Search results for: conservation challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7097

Search results for: conservation challenges

917 A Look into Surgical Site Infections: Impact of Collective Interventions

Authors: Lisa Bennett, Cynthia Walters, Cynthia Argani, Andy Satin, Geeta Sood, Kerri Huber, Lisa Grubb, Woodrow Noble, Melissa Eichelberger, Darlene Zinalabedini, Eric Ausby, Jeffrey Snyder, Kevin Kirchoff

Abstract:

Background: Surgical site infections (SSIs) within the obstetric population pose a variety of complications, creating clinical and personal challenges for the new mother and her neonate during the postpartum period. Our journey to achieve compliance with the SSI core measure for cesarean sections revealed many opportunities to improve these outcomes. Objective: Achieve and sustain core measure compliance keeping surgical site infection rates below the national benchmark pooled mean of 1.8% in post-operative patients, who delivered via cesarean section at the Johns Hopkins Bayview Medical Center. Methods: A root cause analysis was performed and revealed several environmental, pharmacologic, and clinical practice opportunities for improvement. A multidisciplinary approach led by the OB Safety Nurse, OB Medical Director, and Infectious Disease Department resulted in the implementation of fourteen interventions over a twenty-month period. Interventions included: post-operative dressing changes, standardizing operating room attire, broadening pre-operative antibiotics, initiating vaginal preps, improving operating room terminal cleaning, testing air quality, and re-educating scrub technicians on technique. Results: Prior to the implementation of our interventions, the SSI quarterly rate in Obstetrics peaked at 6.10%. Although no single intervention resulted in dramatic improvement, after implementation of all fourteen interventions, the quarterly SSI rate has subsequently ranged from to 0.0% to 2.70%. Significance: Taking an introspective look at current practices can reveal opportunities for improvement which previously were not considered. Collectively the benefit of these interventions has shown a significant decrease in surgical site infection rates. The impact of this quality improvement project highlights the synergy created when members of the multidisciplinary team work in collaboration to improve patient safety, and achieve a high quality of care.

Keywords: cesarean section, surgical site infection, collaboration and teamwork, patient safety, quality improvement

Procedia PDF Downloads 482
916 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data

Authors: Huinan Zhang, Wenjie Jiang

Abstract:

Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.

Keywords: Artificial intelligence, deep learning, data mining, remote sensing

Procedia PDF Downloads 63
915 Improving Student Retention: Enhancing the First Year Experience through Group Work, Research and Presentation Workshops

Authors: Eric Bates

Abstract:

Higher education is recognised as being of critical importance in Ireland and has been linked as a vital factor to national well-being. Statistics show that Ireland has one of the highest rates of higher education participation in Europe. However, student retention and progression, especially in Institutes of Technology, is becoming an issue as rates on non-completion rise. Both within Ireland and across Europe student retention is seen as a key performance indicator for higher education and with these increasing rates the Irish higher education system needs to be flexible and adapt to the situation it now faces. The author is a Programme Chair on a Level 6 full time undergraduate programme and experience to date has shown that the first year undergraduate students take some time to identify themselves as a group within the setting of a higher education institute. Despite being part of a distinct class on a specific programme some individuals can feel isolated as he or she take the first step into higher education. Such feelings can contribute to students eventually dropping out. This paper reports on an ongoing initiative that aims to accelerate the bonding experience of a distinct group of first year undergraduates on a programme which has a high rate of non-completion. This research sought to engage the students in dynamic interactions with their peers to quickly evolve a group sense of coherence. Two separate modules – a Research Module and a Communications module - delivered by the researcher were linked across two semesters. Students were allocated into random groups and each group was given a topic to be researched. There were six topics – essentially the six sub-headings on the DIT Graduate Attribute Statement. The research took place in a computer lab and students also used the library. The output from this was a document that formed part of the submission for the Research Module. In the second semester the groups then had to make a presentation of their findings where each student spoke for a minimum amount of time. Presentation workshops formed part of that module and students were given the opportunity to practice their presentation skills. These presentations were video recorded to enable feedback to be given. Although this was a small scale study preliminary results found a strong sense of coherence among this particular cohort and feedback from the students was very positive. Other findings indicate that spreading the initiative across two semesters may have been an inhibitor. Future challenges include spreading such Initiatives College wide and indeed sector wide.

Keywords: first year experience, student retention, group work, presentation workshops

Procedia PDF Downloads 229
914 Becoming Multilingual’: Empowering College Students to Learn and Maintain Languages for Life

Authors: Peter Ecke

Abstract:

This research presents insights from a questionnaire study and autobiographic narrative analyses about the language and cultural backgrounds, challenges, interests, and needs, as well as perceptions about bilingualism and language learning of undergraduate students at a Public University in the southwestern United States. Participants were 650 students, enrolled in college-level general education courses, entitled “Becoming multilingual: Learning and maintaining two or more languages” between 2020 and 2024. Data were collected via pre- and post-course questionnaires administered online through the Qualtrix XM platform and complemented with analyses of excerpts from autobiographical narratives that students produced as part of the course assignments. Findings, for example, show that course participants have diverse linguistic backgrounds. The five most frequently reported L1s were English (about 50% of course participants), Spanish, Arabic, Mandarin, and Korean (in that order). The five most frequently reported L2s were English, Spanish, French, ASL, Japanese, German, and Mandarin (in that order). Participants also reported on their L2, L3, L4, and L5 if applicable. Most participants (over 60%) rated themselves bilingual or multilingual whereas 40% considered themselves to be monolingual or foreign language learners. Only about half of the participants reported feeling very or somewhat comfortable with their language skills, but these reports changed somewhat from the pre- to the post-course survey. About half of participants were mostly interested in learning how to effectively learn a foreign language. The other half of participants reported being most curious about learning about themselves as bi/multilinguals, (re)learning a language used in childhood, learning how to bring up a child as a bi/multilingual or learning about people who speak multiple languages (distributed about evenly). Participants’ comments about advantages and disadvantages of being bilingual remained relatively stable but their agreement with common myths about bilingualism and language learning changed from the pre- to the post-course survey. Students’ reflections in the autobiographical narratives and comments in (institutionally administered) anonymous course evaluations provided additional data on students’ concerns about their current language skills and uses as well as their perceptions about learning outcomes and the usefulness of the general education course for their current and future lives. It is hoped that the presented findings and discussion will spark interest among colleagues in offering similar courses as a resource for college students (and possibly other audiences), including those from migrant, indigenous, multilingual, and multicultural communities to contribute to a more harmonious bilingualism and well-being of college students who are or inspire to become bi-or multilingual.

