Search results for: space telemetry monitoring
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6712

Search results for: space telemetry monitoring

562 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes

Authors: Seyedeh Pardis Hosseini

Abstract:

With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.

Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability

Procedia PDF Downloads 25
561 Sustainable Technology and the Production of Housing

Authors: S. Arias

Abstract:

New housing developments and the technological changes that this implies, adapt the styles of living of its residents, as well as new family structures and forms of work due to the particular needs of a specific group of people which involves different techniques of dealing with, organize, equip and use a particular territory. Currently, own their own space is increasingly important and the cities are faced with the challenge of providing the opportunity for such demands, as well as energy, water and waste removal necessary in the process of construction and occupation of new human settlements. Until the day of today, not has failed to give full response to these demands and needs, resulting in cities that grow without control, badly used land, avenues and congested streets. Buildings and dwellings have an important impact on the environment and on the health of the people, therefore environmental quality associated with the comfort of humans to the sustainable development of natural resources. Applied to architecture, this concept involves the incorporation of new technologies in all the constructive process of a dwelling, changing customs of developers and users, what must be a greater effort in planning energy savings and thus reducing the emissions Greenhouse Gases (GHG) depending on the geographical location where it is planned to develop. Since the techniques of occupation of the territory are not the same everywhere, must take into account that these depend on the geographical, social, political, economic and climatic-environmental circumstances of place, which in modified according to the degree of development reached. In the analysis that must be undertaken to check the degree of sustainability of the place, it is necessary to make estimates of the energy used in artificial air conditioning and lighting. In the same way is required to diagnose the availability and distribution of the water resources used for hygiene and for the cooling of artificially air-conditioned spaces, as well as the waste resulting from these technological processes. Based on the results obtained through the different stages of the analysis, it is possible to perform an energy audit in the process of proposing recommendations of sustainability in architectural spaces in search of energy saving, rational use of water and natural resources optimization. The above can be carried out through the development of a sustainable building code in develop technical recommendations to the regional characteristics of each study site. These codes would seek to build bases to promote a building regulations applicable to new human settlements looking for is generated at the same time quality, protection and safety in them. This building regulation must be consistent with other regulations both national and municipal and State, such as the laws of human settlements, urban development and zoning regulations.

Keywords: building regulations, housing, sustainability, technology

Procedia PDF Downloads 346
560 Combating the Practice of Open Defecation through Appropriate Communication Strategies in Rural India

Authors: Santiagomani Alex Parimalam

Abstract:

Lack of awareness on the consequences of open defecation and myths and misconceptions related to use of toilets have led to the continued practice of open defecation in India. Government of India initiated a multi-pronged intensive communication campaign against the practice of open defecation in the last few years. The primary vision of this communication campaign was to provide increased demand for toilets and to ensure that all have access to safe sanitation. The campaign strategy included the use of mass media, group and folk media, and interpersonal communication to expedite achieving its objectives. The campaign included the use of various media such as posters, wall writings, slides in cinema theatres, kiosks, pamphlets, newsletters, flip charts and folk media to bring behavioural changes in the communities. The author did a concurrent monitoring and process documentation of the campaigns initiated by the state of Tamilnandu, India between 2013 and 2016 commissioned by UNICEF India. The study was carried out to assess the effectiveness of the communication campaigns in combating the practice of open defecation and promote construction of toilets in the state of Tamilnadu, India. Initial findings revealed the gap in understanding the audience and the use of appropriate media. The first phase of the communication campaign by name as Chi Chi Chollapa (bringing shame concept) also revealed that use of interpersonal communication, group and community media were the most effective strategy in reaching the rural masses. The failure of various other media used especially the print media (poster, handbills, newsletter, kiosks) provides insights as to where the government needs to invest its resources in bringing health-seeking behaviour in the community. The findings shared with the government enabled to strengthen the campaign resulting in improved response. Taking cues from the study, the government understood the potency of the women, school children, youth and community leaders as the effective carriers of the message. The government narrowed down its focus and invested on the voluntary workers (village poverty reduction committee workers VPRCs) in the community. The effectiveness of interpersonal communication and peer education by the credible community worker threw light on the need for localising the content and communicator. From this study, we could derive that only community and group media are preferred by the people in the rural community. Children, youth, women, and credible local leaders are proved to be ambassadors in behaviour change communication. This study discloses the lacunae involved in the communication campaign and points out that the state should have carried out a proper communication need analysis and piloting. The study used a survey method with random sampling. The study used both quantitative and qualitative tools such as interview schedules, in-depth interviews, and focus group discussions in rural areas of Tamilnadu in phases. The findings of the study would provide directions to future campaigns to any campaign concerning health and rural development.

Keywords: appropriate, communication, combating, open defecation

Procedia PDF Downloads 125
559 System Analysis on Compact Heat Storage in the Built Environment

Authors: Wilko Planje, Remco Pollé, Frank van Buuren

Abstract:

An increased share of renewable energy sources in the built environment implies the usage of energy buffers to match supply and demand and to prevent overloads of existing grids. Compact heat storage systems based on thermochemical materials (TCM) are promising to be incorporated in future installations as an alternative for regular thermal buffers. This is due to the high energy density (1 – 2 GJ/m3). In order to determine the feasibility of TCM-based systems on building level several installation configurations are simulated and analyzed for different mixes of renewable energy sources (solar thermal, PV, wind, underground, air) for apartments/multistore-buildings for the Dutch situation. Thereby capacity, volume and financial costs are calculated. The simulation consists of options to include the current and future wind power (sea and land) and local roof-attached PV or solar-thermal systems. Thereby, the compact thermal buffer and optionally an electric battery (typically 10 kWhe) form the local storage elements for energy matching and shaving purposes. Besides, electric-driven heat pumps (air / ground) can be included for efficient heat generation in case of power-to-heat. The total local installation provides both space heating, domestic hot water as well as electricity for a specific case with low-energy apartments (annually 9 GJth + 8 GJe) in the year 2025. The energy balance is completed with grid-supplied non-renewable electricity. Taking into account the grid capacities (permanent 1 kWe/household), spatial requirements for the thermal buffer (< 2.5 m3/household) and a desired minimum of 90% share of renewable energy per household on the total consumption the wind-powered scenario results in acceptable sizes of compact thermal buffers with an energy-capacity of 4 - 5 GJth per household. This buffer is combined with a 10 kWhe battery and air source heat pump system. Compact thermal buffers of less than 1 GJ (typically volumes 0.5 - 1 m3) are possible when the installed wind-power is increased with a factor 5. In case of 15-fold of installed wind power compact heat storage devices compete with 1000 L water buffers. The conclusion is that compact heat storage systems can be of interest in the coming decades in combination with well-retrofitted low energy residences based on the current trends of installed renewable energy power.

