularly the daylight) in museums rooms, over space and time, the more likely it is that visitors will stay longer, enjoy their experience and be willing to return. This question is not often considered in museums that privilege artificial lighting neglecting the various qualities of daylight other than its capacity to illuminate spaces. The findings of this paper show that daylight plays an important role in museum design, affecting how visitors perceive the exhibition space, as well as contributing to their overall enjoyment in the museum. Rooms with high luminance means were considered more pleasant (r=.311, p<.05) and cheerful (r=.349, p<.05). Lighting conditions also have a direct effect on the phenomenon of museum fatigue with the overall room quality showing an effect on how tired visitors reported to be (r=.421, p<.01). The control and distribution of daylight in museums can therefore contribute to create pleasant conditions for learning, entertainment and amusement, so that visitors are willing to return.

Keywords: daylight, comfort, museums, luminance, visitor

Procedia PDF Downloads 477
12197 Solymorph: Design and Fabrication of AI-Driven Kinetic Facades with Soft Robotics for Optimized Building Energy Performance

Authors: Mohammadreza Kashizadeh, Mohammadamin Hashemi

Abstract:

Solymorph, a kinetic building facade designed for optimal energy capture and architectural expression, is explored in this paper. The system integrates photovoltaic panels with soft robotic actuators for precise solar tracking, resulting in enhanced electricity generation compared to static facades. Driven by the growing interest in dynamic building envelopes, the exploration of novel facade systems is necessitated. Increased energy generation and regulation of energy flow within buildings are potential benefits offered by integrating photovoltaic (PV) panels as kinetic elements. However, incorporating these technologies into mainstream architecture presents challenges due to the complexity of coordinating multiple systems. To address this, Solymorph leverages soft robotic actuators, known for their compliance, resilience, and ease of integration. Additionally, the project investigates the potential for employing Large Language Models (LLMs) to streamline the design process. The research methodology involved design development, material selection, component fabrication, and system assembly. Grasshopper (GH) was employed within the digital design environment for parametric modeling and scripting logic, and an LLM was experimented with to generate Python code for the creation of a random surface with user-defined parameters. Various techniques, including casting, 3D printing, and laser cutting, were utilized to fabricate the physical components. Finally, a modular assembly approach was adopted to facilitate installation and maintenance. A case study focusing on the application of Solymorph to an existing library building at Politecnico di Milano is presented. The facade system is divided into sub-frames to optimize solar exposure while maintaining a visually appealing aesthetic. Preliminary structural analyses were conducted using Karamba3D to assess deflection behavior and axial loads within the cable net structure. Additionally, Finite Element (FE) simulations were performed in Abaqus to evaluate the mechanical response of the soft robotic actuators under pneumatic pressure. To validate the design, a physical prototype was created using a mold adapted for a 3D printer's limitations. Casting Silicone Rubber Sil 15 was used for its flexibility and durability. The 3D-printed mold components were assembled, filled with the silicone mixture, and cured. After demolding, nodes and cables were 3D-printed and connected to form the structure, demonstrating the feasibility of the design. Solymorph demonstrates the potential of soft robotics and Artificial Intelligence (AI) for advancements in sustainable building design and construction. The project successfully integrates these technologies to create a dynamic facade system that optimizes energy generation and architectural expression. While limitations exist, Solymorph paves the way for future advancements in energy-efficient facade design. Continued research efforts will focus on cost reduction, improved system performance, and broader applicability.

Keywords: artificial intelligence, energy efficiency, kinetic photovoltaics, pneumatic control, soft robotics, sustainable building

Procedia PDF Downloads 50
12196 Characterization of Femur Development in Mice: A Computational Approach

Authors: Moncayo Donoso Miguelangel, Guevara Morales Johana, Kalenia Flores Kalenia, Barrera Avellaneda Luis Alejandro, Garzon Alvarado Diego Alexander

Abstract:

In mammals, long bones are formed by ossification of a cartilage mold during early embryonic development, forming structures called secondary ossification centers (SOCs), a primary ossification center (POC) and growth plates. This last structure is responsible for long bone growth. During the femur growth, the morphology of the growth plate and the SOCs may vary during different developmental stages. So far there are no detailed morphological studies of the development process from embryonic to adult stages. In this work, we carried out a morphological characterization of femur development from embryonic period to adulthood in mice. 15, 17 and 19 days old embryos and 1, 7, 14, 35, 46 and 52 days old mice were used. Samples were analyzed by a computational approach, using 3D images obtained by micro-CT imaging. Results obtained in this study showed that femur, its growth plates and SOCs undergo morphological changes during different stages of development, including changes in shape, position and thickness. These variations may be related with a response to mechanical loads imposed for muscle development surrounding the femur and a high activity during early stages necessary to support the high growth rates during first weeks and years of development. This study is important to improve our knowledge about the ossification patterns on every stage of bone development and characterize the morphological changes of important structures in bone growth like SOCs and growth plates.

Keywords: development, femur, growth plate, mice

Procedia PDF Downloads 336