Search results for: language learning
1/Sigma Term Weighting Scheme for Sentiment Analysis
Authors: Hanan Alshaher, Jinsheng Xu
Abstract:
Large amounts of data on the web can provide valuable information. For example, product reviews help business owners measure customer satisfaction. Sentiment analysis classifies texts into two polarities: positive and negative. This paper examines movie reviews and tweets using a new term weighting scheme, called one-over-sigma (1/sigma), on benchmark datasets for sentiment classification. The proposed method aims to improve the performance of sentiment classification. The results show that 1/sigma is more accurate than the popular term weighting schemes. In order to verify if the entropy reflects the discriminating power of terms, we report a comparison of entropy values for different term weighting schemes.Keywords: 1/sigma, natural language processing, sentiment analysis, term weighting scheme, text classification
Procedia PDF Downloads 208Hierarchical Clustering Algorithms in Data Mining
Authors: Z. Abdullah, A. R. Hamdan
Abstract:
Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.Keywords: clustering, unsupervised learning, algorithms, hierarchical
Procedia PDF Downloads 892A Transnational Feminist Analysis of the Experiences of Return Migrant Women to Kosova
Authors: Kaltrina Kusari
Abstract:
Displaced populations have received increasing attention, yet the experiences of return migrants remain largely hidden within social sciences. Existing research, albeit limited, suggests that policies which impact return migrants, especially those forced to return to their home countries, do not reflect their voices. Specifically, the United Nations Hight Commissioner for Refugees has adopted repatriation as a preferred policy solution, despite research which substantiates that returning to one’s home country is neither durable nor the end of the migration cycle; as many of 80% of returnees decide to remigrate. This one-size-fits-all approach to forced displacement does not recognize the impact of intersecting identity categories on return migration, thus failing to consider how ethnicity, gender, and class, among others, shape repatriation. To address this, this qualitative study examined the repatriation experiences of return migrant women from Kosovo and the role of social workers in facilitating return. In 2015, Kosovars constituted the fourth largest group of asylum seekers in the European Union, yet 96% of them were rejected. Additionally, since 1999 Kosovo has ranked among the top 10 countries of origin for return migrants. Considering that return migration trends are impacted by global power dynamics, this study relied on a postcolonial and transnational feminist framework to contextualize the mobility of displaced peoples in terms of globalization and conceptualize migration as a gendered process. Postcolonial and feminist theories suggest that power is partly operationalized through language, thus, Critical Discourse Analysis was used as a research methodology. CDA is concerned with examining how power, language, and discourses shape social processes and relationships of dominance. Data collection included interviews with 15 return migrant women (eight ethnic minorities and seven Albanian) and 18 service providers in Kosovo. The main findings illustrate that both returnee women and service providers rely on discourses which 1) challenge the voluntariness and sustainability of repatriation; 2) construct Kosovo as inferior to EU countries; and 3) highlight the impact of patriarchy and ethnic racism on return migration. A postcolonial transnational feminist analysis demonstrates that despite Kosovars’ challenges with repatriation, European Union countries use their power to impose repatriation as a preferred solution for Kosovo’s government. These findings add to the body of existing repatriation literature and provide important implications for how return migration might be carried out, not only in Kosovo but other countries as well.Keywords: migration, gender, repatriation, transnational feminism
Procedia PDF Downloads 84Tip60 Histone Acetyltransferase Activators as Neuroepigenetic Therapeutic Modulators for Alzheimer’s Disease
Authors: Akanksha Bhatnagar, Sandhya Kortegare, Felice Elefant
Abstract:
Context: Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by progressive cognitive decline and memory loss. The cause of AD is not fully understood, but it is thought to be caused by a combination of genetic, environmental, and lifestyle factors. One of the hallmarks of AD is the loss of neurons in the hippocampus, a brain region that is important for memory and learning. This loss of neurons is thought to be caused by a decrease in histone acetylation, which is a process that regulates gene expression. Research Aim: The research aim of the study was to develop mall molecule compounds that can enhance the activity of Tip60, a histone acetyltransferase that is important for memory and learning. Methodology/Analysis: The researchers used in silico structural modeling and a pharmacophore-based virtual screening approach to design and synthesize small molecule compounds strongly predicted to target and enhance Tip60’s HAT activity. The compounds were then tested in vitro and in vivo to assess their ability to enhance Tip60 activity and rescue cognitive deficits in AD models. Findings: The researchers found that several of the compounds were able to enhance Tip60 activity and rescue cognitive deficits in AD models. The compounds were also developed to cross the blood-brain barrier, which is an important factor for the development of potential AD therapeutics. Theoretical Importance: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Data Collection: The study collected data from a variety of sources, including in vitro assays and animal models. The in vitro assays assessed the ability of compounds to enhance Tip60 activity using histone acetyltransferase (HAT) enzyme assays and chromatin immunoprecipitation assays. Animal models were used to assess the ability of the compounds to rescue cognitive deficits in AD models using a variety of behavioral tests, including locomotor ability, sensory learning, and recognition tasks. The human clinical trials will be used to assess the safety and efficacy of the compounds in humans. Questions: The question addressed by this study was whether Tip60 HAT activators could be developed as therapeutic agents for AD. Conclusions: The findings of this study suggest that Tip60 HAT activators have the potential to be developed as therapeutic agents for AD. The compounds are specific to Tip60, which suggests that they may have fewer side effects than other HDAC inhibitors. Additionally, the compounds are able to cross the blood-brain barrier, which is a major hurdle for the development of AD therapeutics. Further research is needed to confirm the safety and efficacy of these compounds in humans.Keywords: Alzheimer's disease, cognition, neuroepigenetics, drug discovery