Keywords: compact thermal storage, thermochemical material, built environment, renewable energy

Procedia PDF Downloads 243
558 ReactorDesign App: An Interactive Software for Self-Directed Explorative Learning

Authors: Chia Wei Lim, Ning Yan

Abstract:

The subject of reactor design, dealing with the transformation of chemical feedstocks into more valuable products, constitutes the central idea of chemical engineering. Despite its importance, the way it is taught to chemical engineering undergraduates has stayed virtually the same over the past several decades, even as the chemical industry increasingly leans towards the use of software for the design and daily monitoring of chemical plants. As such, there has been a widening learning gap as chemical engineering graduates transition from university to the industry since they are not exposed to effective platforms that relate the fundamental concepts taught during lectures to industrial applications. While the success of technology enhanced learning (TEL) has been demonstrated in various chemical engineering subjects, TELs in the teaching of reactor design appears to focus on the simulation of reactor processes, as opposed to arguably more important ideas such as the selection and optimization of reactor configuration for different types of reactions. This presents an opportunity for us to utilize the readily available easy-to-use MATLAB App platform to create an educational tool to aid the learning of fundamental concepts of reactor design and to link these concepts to the industrial context. Here, interactive software for the learning of reactor design has been developed to narrow the learning gap experienced by chemical engineering undergraduates. Dubbed the ReactorDesign App, it enables students to design reactors involving complex design equations for industrial applications without being overly focused on the tedious mathematical steps. With the aid of extensive visualization features, the concepts covered during lectures are explicitly utilized, allowing students to understand how these fundamental concepts are applied in the industrial context and equipping them for their careers. In addition, the software leverages the easily accessible MATLAB App platform to encourage self-directed learning. It is useful for reinforcing concepts taught, complementing homework assignments, and aiding exam revision. Accordingly, students are able to identify any lapses in understanding and clarify them accordingly. In terms of the topics covered, the app incorporates the design of different types of isothermal and non-isothermal reactors, in line with the lecture content and industrial relevance. The main features include the design of single reactors, such as batch reactors (BR), continuously stirred tank reactors (CSTR), plug flow reactors (PFR), and recycle reactors (RR), as well as multiple reactors consisting of any combination of ideal reactors. A version of the app, together with some guiding questions to aid explorative learning, was released to the undergraduates taking the reactor design module. A survey was conducted to assess its effectiveness, and an overwhelmingly positive response was received, with 89% of the respondents agreeing or strongly agreeing that the app has “helped [them] with understanding the unit” and 87% of the respondents agreeing or strongly agreeing that the app “offers learning flexibility”, compared to the conventional lecture-tutorial learning framework. In conclusion, the interactive ReactorDesign App has been developed to encourage self-directed explorative learning of the subject and demonstrate the industrial applications of the taught design concepts.

Keywords: explorative learning, reactor design, self-directed learning, technology enhanced learning

Procedia PDF Downloads 91
557 Environmental Law and Payment for Environmental Services: Perceptions of the Family Farmers of the Federal District, Brazil

Authors: Kever Bruno Paradelo Gomes, Rosana Carvalho Cristo Martins

Abstract:

Payment for Environmental Services (PSA) has been a strategy used since the late 1990s by Latin American countries to finance environmental conservation. Payment for Environmental Services has been absorbing a growing amount of time in the discussions around environmentally sustainable development strategies in the world. In Brazil, this theme has permeated the discussions since the publication of the new Forest Code. The objective of this work was to verify the perception of the resident farmers in the region of Ponte Alta, Gama, Federal District, Brazil, on environmental legislation and Payments for Environmental Services. The work was carried out in 99 rural properties of the family farmers of the Rural Nucleus Ponte Alta, Administrative Region of Gama, in the city of Brasília, Federal District, Brazil. The present research is characterized methodologically as a quantitative, exploratory, and descriptive nature. The data treatment was performed through descriptive statistical analysis and hypothesis testing. The perceptions about environmental legislation in the rural area of Ponte Alta, Gama, DF respondents were positive. Although most of the family farmers interviewed have some knowledge about environmental legislation, it is perceived that in practice, the environmental adequacy of property is ineffective given the current situation of sustainable rural development; there is an abyss between what is envisaged by legislation and reality in the field. Thus, as in the reports of other researchers, it is verified that the majority of respondents are not aware of PSA (62.62%). Among those interviewed who were aware of the subject, two learned through the course, three through the university, two through TV and five through other people. The planting of native forest species on the rural property was the most informed practice by farmers if they received some Environmental Service Payment (PSA). Reflections on the environment allow us to infer that the effectiveness and fulfillment of the incentives and rewards in the scope of public policies to encourage the maintenance of environmental services, already existing in all spheres of government, are of great relevance to the process of environmental sustainability of rural properties. The relevance of the present research is an important tool to promote the discussion and formulation of public policies focused on sustainable rural development, especially on payments for environmental services; it is a space of great interest for the strengthening of the social group dedicated to production. Public policies that are efficient and accessible to the small rural producers become decisive elements for the promotion of changes in behavior in the field, be it economic, social, or environmental.

Keywords: forest code, public policy, rural development, sustainable agriculture

Procedia PDF Downloads 149
556 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 125
555 Influence of a High-Resolution Land Cover Classification on Air Quality Modelling

Authors: C. Silveira, A. Ascenso, J. Ferreira, A. I. Miranda, P. Tuccella, G. Curci

Abstract:

Poor air quality is one of the main environmental causes of premature deaths worldwide, and mainly in cities, where the majority of the population lives. It is a consequence of successive land cover (LC) and use changes, as a result of the intensification of human activities. Knowing these landscape modifications in a comprehensive spatiotemporal dimension is, therefore, essential for understanding variations in air pollutant concentrations. In this sense, the use of air quality models is very useful to simulate the physical and chemical processes that affect the dispersion and reaction of chemical species into the atmosphere. However, the modelling performance should always be evaluated since the resolution of the input datasets largely dictates the reliability of the air quality outcomes. Among these data, the updated LC is an important parameter to be considered in atmospheric models, since it takes into account the Earth’s surface changes due to natural and anthropic actions, and regulates the exchanges of fluxes (emissions, heat, moisture, etc.) between the soil and the air. This work aims to evaluate the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), when different LC classifications are used as an input. The influence of two LC classifications was tested: i) the 24-classes USGS (United States Geological Survey) LC database included by default in the model, and the ii) CLC (Corine Land Cover) and specific high-resolution LC data for Portugal, reclassified according to the new USGS nomenclature (33-classes). Two distinct WRF-Chem simulations were carried out to assess the influence of the LC on air quality over Europe and Portugal, as a case study, for the year 2015, using the nesting technique over three simulation domains (25 km2, 5 km2 and 1 km2 horizontal resolution). Based on the 33-classes LC approach, particular emphasis was attributed to Portugal, given the detail and higher LC spatial resolution (100 m x 100 m) than the CLC data (5000 m x 5000 m). As regards to the air quality, only the LC impacts on tropospheric ozone concentrations were evaluated, because ozone pollution episodes typically occur in Portugal, in particular during the spring/summer, and there are few research works relating to this pollutant with LC changes. The WRF-Chem results were validated by season and station typology using background measurements from the Portuguese air quality monitoring network. As expected, a better model performance was achieved in rural stations: moderate correlation (0.4 – 0.7), BIAS (10 – 21µg.m-3) and RMSE (20 – 30 µg.m-3), and where higher average ozone concentrations were estimated. Comparing both simulations, small differences grounded on the Leaf Area Index and air temperature values were found, although the high-resolution LC approach shows a slight enhancement in the model evaluation. This highlights the role of the LC on the exchange of atmospheric fluxes, and stresses the need to consider a high-resolution LC characterization combined with other detailed model inputs, such as the emission inventory, to improve air quality assessment.

Keywords: land use, spatial resolution, WRF-Chem, air quality assessment

Procedia PDF Downloads 152
554 Assessment of Pedestrian Comfort in a Portuguese City Using Computational Fluid Dynamics Modelling and Wind Tunnel

Authors: Bruno Vicente, Sandra Rafael, Vera Rodrigues, Sandra Sorte, Sara Silva, Ana Isabel Miranda, Carlos Borrego

Abstract:

Wind comfort for pedestrians is an important condition in urban areas. In Portugal, a country with 900 km of coastline, the wind direction are predominantly from Nor-Northwest with an average speed of 2.3 m·s -1 (at 2 m height). As a result, a set of city authorities have been requesting studies of pedestrian wind comfort for new urban areas/buildings, as well as to mitigate wind discomfort issues related to existing structures. This work covers the efficiency evaluation of a set of measures to reduce the wind speed in an outdoor auditorium (open space) located in a coastal Portuguese urban area. These measures include the construction of barriers, placed at upstream and downstream of the auditorium, and the planting of trees, placed upstream of the auditorium. The auditorium is constructed in the form of a porch, aligned with North direction, driving the wind flow within the auditorium, promoting channelling effects and increasing its speed, causing discomfort in the users of this structure. To perform the wind comfort assessment, two approaches were used: i) a set of experiments using the wind tunnel (physical approach), with a representative mock-up of the study area; ii) application of the CFD (Computational Fluid Dynamics) model VADIS (numerical approach). Both approaches were used to simulate the baseline scenario and the scenarios considering a set of measures. The physical approach was conducted through a quantitative method, using hot-wire anemometer, and through a qualitative analysis (visualizations), using the laser technology and a fog machine. Both numerical and physical approaches were performed for three different velocities (2, 4 and 6 m·s-1 ) and two different directions (NorNorthwest and South), corresponding to the prevailing wind speed and direction of the study area. The numerical results show an effective reduction (with a maximum value of 80%) of the wind speed inside the auditorium, through the application of the proposed measures. A wind speed reduction in a range of 20% to 40% was obtained around the audience area, for a wind direction from Nor-Northwest. For southern winds, in the audience zone, the wind speed was reduced from 60% to 80%. Despite of that, for southern winds, the design of the barriers generated additional hot spots (high wind speed), namely, in the entrance to the auditorium. Thus, a changing in the location of the entrance would minimize these effects. The results obtained in the wind tunnel compared well with the numerical data, also revealing the high efficiency of the purposed measures (for both wind directions).

Keywords: urban microclimate, pedestrian comfort, numerical modelling, wind tunnel experiments

Procedia PDF Downloads 229
553 Coping Strategies of Female English Teachers and Housewives to Face the Challenges Associated to the COVID-19 Pandemic Lockdown

Authors: Lisseth Rojas Barreto, Carlos Muñoz Hernández

Abstract:

The COVID-19 pandemic led to many abrupt changes, including a prolonged lockdown, which brought about work and personal challenges to the population worldwide. Among the most affected populations are women who are workers and housewives at the same time, and especially those who are also parenting. These women were faced with the challenge to perform their usual varied roles during the lockdown from the same physical space, which inevitably had strong repercussions for each of them. This paper will present some results of a research study whose main objective was to examine the possible effects that the COVID-19 pandemic lockdown may have caused in the work, social, family, and personal environments of female English teachers who are also housewives and, by extension in the teaching and learning processes that they lead. Participants included five female English language teachers of a public foreign language school, they are all married, and two of them have children. Similarly, we examined some of the coping strategies these teachers used to tackle the pandemic-related challenges in their different roles, especially those used for their language teaching role; coping strategies are understood as a repertoire of behaviors in response to incidents that can be stressful for the subject, possible challenging events or situations that involve emotions with behaviors and decision-making of people which are used in order to find a meaning or positive result (Lazarus &Folkman, 1986) Following a qualitative-case study design, we gathered the data through a survey and a focus group interview with the participant teachers who work at a public language school in southern Colombia. Preliminary findings indicate that the circumstances that emerged as a result of the pandemic lockdown affected the participants in different ways, including financial, personal, family, health, and work-related issues. Among the strategies that participants found valuable to deal with the novel circumstances, we can highlight the reorganization of the household and work tasks and the increased awareness of time management for the household, work, and leisure. Additionally, we were able to evidence that the participants faced the circumstances with a positive view. Finally, in order to cope with their teaching duties, some participants acknowledged their lack of computer or technology literacy in order to deliver their classes online, which made them find support from their students or more knowledgeable peers to cope with it. Others indicated that they used strategies such as self-learning in order to get acquainted and be able to use the different technological tools and web-based platforms available.