Keywords: autobiographic narratives, general education university course, harmonious bilingualism and well-being, multilingualism, questionnaire study

Procedia PDF Downloads 49
913 Coastal Water Characteristics along the Saudi Arabian Coastline

Authors: Yasser O. Abualnaja1, Alexandra Pavlidou2, Taha Boksmati3, Ahmad Alharbi3, Hammad Alsulmi3, Saleh Omar Maghrabi3, Hassan Mowalad3, Rayan Mutwalli3, James H. Churchill4, Afroditi Androni2, Dionysios Ballas2, Ioannis Hatzianestis2, Harilaos Kontoyiannis2, Angeliki Konstantinopoulou2, Georgios Krokkos1, 5, Georgios Pappas2, Vassilis P. Papadopoulos2, Konstantinos Parinos2, Elvira Plakidi2, Eleni Rousselaki2, Dimitris Velaoras2, Panagiota Zachioti2, Theodore Zoulias2, Ibrahim Hoteit5.

Abstract:

The coastal areas along the Kingdom of Saudi Arabia on both the Red Sea and Arabian Gulf have been witnessing in the past decades an unprecedented economic growth and a rapid increase in anthropogenic activities. Therefore, the Saudi Arabian government has decided to frame a strategy for sustainable development of the coastal and marine environments, which comes in the context of the Vision 2030, aimed at providing the first comprehensive ‘Status Quo Assessment’ of the Kingdom’s coastal and marine environments. This strategy will serve as a baseline assessment for future monitoring activities; this baseline is relied on scientific evidence of the drivers, pressures, and their impact on the environments of the Red Sea and Arabian Gulf. A key element of the assessment was the cumulative pressures of the hotspots analysis, which was developed following the principles of the Driver-Pressure-State-Impact-Response (DPSIR) framework and using the cumulative pressure and impact assessment methodology. Ten hotspot sites were identified, eight in the Red Sea and two in the Arabian Gulf. Thus, multidisciplinary research cruises were conducted throughout the Red Sea and the Arabian Gulf coastal and marine environments in June/July 2021 and September 2021, respectively, in order to understand the relative impact of hydrography and the various pressures on the quality of seawater and sediments. The main objective was to record the physical and biogeochemical parameters along the coastal waters of the Kingdom, tracing the dispersion of contaminants related to specific pressures. The assessment revealed the effect of hydrography on the trophic status of the southern marine coastal areas of the Red Sea. Jeddah Lagoon system seems to face significant eutrophication and pollution challenges, whereas sediments are enriched in some heavy metals in many areas of the Red Sea and the Arabian Gulf. This multidisciplinary research in the Red Sea and the Arabian Gulf coastal waters will pave the way for future detailed environmental monitoring strategies for the Saudi Arabian marine environment.

Keywords: arabian gulf, contaminants, hotspot, red sea

Procedia PDF Downloads 113
912 Analysis of Road Risk in Four French Overseas Territories Compared with Metropolitan France

Authors: Mohamed Mouloud Haddak, Bouthayna Hayou

Abstract:

Road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regards to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, french overseas regions, road safety, road traffic accidents, territorial inequalities

Procedia PDF Downloads 13
911 Complaint Management Mechanism: A Workplace Solution in Development Sector of Bangladesh

Authors: Nusrat Zabeen Islam

Abstract:

Partnership between local Non-Government organizations (NGO) and International development organizations has become an important feature in the development sector of Bangladesh. It is an important challenge for International development organizations to work with local NGOs with proper HR practice. Local NGOs have a lack of quality working environment and this affects the employee’s work experiences and overall performance at individual, partnership with International development organizations and organizational level. Many local development organizations due to the size of the organization and scope do not have a human resource (HR) unit. Inadequate Human Resource Policies, skills, leadership and lack of effective strategy is now a common scenario in Non-Government organization sector of Bangladesh. So corruption, nepotism, and fraud, risk of Political Contribution in office /work space, Sexual/ gender based abuse, insecurity take place in work place of development sector. The Complaint Management Mechanism (CMM) in human resource management could be one way to improve human resource competence in these organizations. The responsibility of Complaint Management Unit (CMU) of an International development organization is to make workplace maltreating, discriminating communities free. The information of impact of CMM was collected through case study of an International organization and some of its partner national organizations in Bangladesh who are engaged in different projects/programs. In this mechanism International development organizations collect complaints from beneficiaries/ staffs by complaint management unit and investigate by segregating the type and mood of the complaint and find out solution to improve the situation within a very short period. A complaint management committee is formed jointly with HR and management personnel. Concerned focal point collect complaints and share with CM unit. By conducting investigation, review of findings, reply back to CM unit and implementation of resolution through this mechanism, a successful bridge of communication and feedback can be established within beneficiaries, staffs and upper management. The overall result of Complaint management mechanism application indicates that by applying CMM accountability and transparency of workplace and workforce in development organization can be increased significantly. Evaluations based on outcomes, and measuring indicators such as productivity, satisfaction, retention, gender equity, proper judgment will guide organizations in building a healthy workforce, and will also clearly articulate the return on investment and justify any need for further funding.