Keywords: coping strategies, language teaching, female teachers, pandemic lockdown

Procedia PDF Downloads 106
552 Perception of Hazards and Risks in Road Utilization as Space for Social Ceremonies in Indigenous Residential Area of Ogbomoso, Nigeria

Authors: Okanlawon Simon Ayorinde, Odunjo Oluronke Omolola, Fadamiro Joseph Akinlabi, Adedibu Afolabi Adebgite

Abstract:

A road is a path established over land, especially prepared way between places for the use of pedestrian, riders, and vehicles: a hard surface built for vehicles to travel on. The social, economic and health importance of roads in any community and nation cannot be underestimated. Roads provide access to properties and they also provide mobility which is ability to transport goods and services from one place to another. In the residential zones of many indigenous cities in Nigeria, roads are usually blocked for social ceremonies. Road blocked for ceremonies as used in this study are a temporary barrier across a road, used to stop or hinder traffic from passing through to the other side. Social ceremonies that could warrant road blockage include marriage, child naming, funeral, celebration of life’s achievement, birthday anniversary etc. These activities are likely to generate environmental hazards and their attendant risks. The assessment of these hazards and risks in residential zones of indigenous cities in Nigeria becomes imperative. The study is focused on Ogbomoso, Oyo State, Nigeria. The town has two local government councils namely Ogbomoso North and Ogbomoso South. Urban tracts that are easy to identify are political wards in the absence of land use segregation, houses numbering and street naming. The wards that had residential having a minimum of 60% of their land use components were surveyed and fifteen out of twenty wards identified in the town were surveyed. The study utilized primary data collected through questionnaire administration The three major road categories (Trunk A-Federal; Trunk B- State; Trunk C-Local) were identified and trunk C-Local roads were purposively selected being the concern of this study because they are the ones often blocked for social activities. The major stakeholders interviewed and the respective sampling methods are residents (random and systematic), social ceremony organizers (purposive), government officials (purposive) and road users namely commercial motorists and commercial motor cyclists (random and incidental). Data analysis was mainly descriptive. Two indices to measure respondents’ perception were developed. These are ‘Hazard Severity Index’ (HSI) and ‘Relative Awareness Index’ (RAI).Thereafter, policy implications and recommendations were provided.

Keywords: road, residential zones, indigenous cities, blocked, social ceremonies

Procedia PDF Downloads 519
551 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 114
550 Evaluation of Magnificent Event of India with Special Reference to Maha Kumbha Mela (Fair) 2013-A Congregation of Millions

Authors: Sharad Kumar Kulshreshtha

Abstract:

India is a great land of cultural and traditional diversity. Its spectrums create a unique ambiance in all over the country. Specially, fairs and festivals are ancient phenomena in Indian culture. In India, there are thousands of such religious, spiritual, cultural fairs organized on auspicious occasions. These fairs reflect the effective and efficient role of social governance and responsibility of Indian society. In this context a mega event known as ‘Kumbha Mela’ literally mean ‘Kumbha Fair’ which is organize after every twelve years at (Prayaag) Allahabad an ancient city of India, now is in the state of Uttar Pradesh. Kumbh Mela is one of the largest human congregations on the Earth. The Kumbha Mela that is held here is considered to be the largest and holiest city among the four cities where Kubha fair organize. According to the Hindu religious scripture a dip for possessing the holy confluence, known as Triveni Sangam, which is a meeting point of the three sacred rivers of India i.e., –Ganges, Yamuna and Saraswati (mythical). During the Kumbha fair the River Ganges is believed to turn to nectar, bringing great blessing to everyone who bathes in it. Other activities include religious discussions, devotional singings and mass feedings pilgrims and poor. The venue for Kumbh Mela (fair) depends on the position Sun, Moon, and Jupiter which holds in that period in different zodiac signs. More than 120 Millions (12 Crore) people visited in the Kumbha Fair-2013 in Allahabad. A temporary tented city was set up for the pilgrims over an area of 2 hectares of the land along the river of Ganges. As many as 5 power substations, temporary police stations, hospitals, bus terminals, stalls were set up for providing various facilities to the visitors and thousands of volunteers participated for assistance of this event. All efforts made by fair administration to provide facility to visitors, such security and sanitation, medical care and frequent water and power supply. The efficient and timely arrangement at the Kumbha Mela attracted the attention of many government and institutions. The Harvard University of USA conducted research to find out how it was made possible. This paper will focuses on effective and efficient planning and preparation of Kumbha Fair which includes facilitation process, role of various coordinating agencies. risk management crisis management strategies Prevention, Preparedness, Response, and Recovery (PPRR Approach), emergency response plan (ERP), safety and security issues, various environmental aspects along with health hazards and hygiene crowd management, evacuation, monitoring, control and evaluation.

Keywords: event planning and facility arrangement, risk management, crowd management, India

Procedia PDF Downloads 304
549 The Importance of Developing Pedagogical Agency Capacities in Initial Teacher Formation: A Critical Approach to Advance in Social Justice

Authors: Priscilla Echeverria

Abstract:

This paper addresses initial teacher formation as a formative space in which pedagogy students develop a pedagogical agency capacity to contribute to social justice, considering ethical, political, and epistemic dimensions. This paper is structured by discussing first the concepts of agency, pedagogical interaction, and social justice from a critical perspective; and continues offering preliminary results on the capacity of pedagogical agency in novice teachers after the analysis of critical incidents as a research methodology. This study is motivated by the concern that responding to the current neoliberal scenario, many initial teacher formation (ITF) programs have reduced the meaning of education to instruction, and pedagogy to methodology, favouring the formation of a technical professional over a reflective or critical one. From this concern, this study proposes that the restitution of the subject is an urgent task in teacher formation, so it is essential to enable him in his capacity for action and advance in eliminating institutionalized oppression insofar as it affects that capacity. Given that oppression takes place in human interaction, through this work, I propose that initial teacher formation develops sensitivity and educates the gaze to identify oppression and take action against it, both in pedagogical interactions -which configure political, ethical, and epistemic subjectivities- as in the hidden and official curriculum. All this from the premise that modelling democratic and dialogical interactions are basic for any program that seeks to contribute to a more just and empowered society. The contribution of this study lies in the fact that it opens a discussion in an area about which we know little: the impact of the type of interactions offered by university teaching at ITF on the capacity of future teachers to be pedagogical agents. For this reason, this study seeks to gather evidence of the result of this formation, analysing the capacity of pedagogical agency of novice teachers, or, in other words, how capable the graduates of secondary pedagogies are in their first pedagogical experiences to act and make decisions putting the formative purposes that they are capable of autonomously defining before technical or bureaucratic issues imposed by the curriculum or the official culture. This discussion is part of my doctoral research, "The importance of developing the capacity for ethical-political-epistemic agency in novice teachers during initial teacher formation to contribute to social justice", which I am currently developing in the Educational Research program of the University of Lancaster, United Kingdom, as a Conicyt fellow for the 2019 cohort.

Keywords: initial teacher formation, pedagogical agency, pedagogical interaction, social justice, hidden curriculum

Procedia PDF Downloads 95
548 The Rehabilitation of The Covered Bridge Leclerc (P-00249) Passing Over the Bouchard Stream in LaSarre, Quebec

Authors: Nairy Kechichian

Abstract:

The original Leclerc Bridge is a covered wooden bridge that is considered a Quebec heritage structure with an index of 60, making it a very important provincial bridge from a historical point of view. It was constructed in 1927 and is in the rural area of Abitibi-Temiscamingue. It is a “town Québécois” type of structure, which is generally rare but common for covered bridges in Abitibi-Temiscamingue. This type of structure is composed of two trusses on both sides formed with diagonals, internal bracings, uprights and top and bottom chords to allow the transmission of loads. This structure is mostly known for its solidity, lightweightness, and ease of construction. It is a single-span bridge with a length of 25.3 meters and allows the passage of one vehicle at a time with a 4.22-meter driving lane. The structure is composed of 2 trusses located at each end of the deck, two gabion foundations at both ends, uprights and top and bottom chords. WSP (Williams Sale Partnership) Canada inc. was mandated by the Transport Minister of Quebec in 2019 to increase the capacity of the bridge from 5 tons to 30.6 tons and rehabilitate it, as it has deteriorated quite significantly over the years. The bridge was damaged due to material deterioration over time, exposure to humidity, high load effects and insect infestation. To allow the passage of 3 axle trucks, as well as to keep the integrity of this heritage structure, the final design chosen to rehabilitate the bridge involved adding a new deck independent from the roof structure of the bridge. Essentially, new steel beams support the deck loads and the desired vehicle loads. The roof of the bridge is linked to the steel deck for lateral support, but it is isolated from the wooden deck. The roof is preserved for aesthetic reasons and remains intact as it is a heritage piece. Due to strict traffic management obstacles, an efficient construction method was put into place, which consisted of building a temporary bridge and moving the existing roof onto it to allow the circulation of vehicles on one side of the temporary bridge while providing a working space for the repairs of the roof on the other side to take place simultaneously. In parallel, this method allowed the demolition and reconstruction of the existing foundation, building a new steel deck, and transporting back the roof on the new bridge. One of the main criteria for the rehabilitation of the wooden bridge was to preserve, as much as possible, the existing patrimonial architectural design of the bridge. The project was completed successfully by the end of 2021.

Keywords: covered bridge, wood-steel, short span, town Québécois structure

Procedia PDF Downloads 63
547 The Instrumentalization of Digital Media in the Context of Sexualized Violence

Authors: Katharina Kargel, Frederic Vobbe

Abstract:

Sexual online grooming is generally defined as digital interactions for the purpose of sexual exploitation of children or minors, i.e. as a process for preparing and framing sexual child abuse. Due to its conceptual history, sexual online grooming is often associated with perpetrators who are previously unknown to those affected. While the strategies of perpetrators and the perception of those affected are increasingly being investigated, the instrumentalisation of digital media has not yet been researched much. Therefore, the present paper aims at contributing to this research gap by examining in what kind of ways perpetrators instrumentalise digital media. Our analyses draw on 46 case documentations and 18 interviews with those affected. The cases and the partly narrative interviews were collected by ten cooperating specialist centers working on sexualized violence in childhood and youth. For this purpose, we designed a documentation grid allowing for a detailed case reconstruction i.e. including information on the violence, digital media use and those affected. By using Reflexive Grounded Theory, our analyses emphasize a) the subjective benchmark of professional practitioners as well as those affected and b) the interpretative implications resulting from our researchers’ subjective and emotional interaction with the data material. It should first be noted that sexualized online grooming can result in both online and offline sexualized violence as well as hybrid forms. Furthermore, the perpetrators either come from the immediate social environment of those affected or are unknown to them. The perpetrator-victim relationship plays a more important role with regard to the question of the instrumentalisation of digital media than the question of the space (on vs. off) in which the primary violence is committed. Perpetrators unknown to those affected instrumentalise digital media primarily to establish a sexualized system of norms, which is usually embedded in a supposed love relationship. In some cases, after an initial exchange of sexualized images or video recordings, a latent play on the position of power takes place. In the course of the grooming process, perpetrators from the immediate social environment increasingly instrumentalise digital media to establish an explicit relationship of power and dependence, which is directly determined by coercion, threats and blackmail. The knowledge of possible vulnerabilities is strategically used in the course of maintaining contact. The above explanations lead to the conclusion that the motive for the crime plays an essential role in the question of the instrumentalisation of digital media. It is therefore not surprising that it is mostly the near-field perpetrators without commercial motives who initiate a spiral of violence and stress by digitally distributing sexualized (violent) images and video recordings within the reference system of those affected.

Keywords: sexualized violence, children and youth, grooming, offender strategies, digital media

Procedia PDF Downloads 183
546 Online-Scaffolding-Learning Tools to Improve First-Year Undergraduate Engineering Students’ Self-Regulated Learning Abilities

Authors: Chen Wang, Gerard Rowe

Abstract:

The number of undergraduate engineering students enrolled in university has been increasing rapidly recently, leading to challenges associated with increased student-instructor ratios and increased diversity in academic preparedness of the entrants. An increased student-instructor ratio makes the interaction between teachers and students more difficult, with the resulting student ‘anonymity’ known to be a risk to academic success. With increasing student numbers, there is also an increasing diversity in the academic preparedness of the students at entry to university. Conceptual understanding of the entrants has been quantified via diagnostic testing, with the results for the first-year course in electrical engineering showing significant conceptual misunderstandings amongst the entry cohort. The solution is clearly multi-faceted, but part of the solution likely involves greater demands being placed on students to be masters of their own learning. In consequence, it is highly desirable that instructors help students to develop better self-regulated learning skills. A self-regulated learner is one who is capable of setting up their own learning goals, monitoring their study processes, adopting and adjusting learning strategies, and reflecting on their own study achievements. The methods by which instructors might cultivate students’ self-regulated learning abilities is receiving increasing attention from instructors and researchers. The aim of this study was to help students understand fully their self-regulated learning skill levels and provide targeted instructions to help them improve particular learning abilities in order to meet the curriculum requirements. As a survey tool, this research applied the questionnaire ‘Motivated Strategies for Learning Questionnaire’ (MSLQ) to collect first year engineering student’s self-reported data of their cognitive abilities, motivational orientations and learning strategies. MSLQ is a widely-used questionnaire for assessment of university student’s self-regulated learning skills. The questionnaire was offered online as a part of the online-scaffolding-learning tools to develop student understanding of self-regulated learning theories and learning strategies. The online tools, which have been under development since 2015, are designed to help first-year students understand their self-regulated learning skill levels by providing prompt feedback after they complete the questionnaire. In addition, the online tool also supplies corresponding learning strategies to students if they want to improve specific learning skills. A total of 866 first year engineering students who enrolled in the first-year electrical engineering course were invited to participate in this research project. By the end of the course 857 students responded and 738 of their questionnaires were considered as valid questionnaires. Analysis of these surveys showed that 66% of the students thought the online-scaffolding-learning tools helped significantly to improve their self-regulated learning abilities. It was particularly pleasing that 16.4% of the respondents thought the online-scaffolding-learning tools were extremely effective. A current thrust of our research is to investigate the relationships between students’ self-regulated learning abilities and their academic performance. Our results are being used by the course instructors as they revise the curriculum and pedagogy for this fundamental first-year engineering course, but the general principles we have identified are applicable to most first-year STEM courses.