Keywords: human resource management in NGOs, challenges in human resource, workplace environment, complaint management mechanism

Procedia PDF Downloads 323
910 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 85
909 Ensuring Continuity in Subcutaneous Depot Medroxy Progesterone Acetate (DMPA-SC) Contraception Service Provision Using Effective Commodity Management Practices

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background: The Delivering Innovations in Selfcare (DISC) project aims to increase access to self-care options for women of reproductive age, starting with self-inject subcutaneous depot medroxyprogesterone acetate (DMPA-SC) contraception services. However, the project has faced challenges in ensuring the continuous availability of the commodity in health facilities. Although most states in the country rely on the federal ministry of Health for supplies, some are gradually funding the procurement of Family Planning (FP) commodities. This attempt is, however, often accompanied by procurement delays and purchases inadequate to meet demand. This dilemma was further exacerbated by the commencement of demand generation activities by the project in supported states which geometrically increased commodity utilization rates and resulted in receding stock and occasional service disruptions. Strategies: The project deployed various strategies were implemented to ensure the continuous availability of commodities. These include facilitating inter-facility transfer, monthly tracking of commodity utilization, and alerting relevant authorities when stock levels reach a minimum. And supporting state-level procurement of DMPA-SC commodities through catalytic interventions. Results: Effective monitoring of commodity inventory at the facility level and strategic engagement with federal and state-level logistics units have proven successful in mitigating stock-out of commodities. It has helped secure up to 13,000 units of DMPA-SC commodities from federal logistics units and enabled state units to prioritize supported sites. This has ensured the continuity of DMPA-SC services and an increasing trend in the practice of self-injection. Conclusion: A functional supply chain is crucial to achieving commodity security, and without it, health programs cannot succeed. Stakeholder engagement, stock management and catalytic interventions have provided both short- and long-term measures to mitigate stock-outs and ensured a consistent supply of commodities to clients.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, commodities, stock-out

Procedia PDF Downloads 90
908 A Conceptual Model of the 'Driver – Highly Automated Vehicle' System

Authors: V. A. Dubovsky, V. V. Savchenko, A. A. Baryskevich

Abstract:

The current trend in the automotive industry towards automatic vehicles is creating new challenges related to human factors. This occurs due to the fact that the driver is increasingly relieved of the need to be constantly involved in driving the vehicle, which can negatively impact his/her situation awareness when manual control is required, and decrease driving skills and abilities. These new problems need to be studied in order to provide road safety during the transition towards self-driving vehicles. For this purpose, it is important to develop an appropriate conceptual model of the interaction between the driver and the automated vehicle, which could serve as a theoretical basis for the development of mathematical and simulation models to explore different aspects of driver behaviour in different road situations. Well-known driver behaviour models describe the impact of different stages of the driver's cognitive process on driving performance but do not describe how the driver controls and adjusts his actions. A more complete description of the driver's cognitive process, including the evaluation of the results of his/her actions, will make it possible to more accurately model various aspects of the human factor in different road situations. This paper presents a conceptual model of the 'driver – highly automated vehicle' system based on the P.K. Anokhin's theory of functional systems, which is a theoretical framework for describing internal processes in purposeful living systems based on such notions as goal, desired and actual results of the purposeful activity. A central feature of the proposed model is a dynamic coupling mechanism between the decision-making of a driver to perform a particular action and changes of road conditions due to driver’s actions. This mechanism is based on the stage by stage evaluation of the deviations of the actual values of the driver’s action results parameters from the expected values. The overall functional structure of the highly automated vehicle in the proposed model includes a driver/vehicle/environment state analyzer to coordinate the interaction between driver and vehicle. The proposed conceptual model can be used as a framework to investigate different aspects of human factors in transitions between automated and manual driving for future improvements in driving safety, and for understanding how driver-vehicle interface must be designed for comfort and safety. A major finding of this study is the demonstration that the theory of functional systems is promising and has the potential to describe the interaction of the driver with the vehicle and the environment.

Keywords: automated vehicle, driver behavior, human factors, human-machine system

Procedia PDF Downloads 147
907 Improving Low English Oral Skills of 5 Second-Year English Major Students at Debark University

Authors: Belyihun Muchie

Abstract:

This study investigates the low English oral communication skills of 5 second-year English major students at Debark University. It aims to identify the key factors contributing to their weaknesses and propose effective interventions to improve their spoken English proficiency. Mixed-methods research will be employed, utilizing observations, questionnaires, and semi-structured interviews to gather data from the participants. To clearly identify these factors, structured and informal observations will be employed; the former will be used to identify their fluency, pronunciation, vocabulary use, and grammar accuracy, and the later will be suited to observe the natural interactions and communication patterns of learners in the classroom setting. The questionnaires will assess their self-perceptions of their skills, perceived barriers to fluency, and preferred learning styles. Interviews will also delve deeper into their experiences and explore specific obstacles faced in oral communication. Data analysis will involve both quantitative and qualitative responses. The structured observation and questionnaire will be analyzed quantitatively, whereas the informal observation and interview transcripts will be analyzed thematically. Findings will be used to identify the major causes of low oral communication skills, such as limited vocabulary, grammatical errors, pronunciation difficulties, or lack of confidence. They are also helpful to develop targeted solutions addressing these causes, such as intensive pronunciation practice, conversation simulations, personalized feedback, or anxiety-reduction techniques. Finally, the findings will guide designing an intervention plan for implementation during the action research phase. The study's outcomes are expected to provide valuable insights into the challenges faced by English major students in developing oral communication skills, contribute to the development of evidence-based interventions for improving spoken English proficiency in similar contexts, and offer practical recommendations for English language instructors and curriculum developers to enhance student learning outcomes. By addressing the specific needs of these students and implementing tailored interventions, this research aims to bridge the gap between theoretical knowledge and practical speaking ability, equipping them with the confidence and skills to flourish in English communication settings.