Keywords: academic preparedness, online-scaffolding-learning tool, self-regulated learning, STEM education

Procedia PDF Downloads 108
545 Influential Factors for Consumerism in Womens Western Formal Wear: An Indian Perspective

Authors: Namrata Jain, Vishaka Karnad

Abstract:

Fashion has always fascinated people through ages. Indian women’s wear in particular women's western formal wear has gone through transformational phases during the past decade. Increasing number of working women, independence in deciding financial matters, media exposure and awareness of current trends has provided a different dimension to the apparel segment. With globalization and sharing of cultures, in India formal women’s wear is no longer restricted to ethnic outfits like a sari or salwarkameez. Strong western influence has been observed in the process of designing, production and use of western formal wear by working women as consumers. The present study focuses on the psychographics parameters, consumer buying preferences and their relation to the present market scenario. Qualitative and quantitative data was gathered through a observation, consumer survey and study of brands. A questionnaire was prepared and uploaded as a google form to gather primary data from hundred consumer respondents. The respondent samples were drawn through snowball and purposive sampling technique. Consumers’ buying behavior is influenced by various aspects like age group, occupation, income and their personal preferences. Frequency of use, criteria for brand selection, styles of formal wear and motivating factors for purchase of western formals by working women were the other influential factors under consideration. It was observed that higher consumption and more popularity was indicated by women in the age group of 21-30 years. Amongst western formal wear shirts and trousers were noted to be the most preferred in Mumbai. It may be noted that consumers purchased and used branded western formal wear for reasons of comfort and value for money. Past experience in using the product and price were some of the important criteria for brand loyalty but the need for variety lured consumers to look for other brands. Fit of the garment was rated as the most important motivational factor while selecting products for purchase. With the advancement of women’s economic status, self-reliance, women role and image in the society, impulsive buying has increased with increase in consumerism. There is an ever growing demand for innovations in cuts, styles, designs, colors and fabrics. The growing fashion consciousness at the work place has turned women’s formal wear segment into a lucrative and highly evolving market thus providing space for new entrepreneurs to become a part of this developing sector.

Keywords: buying behavior, consumerism, fashion, western formal wear

Procedia PDF Downloads 466
544 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 149
543 Intertemporal Individual Preferences for Climate Change Intergenerational Investments – Estimating the Social Discount Rate for Poland

Authors: Monika Foltyn-Zarychta

Abstract:

Climate change mitigation investment activities are inevitably extended in time extremely. The project cycle does not last for decades – sometimes it stretches out for hundreds of years and the project outcomes impact several generations. The longevity of those activities raises multiple problems in the appraisal procedure. One of the pivotal issues is the choice of the discount rate, which affect tremendously the net present value criterion. The paper aims at estimating the value of social discount rate for intergenerational investment projects in Poland based on individual intertemporal preferences. The analysis is based on questionnaire surveying Polish citizens and designed as contingent valuation method. The analysis aimed at answering two questions: 1) whether the value of the individual discount rate decline with increased time of delay, and 2) whether the value of the individual discount rate changes with increased spatial distance toward the gainers of the project. The valuation questions were designed to identify respondent’s indifference point between lives saved today and in the future due to hypothetical project mitigating climate changes. Several project effects’ delays (of 10, 30, 90 and 150 years) were used to test the decline in value with time. The variability in regard to distance was tested by asking respondents to estimate their indifference point separately for gainers in Poland and in Latvia. The results show that as the time delay increases, the average discount rate value decreases from 15,32% for 10-year delay to 2,75% for 150-year delay. Similar values were estimated for Latvian beneficiaries. There should be also noticed that the average volatility measured by standard deviation also decreased with time delay. However, the results did not show any statistically significant difference in discount rate values for Polish and Latvian gainers. The results showing the decline of the discount rate with time prove the possible economic efficiency of the intergenerational effect of climate change mitigation projects and may induce the assumption of the altruistic behavior of present generation toward future people. Furthermore, it can be backed up by the same discount rate level declared by Polish for distant in space Latvian gainers. The climate change activities usually need significant outlays and the payback period is extremely long. The more precise the variables in the appraisal are, the more trustworthy and rational the investment decision is. The discount rate estimations for Poland add to the vivid discussion concerning the issue of climate change and intergenerational justice.

Keywords: climate change, social discount rate, investment appraisal, intergenerational justice

Procedia PDF Downloads 236
542 Food Strategies in the Mediterranean Basin, Possible for Food Safety and Security

Authors: Lorenza Sganzetta, Nunzia Borrelli

Abstract:

The research intends to reflect on the current mapping of the Food Strategies, on the reasons why in the planning objectives panorama, such sustainability priorities are located in those geographic areas and on the evolutions of these priorities of the Mediterranean planning dispositions. The whirling population growth that is affecting global cities is causing an enormous challenge to conventional resource-intensive food production and supply and the urgent need to face food safety, food security and sustainability concerns. Urban or Territorial Food Strategies can provide an interesting path for the development of this new agenda within the imperative principle of sustainability. In the specific, it is relevant to explore what ‘sustainability’ means within these policies. Most of these plans include actions related to four main components and interpretations of sustainability that are food security and safety, food equity, environmental sustainability itself and cultural identity and, at the designing phase, they differ slightly from each other according to the degree of approximation to one of these dimensions. Moving from these assumptions, the article would analyze some practices and policies representatives of different Food Strategies of the world and focus on the Mediterranean ones, on the problems and negative externalities from which they start, on the first interventions that are implementing and on their main objectives. We will mainly use qualitative data from primary and secondary collections. So far, an essential observation could have been made about the relationship between these sustainability dimensions and geography. In statistical terms, the US and Canadian policies tended to devote a large research space to health issues and access to food; those northern European showed a special attention to the environmental issues and the shortening of the chain; and finally the policies that, even in limited numbers, were being developed in the Mediterranean basin, were characterized by a strong territorial and cultural imprint and their major aim was to preserve local production and the contact between the productive land and the end consumer. Recently, though, Mediterranean food planning strategies are focusing more on health related and food accessibility issues and analyzing our diets not just as a matter of culture and territorial branding but as tools for reducing public health costs and accessibility to fresh food for everyone. The article would reflect then on how Food Safety, Food Security and Health are entering the new agenda of the Mediterranean Food Strategies. The research hypothesis suggests that the economic crisis that in the last years invested both producers and consumers had a significant impact on the nutrition habits and on the redefinition of food poverty, even in the fatherland of the healthy Mediterranean diet. This trend and other variables influenced the orientation and the objectives of the food strategies.