Keywords: oral communication skills, mixed-methods, evidence-based interventions, spoken English proficiency

Procedia PDF Downloads 51
906 Revealing the Sustainable Development Mechanism of Guilin Tourism Based on Driving Force/Pressure/State/Impact/Response Framework

Authors: Xiujing Chen, Thammananya Sakcharoen, Wilailuk Niyommaneerat

Abstract:

China's tourism industry is in a state of shock and recovery, although COVID-19 has brought great impact and challenges to the tourism industry. The theory of sustainable development originates from the contradiction of increasing awareness of environmental protection and the pursuit of economic interests. The sustainable development of tourism should consider social, economic, and environmental factors and develop tourism in a planned and targeted way from the overall situation. Guilin is one of the popular tourist cities in China. However, there exist several problems in Guilin tourism, such as low quality of scenic spot construction and low efficiency of tourism resource development. Due to its unwell-managed, Guilin's tourism industry is facing problems such as supply and demand crowding pressure for tourists. According to the data from 2009 to 2019, there is a change in the degree of sustainable development of Guilin tourism. This research aimed to evaluate the sustainable development state of Guilin tourism using the DPSIR (driving force/pressure/state/impact/response) framework and to provide suggestions and recommendations for sustainable development in Guilin. An improved TOPSIS (technology for order preference by similarity to an ideal solution) model based on the entropy weights relationship is applied to the quantitative analysis and to analyze the mechanisms of sustainable development of tourism in Guilin. The DPSIR framework organizes indicators into sub-five categories: of which twenty-eight indicators related to sustainable aspects of Guilin tourism are classified. The study analyzed and summarized the economic, social, and ecological effects generated by tourism development in Guilin from 2009-2019. The results show that the conversion rate of tourism development in Guilin into regional economic benefits is more efficient than that into social benefits. Thus, tourism development is an important driving force of Guilin's economic growth. In addition, the study also analyzed the static weights of 28 relevant indicators of sustainable development of tourism in Guilin and ranked them from largest to smallest. Then it was found that the economic and social factors related to tourism revenue occupy the highest weight, which means that the economic and social development of Guilin can influence the sustainable development of Guilin tourism to a greater extent. Therefore, there is a two-way causal relationship between tourism development and economic growth in Guilin. At the same time, ecological development-related indicators also have relatively large weights, so ecological and environmental resources also have a great influence on the sustainable development of Guilin tourism.

Keywords: DPSIR framework, entropy weights analysis, sustainable development of tourism, TOPSIS analysis

Procedia PDF Downloads 101
905 Building up Regional Innovation Systems (RIS) for Development: The Case Study of the State of Mexico, México

Authors: Jose Luis Solleiro, Rosario Castanon, Laura Elena Martinez

Abstract:

The State of Mexico is an administrative entity of Mexico, and it is one of the most important territories due to its great economic and social impact for the whole country, especially since it contributes with more than eight of the national Gross Domestic Product (GDP). The State of Mexico has a population of over seventeen million people and host very important business and productive industries such as Automotive, Chemicals, Pharmaceutical, and Agri-food. In 2017, the State Development Plan (Plan Estatal de Desarrollo in Spanish) which is a policy document that rules State's economic actions and integrates the bases for sectoral and regional programs to achieve regional development), raised innovation as a key aspect to boost competitiveness and productivity of the State of Mexico. Therefore, in line with this proposal, in 2018 the Mexican Council for Science and Technology (COMECYT for its acronym in Spanish), an institution in charge of promoting public science and technology policies in the State of Mexico, took actions towards building up the State´s Innovation System. Hence, the main objective of this paper is to review and analyze the process to create RIS in the State of Mexico. We focus on the key elements of the process, the diverse actors that were involved in it, the activities that were carried out and the identification of the challenges, findings, successes, and failures of the intended exercise. The methodology used to analyze the structure of the Innovation System of the State of Mexico is based on two elements: the case study and the research-action approach. The main objective of the paper, the case study was based on semi-structured interviews with key actors who have participated in the process of launching the RIS of the State of Mexico. Additionally, we analyzed the information reports and other documents that were elaborated during the process of shaping the State's innovation system. Finally, the results obtained in the process were also examined. The relevance of this investigation fundamentally rests in two elements: 1) keeping documental record of the process of building a RIS in Mexico; and 2) carrying out the analysis of this case study recognizing the importance of knowledge extraction and dissemination, so that lessons on this matter may be useful for similar experiences in the future. We conclude that in Mexico, documentation and analysis efforts related to the formation of RIS and interaction processes between innovation ecosystem actors are scarce, so documents like are of great importance, especially since it generates a series of findings and recommendations for the building of RIS.

Keywords: regional innovation systems, innovation, development, competitiveness

Procedia PDF Downloads 117
904 Actionable Personalised Learning Strategies to Improve a Growth-Mindset in an Educational Setting Using Artificial Intelligence

Authors: Garry Gorman, Nigel McKelvey, James Connolly

Abstract:

This study will evaluate a growth mindset intervention with Junior Cycle Coding and Senior Cycle Computer Science students in Ireland, where gamification will be used to incentivise growth mindset behaviour. An artificial intelligence (AI) driven personalised learning system will be developed to present computer programming learning tasks in a manner that is best suited to the individuals’ own learning preferences while incentivising and rewarding growth mindset behaviour of persistence, mastery response to challenge, and challenge seeking. This research endeavours to measure mindset with before and after surveys (conducted nationally) and by recording growth mindset behaviour whilst playing a digital game. This study will harness the capabilities of AI and aims to determine how a personalised learning (PL) experience can impact the mindset of a broad range of students. The focus of this study will be to determine how personalising the learning experience influences female and disadvantaged students' sense of belonging in the computer science classroom when tasks are presented in a manner that is best suited to the individual. Whole Brain Learning will underpin this research and will be used as a framework to guide the research in identifying key areas such as thinking and learning styles, cognitive potential, motivators and fears, and emotional intelligence. This research will be conducted in multiple school types over one academic year. Digital games will be played multiple times over this period, and the data gathered will be used to inform the AI algorithm. The three data sets are described as follows: (i) Before and after survey data to determine the grit scores and mindsets of the participants, (ii) The Growth Mind-Set data from the game, which will measure multiple growth mindset behaviours, such as persistence, response to challenge and use of strategy, (iii) The AI data to guide PL. This study will highlight the effectiveness of an AI-driven personalised learning experience. The data will position AI within the Irish educational landscape, with a specific focus on the teaching of CS. These findings will benefit coding and computer science teachers by providing a clear pedagogy for the effective delivery of personalised learning strategies for computer science education. This pedagogy will help prevent students from developing a fixed mindset while helping pupils to exhibit persistence of effort, use of strategy, and a mastery response to challenges.

Keywords: computer science education, artificial intelligence, growth mindset, pedagogy

Procedia PDF Downloads 88
903 Data-Driven Strategies for Enhancing Food Security in Vulnerable Regions: A Multi-Dimensional Analysis of Crop Yield Predictions, Supply Chain Optimization, and Food Distribution Networks

Authors: Sulemana Ibrahim

Abstract:

Food security remains a paramount global challenge, with vulnerable regions grappling with issues of hunger and malnutrition. This study embarks on a comprehensive exploration of data-driven strategies aimed at ameliorating food security in such regions. Our research employs a multifaceted approach, integrating data analytics to predict crop yields, optimizing supply chains, and enhancing food distribution networks. The study unfolds as a multi-dimensional analysis, commencing with the development of robust machine learning models harnessing remote sensing data, historical crop yield records, and meteorological data to foresee crop yields. These predictive models, underpinned by convolutional and recurrent neural networks, furnish critical insights into anticipated harvests, empowering proactive measures to confront food insecurity. Subsequently, the research scrutinizes supply chain optimization to address food security challenges, capitalizing on linear programming and network optimization techniques. These strategies intend to mitigate loss and wastage while streamlining the distribution of agricultural produce from field to fork. In conjunction, the study investigates food distribution networks with a particular focus on network efficiency, accessibility, and equitable food resource allocation. Network analysis tools, complemented by data-driven simulation methodologies, unveil opportunities for augmenting the efficacy of these critical lifelines. This study also considers the ethical implications and privacy concerns associated with the extensive use of data in the realm of food security. The proposed methodology outlines guidelines for responsible data acquisition, storage, and usage. The ultimate aspiration of this research is to forge a nexus between data science and food security policy, bestowing actionable insights to mitigate the ordeal of food insecurity. The holistic approach converging data-driven crop yield forecasts, optimized supply chains, and improved distribution networks aspire to revitalize food security in the most vulnerable regions, elevating the quality of life for millions worldwide.

Keywords: data-driven strategies, crop yield prediction, supply chain optimization, food distribution networks

Procedia PDF Downloads 63
902 Influence of Marital Status on Nutritional, Physical, Mental, and Social Health: A Study on Women in Faisalabad, Pakistan

Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq

Abstract:

Unmarried women over thirty years of age as a health issue is a relatively young phenomenon, but it is rapidly growing in Pakistan; therefore, it is a public health issue. The challenges affecting nutrition and public health are some of the indispensable components that need to be met to achieve sustainable development goals (SDGs). This research intends to explain these goals in the context of nutrition and public health, especially analyzing the issues related to unmarried women above the age of thirty in Faisalabad, Pakistan. Still, this research is not feasible in Pakistan. In Pakistan alone, 10 million women over the age of 35 are unmarried, based on a recent United Nations report. The United Nations, in cooperation with the World Health Organization, has identified health as a state of being healthy, free from illness or disease, and not just a condition where there are no diseases or bodily disabilities. The current generation of women is unmarried and living a life under constant pressure from society to deliver changes like the diet these women take, and hence, their nutritional status defines their comprehensive health triangle, a mix of physical, mental, and social well-being. The research was carried out under the qualitative research paradigm, specifically through interviews with the participants who were unmarried women and married women above the age of thirty. This qualitative study explores how marriage affects the intake of nutrients, nutritional health, psychological and social well-being and their effects. The realization of well-being consisted of factors like physical health, mental and emotional health, pressure from society, social health, economic independence, and decision-making power to reveal the impact of singleness on well-being. The findings disclosed that marital status had a notable impact on the diet habits and nutritional behaviors of women in Faisalabad. Also, it was found that single women suffer from more stress and are not as positive as married women because they are lonely, as their husbands are absent from their lives. The findings established that nutritional understanding is differentially affected by marital status as a determinant of the health triangle consisting of physical, mental, and social health. Awareness of these factors is significant in designing specific goal-directed interventions that can enhance the nutritional well-being and general health status of unmarried women in Faisalabad. Hence, this study underscores the necessity of maintaining supportive environments and increasing the regard concerning the health state of single ladies beyond thirty.