Keywords: food security, food strategy, health, sustainability

Procedia PDF Downloads 223
541 Pressure-Robust Approximation for the Rotational Fluid Flow Problems

Authors: Medine Demir, Volker John

Abstract:

Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.

Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces

Procedia PDF Downloads 61
540 Design and Integration of an Energy Harvesting Vibration Absorber for Rotating System

Authors: F. Infante, W. Kaal, S. Perfetto, S. Herold

Abstract:

In the last decade the demand of wireless sensors and low-power electric devices for condition monitoring in mechanical structures has been strongly increased. Networks of wireless sensors can potentially be applied in a huge variety of applications. Due to the reduction of both size and power consumption of the electric components and the increasing complexity of mechanical systems, the interest of creating dense nodes sensor networks has become very salient. Nevertheless, with the development of large sensor networks with numerous nodes, the critical problem of powering them is drawing more and more attention. Batteries are not a valid alternative for consideration regarding lifetime, size and effort in replacing them. Between possible alternative solutions for durable power sources useable in mechanical components, vibrations represent a suitable source for the amount of power required to feed a wireless sensor network. For this purpose, energy harvesting from structural vibrations has received much attention in the past few years. Suitable vibrations can be found in numerous mechanical environments including automotive moving structures, household applications, but also civil engineering structures like buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate unwanted vibration of structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, the related energy is effectively localized in the secondary less sensitive structure. Then, the additional benefit of harvesting part of the energy can be obtained by implementing dedicated components. This paper describes the design process of an energy harvesting tuned vibration absorber (EHTVA) for rotating systems using piezoelectric elements. The energy of the vibration is converted into electricity rather than dissipated. The device proposed is indeed designed to mitigate torsional vibrations as with a conventional rotational TVA, while harvesting energy as a power source for immediate use or storage. The resultant rotational multi degree of freedom (MDOF) system is initially reduced in an equivalent single degree of freedom (SDOF) system. The Den Hartog’s theory is used for evaluating the optimal mechanical parameters of the initial DVA for the SDOF systems defined. The performance of the TVA is operationally assessed and the vibration reduction at the original resonance frequency is measured. Then, the design is modified for the integration of active piezoelectric patches without detuning the TVA. In order to estimate the real power generated, a complex storage circuit is implemented. A DC-DC step-down converter is connected to the device through a rectifier to return a fixed output voltage. Introducing a big capacitor, the energy stored is measured at different frequencies. Finally, the electromechanical prototype is tested and validated achieving simultaneously reduction and harvesting functions.

Keywords: energy harvesting, piezoelectricity, torsional vibration, vibration absorber

Procedia PDF Downloads 146
539 Assessment of Microclimate in Abu Dhabi Neighborhoods: On the Utilization of Native Landscape in Enhancing Thermal Comfort

Authors: Maryam Al Mheiri, Khaled Al Awadi

Abstract:

Urban population is continuously increasing worldwide and the speed at which cities urbanize creates major challenges, particularly in terms of creating sustainable urban environments. Rapid urbanization often leads to negative environmental impacts and changes in the urban microclimates. Moreover, when rapid urbanization is paired with limited landscape elements, the effects on human health due to the increased pollution, and thermal comfort due to Urban Heat Island effects are increased. Urban Heat Island (UHI) describes the increase of urban temperatures in urban areas in comparison to its rural surroundings, and, as we discuss in this paper, it impacts on pedestrian comfort, reducing the number of walking trips and public space use. It is thus very necessary to investigate the quality of outdoor built environments in order to improve the quality of life incites. The main objective of this paper is to address the morphology of Emirati neighborhoods, setting a quantitative baseline by which to assess and compare spatial characteristics and microclimate performance of existing typologies in Abu Dhabi. This morphological mapping and analysis will help to understand the built landscape of Emirati neighborhoods in this city, whose form has changed and evolved across different periods. This will eventually help to model the use of different design strategies, such as landscaping, to mitigate UHI effects and enhance outdoor urban comfort. Further, the impact of different native plants types and native species in reducing UHI effects and enhancing outdoor urban comfort, allowing for the assessment of the impact of increasing landscaped areas in these neighborhoods. This study uses ENVI-met, an analytical, three-dimensional, high-resolution microclimate modeling software. This micro-scale urban climate model will be used to evaluate existing conditions and generate scenarios in different residential areas, with different vegetation surfaces and landscaping, and examine their impact on surface temperatures during summer and autumn. In parallel to these simulations, field measurement will be included to calibrate the Envi-met model. This research therefore takes an experimental approach, using simulation software, and a case study strategy for the evaluation of a sample of residential neighborhoods. A comparison of the results of these scenarios constitute a first step towards making recommendations about what constitutes sustainable landscapes for Abu Dhabi neighborhoods.

Keywords: landscape, microclimate, native plants, sustainable neighborhoods, thermal comfort, urban heat island

Procedia PDF Downloads 309
538 The Agency of Award Systems in Architecture: The Case of Cyprus

Authors: Christakis Chatzichristou, Elias Kranos

Abstract:

Architectural awards, especially if they are given by the state, recognize excellence in the field and, at the same time, strongly contribute to the making of the architectural culture of a place. The present research looks at the houses that have been awarded through such a system in Cyprus in order to discuss the values promoted, directly or not, by such a setup which is quite similar to other prestigious award systems such as the Mies van de Rohe Prize in Europe. In fact, many of the projects signed out through the state award system end up being selected to represent the country for the European awards. The residential architecture encouraged by such systems is quite interesting in that the most public of institutions influence how the most private unit of society is architecturally accommodated. The methodology uses both qualitative as well as quantitative research tools in order to analyze: the official state call for entries to the competition; the final report of the evaluation committee; the spatial characteristics of the houses through the Space Syntax methodology; the statements of the architects regarding their intentions and the final outcome; the feelings of the owners and users of the houses regarding the design process as well as the degree of satisfaction regarding the final product. The above-mentioned analyses allow for a more thorough discussion regarding not only the values promoted explicitly by the system through the brief that describes what the evaluation committee is looking for but also the values that are actually being promoted indirectly through the results of the actual evaluation itself. The findings suggest that: the strong emphasis in brief on bioclimatic design and issues of sustainability weakens significantly, if at all present, in the actual selection process; continuous improvement seems to be fuzzily used as a concept; most of the houses tend to have a similar spatial genotype; most of the houses have similar aesthetic qualities; discrepancies between the proposed lifestyle through the design and the actual use of the spaces do not seem to be acknowledged in the evaluation as an issue; the temporal factor seems to be ignored as the projects are required to be ‘finished projects’ as though the users and their needs do not change through time. The research suggests that, rather than preserving a critical attitude regarding the role of the architect in society, the state award system tends, like any other non-reflective social organism, to simply promote its own unexamined values as well as prejudices. This is perhaps more evident in the shared aesthetic character of the awarded houses and less so in the hidden spatial genotype to which they belong. If the design of houses is indeed a great opportunity for architecture to contribute in a more deliberate manner to the evolution of society, then what the present study shows is that this opportunity seems to be largely missed. The findings may serve better less as a verdict and more as a chance for introspection and discussion.