Keywords: health triangle, over thirty, singleness, age barriers, unmarried women, women’s health, well-being

Procedia PDF Downloads 29
901 Considering Uncertainties of Input Parameters on Energy, Environmental Impacts and Life Cycle Costing by Monte Carlo Simulation in the Decision Making Process

Authors: Johannes Gantner, Michael Held, Matthias Fischer

Abstract:

The refurbishment of the building stock in terms of energy supply and efficiency is one of the major challenges of the German turnaround in energy policy. As the building sector accounts for 40% of Germany’s total energy demand, additional insulation is key for energy efficient refurbished buildings. Nevertheless the energetic benefits often the environmental and economic performances of insulation materials are questioned. The methods Life Cycle Assessment (LCA) as well as Life Cycle Costing (LCC) can form the standardized basis for answering this doubts and more and more become important for material producers due efforts such as Product Environmental Footprint (PEF) or Environmental Product Declarations (EPD). Due to increasing use of LCA and LCC information for decision support the robustness and resilience of the results become crucial especially for support of decision and policy makers. LCA and LCC results are based on respective models which depend on technical parameters like efficiencies, material and energy demand, product output, etc.. Nevertheless, the influence of parameter uncertainties on lifecycle results are usually not considered or just studied superficially. Anyhow the effect of parameter uncertainties cannot be neglected. Based on the example of an exterior wall the overall lifecycle results are varying by a magnitude of more than three. As a result simple best case worst case analyses used in practice are not sufficient. These analyses allow for a first rude view on the results but are not taking effects into account such as error propagation. Thereby LCA practitioners cannot provide further guidance for decision makers. Probabilistic analyses enable LCA practitioners to gain deeper understanding of the LCA and LCC results and provide a better decision support. Within this study, the environmental and economic impacts of an exterior wall system over its whole lifecycle are illustrated, and the effect of different uncertainty analysis on the interpretation in terms of resilience and robustness are shown. Hereby the approaches of error propagation and Monte Carlo Simulations are applied and combined with statistical methods in order to allow for a deeper understanding and interpretation. All in all this study emphasis the need for a deeper and more detailed probabilistic evaluation based on statistical methods. Just by this, misleading interpretations can be avoided, and the results can be used for resilient and robust decisions.

Keywords: uncertainty, life cycle assessment, life cycle costing, Monte Carlo simulation

Procedia PDF Downloads 286
900 Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease.

Keywords: dual antiplatelet therapy (DAPT), General Practice, Multiple Imputation, The Health Improvement Network(THIN), hazard ratio (HR), Weibull-Cox model

Procedia PDF Downloads 149
899 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 141
898 Phenomenology of Child Labour in Estates, Farms and Plantations in Zimbabwe: A Comparative Analysis of Tanganda and Eastern Highlands Tea Estates

Authors: Chupicai Manuel

Abstract:

The global efforts to end child labour have been increasingly challenged by adages of global capitalism, inequalities and poverty affecting the global south. In the face the of rising inequalities whose origin can be explained from historical and political economy analysis between the poor and the rich countries, child labour is also on the rise particularly on the global south. The socio-economic and political context of Zimbabwe has undergone serious transition from colonial times through the post-independence normally referred to as the transition period up to the present day. These transitions have aided companies and entities in the business and agriculture sector to exploit child labour while country provided conditions that enhance child labour due to vulnerability of children and anomic child welfare system that plagued the country. Children from marginalised communities dominated by plantations and farms are affected most. This paper explores the experiences and perceptions of children working in tea estates, plantations and farms, and the adults who formerly worked in these plantations during their childhood to share their experiences and perceptions on child labour in Zimbabwe. Childhood theories that view children as apprentices and a human rights perspectives were employed to interrogate the concept of childhood, child labour and poverty alleviation strategies. Phenomenological research design was adopted to describe the experiences of children working in plantations and interpret the meanings they have on their work and livelihoods. The paper drew form 30 children from two plantations through semi-structured interviews and 15 key informant interviews from civil society organisations, international labour organisation, adults who formerly worked in the plantations and the personnel of the plantations. The findings of the study revealed that children work on the farms as an alternative model for survival against economic challenges while the majority cited that poverty compel them to work and get their fees and food paid for. Civil society organisations were of the view that child rights are violated and the welfare system of the country is malfunctional. The perceptions of the majority of the children interviewed are that the system on the plantations is better and this confirmed the socio-constructivist theory that views children as apprentices. The study recommended child sensitive policies and welfare regime that protects children from exploitation together with policing and legal measures that secure child rights.

Keywords: child labour, child rights, phenomenology, poverty reduction

Procedia PDF Downloads 257
897 Nigerian Media Coverage of the Chibok Girls Kidnap: A Qualitative News Framing Analysis of the Nation Newspaper

Authors: Samuel O. Oduyela

Abstract:

Over the last ten years, many studies have examined the media coverage of terrorism across the world. Nevertheless, most of these studies have been inclined to the western narrative, more so in relation to the international media. This study departs from that partiality to explore the Nigerian press and its coverage of the Boko Haram. The study intends to illustrate how the Nigerian press has reported its homegrown terrorism within its borders. On 14 April 2014, the Shekau-led Boko Haram kidnapped over 200 female students from Chibok in the Borno State. This study analyses a structured sample of news stories, feature articles, editorial comments, and opinions from the Nation newspaper. The study examined the representation of the Chibok girls kidnaps by concentrating on four main viewpoints. The news framing of the Chibok girls’ kidnap under Presidents Goodluck Jonathan (2014) and Mohammadu Buhari (2016-2018), the sourcing model present in the news reporting of the kidnap and the challenges Nation reporters face in reporting Boko Haram. The study adopted the use of qualitative news framing analysis to provide further insights into significant developments established from the examination of news contents. The study found that the news reportage mainly focused on the government response to Chibok girls kidnap, international press and Boko Haram. Boko Haram was also framed, as a political conspiracy, as prevailing, and as instilling fear. Political, and economic influence appeared to be a significant determinant of the reportage. The study found that the Nation newspaper's portrayal of the crisis under President Jonathan differed significantly from under President Buhari. While the newspaper framed the action of President Jonathan as lacklustre, dismissive, and confusing, it was less critical of President Buhari's government's handling of the crisis. The Nation newspaper failed to promote or explore non-violent approaches. News reports of the kidnap, thus, were presented mainly from a political and ethnoreligious perspective. The study also raised questions of what roles should journalists play in covering conflicts? Should they merely report comments on and interpret it, or should they be actors in the resolution or, more importantly, the prevention of conflicts? The study underlined the need for the independence of the media, more training for journalists to advance a more nuanced and conflict-sensitive news coverage in the Nigerian context.

Keywords: boko haram, chibok girls kidnap, conflict in nigeria, media framing

Procedia PDF Downloads 151
896 A Comprehensive Analysis of Factors Leading to Fatal Road Accidents in France and Its Overseas Territories

Authors: Bouthayna Hayou, Mohamed Mouloud Haddak

Abstract:

In road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regard to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, overseas France, road safety, road traffic accident, territorial inequalities

Procedia PDF Downloads 13
895 Introducing Principles of Land Surveying by Assigning a Practical Project

Authors: Introducing Principles of Land Surveying by Assigning a Practical Project

Abstract:

A practical project is used in an engineering surveying course to expose sophomore and junior civil engineering students to several important issues related to the use of basic principles of land surveying. The project, which is the design of a two-lane rural highway to connect between two arbitrary points, requires students to draw the profile of the proposed highway along with the existing ground level. Areas of all cross-sections are then computed to enable quantity computations between them. Lastly, Mass-Haul Diagram is drawn with all important parts and features shown on it for clarity. At the beginning, students faced challenges getting started on the project. They had to spend time and effort thinking of the best way to proceed and how the work would flow. It was even more challenging when they had to visualize images of cut, fill and mixed cross sections in three dimensions before they can draw them to complete the necessary computations. These difficulties were then somewhat overcome with the help of the instructor and thorough discussions among team members and/or between different teams. The method of assessment used in this study was a well-prepared-end-of-semester questionnaire distributed to students after the completion of the project and the final exam. The survey contained a wide spectrum of questions from students' learning experience when this course development was implemented to students' satisfaction of the class instructions provided to them and the instructor's competency in presenting the material and helping with the project. It also covered the adequacy of the project to show a sample of a real-life civil engineering application and if there is any excitement added by implementing this idea. At the end of the questionnaire, students had the chance to provide their constructive comments and suggestions for future improvements of the land surveying course. Outcomes will be presented graphically and in a tabular format. Graphs provide visual explanation of the results and tables, on the other hand, summarize numerical values for each student along with some descriptive statistics, such as the mean, standard deviation, and coefficient of variation for each student and each question as well. In addition to gaining experience in teamwork, communications, and customer relations, students felt the benefit of assigning such a project. They noticed the beauty of the practical side of civil engineering work and how theories are utilized in real-life engineering applications. It was even recommended by students that such a project be exercised every time this course is offered so future students can have the same learning opportunity they had.

Keywords: land surveying, highway project, assessment, evaluation, descriptive statistics

Procedia PDF Downloads 230
894 Examining Moderating Mechanisms of Alignment Practice and Community Response through the Self-Construal Perspective

Authors: Chyong-Ru Liu, Wen-Shiung Huang, Wan-Ching Tang, Shan-Pei Chen

Abstract:

Two of the biggest challenges companies involved in sports and exercise information services face are how to strengthen participation in virtual sports/exercise communities and how to increase the ongoing participatoriness of those communities. In the past, relatively little research has explored mechanisms for strengthening alignment practice and community response from the perspective of self-construal, and as such this study seeks to explore the self-construal of virtual sports/exercise communities, the role it plays in the emotional commitment of forming communities, and the factor that can strengthen alignment practice. Moreover, which factor of the emotional commitment of forming virtual communities have the effect of strengthening interference in the process of transforming customer citizenship behaviors? This study collected 625 responses from the two leading websites in terms of fan numbers in the provision of information on road race and marathon events in Taiwan, with model testing conducted through linear structural equation modelling and the bootstrapping technique to test the proposed hypotheses. The results proved independent construal had a stronger positive direct effect on affective commitment to fellow customers than did interdependent construal, and the influences of affective commitment to fellow customers in enhancing customer citizenship behavior. Public self-consciousness moderates the relationships among independent self-construal and interdependent self-construal on effective commitment to fellow customers. Perceived playfulness moderates the relationships between effective commitment to fellow customers and customer citizenship behavior. The findings of this study provide significant insights for the researchers and related organizations. From the theoretical perspective, this is empirical research that investigated the self-construal theory and responses (i.e., affective commitment to fellow customers, customer citizenship behavior) in virtual sports/exercise communities. We further explore how to govern virtual sports/exercise community participants’ heterogeneity through public self-consciousness mechanism to align participants’ affective commitment. Moreover, perceived playfulness has the effect of strengthening effective commitment to fellow customers with customer citizenship behaviors. The results of this study can provide a foundation for the construction of future theories and can be provided to related organizations for reference in their planning of virtual communities.

Keywords: self-construal theory, public self-consciousness, affective commitment, customer citizenship behavior

Procedia PDF Downloads 107
893 Demographic Shrinkage and Reshaping Regional Policy of Lithuania in Economic Geographic Context

Authors: Eduardas Spiriajevas

Abstract:

Since the end of the 20th century, when Lithuania regained its independence, a process of demographic shrinkage started. Recently, it affects the efficiency of implementation of actions related to regional development policy and geographic scopes of created value added in the regions. The demographic structures of human resources reflect onto the regions and their economic geographic environment. Due to reshaping economies and state reforms on restructuration of economic branches such as agriculture and industry, it affects the economic significance of services’ sector. These processes influence the competitiveness of labor market and its demographic characteristics. Such vivid consequences are appropriate for the structures of human migrations, which affected the processes of demographic ageing of human resources in the regions, especially in peripheral ones. These phenomena of modern times induce the demographic shrinkage of society and its economic geographic characteristics in the actions of regional development and in regional policy. The internal and external migrations of population captured numerous regional economic disparities, and influenced on territorial density and concentration of population of the country and created the economies of spatial unevenness in such small geographically compact country as Lithuania. The processes of territorial reshaping of distribution of population create new regions and their economic environment, which is not corresponding to the main principles of regional policy and its power to create the well-being and to promote the attractiveness for economic development. These are the new challenges of national regional policy and it should be researched in a systematic way of taking into consideration the analytical approaches of regional economy in the context of economic geographic research methods. A comparative territorial analysis according to administrative division of Lithuania in relation to retrospective approach and introduction of method of location quotients, both give the results of economic geographic character with cartographic representations using the tools of spatial analysis provided by technologies of Geographic Information Systems. A set of these research methods provide the new spatially evidenced based results, which must be taken into consideration in reshaping of national regional policy in economic geographic context. Due to demographic shrinkage and increasing differentiation of economic developments within the regions, an input of economic geographic dimension is inevitable. In order to sustain territorial balanced economic development, there is a need to strengthen the roles of regional centers (towns) and to empower them with new economic functionalities for revitalization of peripheral regions, and to increase their economic competitiveness and social capacities on national scale.

Keywords: demographic shrinkage, economic geography, Lithuania, regions

Procedia PDF Downloads 161
892 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 491
891 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy

Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.

Abstract:

Background:  Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.

Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality

Procedia PDF Downloads 38
890 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 179
889 Investigating the Influence of Activation Functions on Image Classification Accuracy via Deep Convolutional Neural Network

Authors: Gulfam Haider, sana danish

Abstract:

Convolutional Neural Networks (CNNs) have emerged as powerful tools for image classification, and the choice of optimizers profoundly affects their performance. The study of optimizers and their adaptations remains a topic of significant importance in machine learning research. While numerous studies have explored and advocated for various optimizers, the efficacy of these optimization techniques is still subject to scrutiny. This work aims to address the challenges surrounding the effectiveness of optimizers by conducting a comprehensive analysis and evaluation. The primary focus of this investigation lies in examining the performance of different optimizers when employed in conjunction with the popular activation function, Rectified Linear Unit (ReLU). By incorporating ReLU, known for its favorable properties in prior research, the aim is to bolster the effectiveness of the optimizers under scrutiny. Specifically, we evaluate the adjustment of these optimizers with both the original Softmax activation function and the modified ReLU activation function, carefully assessing their impact on overall performance. To achieve this, a series of experiments are conducted using a well-established benchmark dataset for image classification tasks, namely the Canadian Institute for Advanced Research dataset (CIFAR-10). The selected optimizers for investigation encompass a range of prominent algorithms, including Adam, Root Mean Squared Propagation (RMSprop), Adaptive Learning Rate Method (Adadelta), Adaptive Gradient Algorithm (Adagrad), and Stochastic Gradient Descent (SGD). The performance analysis encompasses a comprehensive evaluation of the classification accuracy, convergence speed, and robustness of the CNN models trained with each optimizer. Through rigorous experimentation and meticulous assessment, we discern the strengths and weaknesses of the different optimization techniques, providing valuable insights into their suitability for image classification tasks. By conducting this in-depth study, we contribute to the existing body of knowledge surrounding optimizers in CNNs, shedding light on their performance characteristics for image classification. The findings gleaned from this research serve to guide researchers and practitioners in making informed decisions when selecting optimizers and activation functions, thus advancing the state-of-the-art in the field of image classification with convolutional neural networks.

Keywords: deep neural network, optimizers, RMsprop, ReLU, stochastic gradient descent

Procedia PDF Downloads 127
888 Formulation and Characterization of Antimicrobial Herbal Mouthwash from Some Herbal Extracts for Treatment of Periodontal Diseases

Authors: Reenu Yadav, Abhay Asthana, S. K. Yadav

Abstract:

Purpose: The aim of the present work was to develop an oral gel for brushing with an antimicrobial activity which will cure/protect from various periodontal diseases such as periodontitis, gingivitis, and pyorrhea. Methods: Plant materials procured from local suppliers, extracted and standardized. Screening of antimicrobial activity was carried out with the help of disk diffusion method. The gel was formulated by dried extracts of Beautea monosperma and Cordia obliquus. Gels were evaluated on various parameters and standardization of the formulation was performed. The release of drugs was studied in pH 6.8 using a mastication device.Total phenolic and flavonoid contents were estimated by folin-Ciocalteu and aluminium chloride method, and stability studies were performed (40°C and RH 75% ± 5% for 90 days) to assess the effect of temperature and humidity on the concentration of phenolic and flavonoid contents. The results of accelerated stability conditions were compared with that of samples kept at controlled conditions (RT). The control samples were kept at room temperature (25°C, 35% RH for 180 days). Results: Results are encouraging; extracts possess significant antimicrobial activity at very low concentration (15µg/disc, 20µg/disc and 15 µg/ disc) on oral pathogenic bacteria. The formulation has optimal characteristics, as well as has a pleasant appearance, fragrance, texture, and taste, is highly acceptable by the volunteers. The diffusion coefficient values ranged from 0.6655 to 0.9164. Since the R values of korsmayer papas were close to 1, Drug release from formulation follows matrix diffusion kinetics. Hence, diffusion was the mechanism of the drug release. Formulation follows non-Fickian transport mechanism. Most Formulations released 50 % of their contents within 25-30 minutes. Results obtained from the accelerated stability studies are indicative of a slight reduction in flavonoids and phenolic contents with time on long time storage. When measured degradation under ambient conditions, degradation was significantly lower than in accelerated stability study. Conclusion: Plant extracts possess compounds with antimicrobial properties can be used as. Developed formulation will cure/protect from various periodontal diseases. Further development and evaluations oral gel including the isolated compounds on the commercial scale and their clinical and toxicological studies are the future challenges.

Keywords: herbal gel, dental care, ambient conditions, commercial scale

Procedia PDF Downloads 440