Keywords: award systems, houses, spatial genotype, aesthetic qualities

Procedia PDF Downloads 69
537 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 111
536 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method

Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola

Abstract:

The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.

Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization

Procedia PDF Downloads 388
535 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South

Authors: Rati Sandeep Choudhari

Abstract:

Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.

Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach

Procedia PDF Downloads 128
534 A Feature Clustering-Based Sequential Selection Approach for Color Texture Classification

Authors: Mohamed Alimoussa, Alice Porebski, Nicolas Vandenbroucke, Rachid Oulad Haj Thami, Sana El Fkihi

Abstract:

Color and texture are highly discriminant visual cues that provide an essential information in many types of images. Color texture representation and classification is therefore one of the most challenging problems in computer vision and image processing applications. Color textures can be represented in different color spaces by using multiple image descriptors which generate a high dimensional set of texture features. In order to reduce the dimensionality of the feature set, feature selection techniques can be used. The goal of feature selection is to find a relevant subset from an original feature space that can improve the accuracy and efficiency of a classification algorithm. Traditionally, feature selection is focused on removing irrelevant features, neglecting the possible redundancy between relevant ones. This is why some feature selection approaches prefer to use feature clustering analysis to aid and guide the search. These techniques can be divided into two categories. i) Feature clustering-based ranking algorithm uses feature clustering as an analysis that comes before feature ranking. Indeed, after dividing the feature set into groups, these approaches perform a feature ranking in order to select the most discriminant feature of each group. ii) Feature clustering-based subset search algorithms can use feature clustering following one of three strategies; as an initial step that comes before the search, binded and combined with the search or as the search alternative and replacement. In this paper, we propose a new feature clustering-based sequential selection approach for the purpose of color texture representation and classification. Our approach is a three step algorithm. First, irrelevant features are removed from the feature set thanks to a class-correlation measure. Then, introducing a new automatic feature clustering algorithm, the feature set is divided into several feature clusters. Finally, a sequential search algorithm, based on a filter model and a separability measure, builds a relevant and non redundant feature subset: at each step, a feature is selected and features of the same cluster are removed and thus not considered thereafter. This allows to significantly speed up the selection process since large number of redundant features are eliminated at each step. The proposed algorithm uses the clustering algorithm binded and combined with the search. Experiments using a combination of two well known texture descriptors, namely Haralick features extracted from Reduced Size Chromatic Co-occurence Matrices (RSCCMs) and features extracted from Local Binary patterns (LBP) image histograms, on five color texture data sets, Outex, NewBarktex, Parquet, Stex and USPtex demonstrate the efficiency of our method compared to seven of the state of the art methods in terms of accuracy and computation time.

Keywords: feature selection, color texture classification, feature clustering, color LBP, chromatic cooccurrence matrix

Procedia PDF Downloads 134
533 Cyber-Med: Practical Detection Methodology of Cyber-Attacks Aimed at Medical Devices Eco-Systems

Authors: Nir Nissim, Erez Shalom, Tomer Lancewiki, Yuval Elovici, Yuval Shahar

Abstract:

Background: A Medical Device (MD) is an instrument, machine, implant, or similar device that includes a component intended for the purpose of the diagnosis, cure, treatment, or prevention of disease in humans or animals. Medical devices play increasingly important roles in health services eco-systems, including: (1) Patient Diagnostics and Monitoring; Medical Treatment and Surgery; and Patient Life Support Devices and Stabilizers. MDs are part of the medical device eco-system and are connected to the network, sending vital information to the internal medical information systems of medical centers that manage this data. Wireless components (e.g. Wi-Fi) are often embedded within medical devices, enabling doctors and technicians to control and configure them remotely. All these functionalities, roles, and uses of MDs make them attractive targets of cyber-attacks launched for many malicious goals; this trend is likely to significantly increase over the next several years, with increased awareness regarding MD vulnerabilities, the enhancement of potential attackers’ skills, and expanded use of medical devices. Significance: We propose to develop and implement Cyber-Med, a unique collaborative project of Ben-Gurion University of the Negev and the Clalit Health Services Health Maintenance Organization. Cyber-Med focuses on the development of a comprehensive detection framework that relies on a critical attack repository that we aim to create. Cyber-Med will allow researchers and companies to better understand the vulnerabilities and attacks associated with medical devices as well as providing a comprehensive platform for developing detection solutions. Methodology: The Cyber-Med detection framework will consist of two independent, but complementary detection approaches: one for known attacks, and the other for unknown attacks. These modules incorporate novel ideas and algorithms inspired by our team's domains of expertise, including cyber security, biomedical informatics, and advanced machine learning, and temporal data mining techniques. The establishment and maintenance of Cyber-Med’s up-to-date attack repository will strengthen the capabilities of Cyber-Med’s detection framework. Major Findings: Based on our initial survey, we have already found more than 15 types of vulnerabilities and possible attacks aimed at MDs and their eco-system. Many of these attacks target individual patients who use devices such pacemakers and insulin pumps. In addition, such attacks are also aimed at MDs that are widely used by medical centers such as MRIs, CTs, and dialysis engines; the information systems that store patient information; protocols such as DICOM; standards such as HL7; and medical information systems such as PACS. However, current detection tools, techniques, and solutions generally fail to detect both the known and unknown attacks launched against MDs. Very little research has been conducted in order to protect these devices from cyber-attacks, since most of the development and engineering efforts are aimed at the devices’ core medical functionality, the contribution to patients’ healthcare, and the business aspects associated with the medical device.

Keywords: medical device, cyber security, attack, detection, machine learning

Procedia PDF Downloads 355