Procedia PDF Downloads 80Overview and Future Opportunities of Sarcasm Detection on Social Media Communications
Authors: Samaneh Nadali, Masrah Azrifah Azmi Murad, Nurfadhlina Mohammad Sharef
Abstract:
Sarcasm is a common phenomenon in social media which is a nuanced form of language for stating the opposite of what is implied. Due to the intentional ambiguity, analysis of sarcasm is a difficult task not only for a machine but even for a human. Although sarcasm detection has an important effect on sentiment, it is usually ignored in social media analysis because sarcasm analysis is too complicated. While there is a few systems exist which can detect sarcasm, almost no work has been carried out on a study and the review of the existing work in this area. This survey presents a nearly full image of sarcasm detection techniques and the related fields with brief details. The main contributions of this paper include the illustration of the recent trend of research in the sarcasm analysis and we highlight the gaps and propose a new framework that can be explored.Keywords: sarcasm detection, sentiment analysis, social media, sarcasm analysis
Procedia PDF Downloads 460An Analysis of Australian Cybersecurity Postgraduate Degrees
Authors: Michael James, MIchael Bewong, Yeslam Al-Saggaf, Jason Howarth
Abstract:
The shortage of cybersecurity professionals is a widely recognized and documented issue. However, the role of higher education institutions in addressing this challenge is less understood. While universities are key contributors to workforce development, there is limited research on their relationship with the global shortage of cybersecurity professionals. Existing studies primarily focus on curricular design, emphasizing the technical skills required by the industry but often lacking active engagement with industry stakeholders. Prior research highlights that designing an effective cybersecurity curriculum requires direct input from industry professionals to ensure graduates are equipped with the skills needed for employment. Additionally, industry collaboration with high schools has been shown to encourage more students to pursue careers in cybersecurity. A notable gap in the literature is the lack of emphasis on soft skills, essential for effective collaboration on complex problems. This study used a qualitative document analysis approach, examining current and past postgraduate cybersecurity program curricula from Australian university handbooks. Postgraduate education plays a vital role in professional development, offering pathways to advanced capabilities and specialized knowledge. Our analysis reviewed 41 programs across 27 Australian universities, with the findings consolidated into a map of commonly offered courses and core technical and soft skills contained within them. Our findings show that most programs lack opportunities for industry-based projects, a critical component for easing students' transition into the workforce. Additionally, some programs do not offer elective courses, limiting students' ability to address specific skill gaps in their learning. These shortcomings highlight the need for curricula that better integrate industry engagement and provide more flexible learning pathways.Keywords: cybersecurity, postgraduate, education, Australia
Procedia PDF Downloads 7Factors of Adoption of the International Financial Reporting Standard for Small and Medium Sized Entities
Authors: Uyanga Jadamba
Abstract:
Globalisation of the world economy has necessitated the development and implementation of a comparable and understandable reporting language suitable for use by all reporting entities. The International Accounting Standard Board (IASB) provides an international reporting language that lets all users understand the financial information of their business and potentially allows them to have access to finance at an international level. The study is based on logistic regression analysis to investigate the factors for the adoption of theInternational Financial Reporting Standard for Small and Medium sized Entities (IFRS for SMEs). The study started with a list of 217 countries from World Bank data. Due to the lack of availability of data, the final sample consisted of 136 countries, including 60 countries that have adopted the IFRS for SMEs and 76 countries that have not adopted it yet. As a result, the study included a period from 2010 to 2020 and obtained 1360 observations. The findings confirm that the adoption of the IFRS for SMEs is significantly related to the existence of national reporting standards, law enforcement quality, common law (legal system), and extent of disclosure. It means that the likelihood of adoption of the IFRS for SMEs decreases if the country already has a national reporting standard for SMEs, which suggests that implementation and transitional costs are relatively high in order to change the reporting standards. The result further suggests that the new standard adoption is easier in countries with constructive law enforcement and effective application of laws. The finding also shows that the adoption increases if countries have a common law system which suggests that efficient reportingregulations are more widespread in these countries. Countries with a high extent of disclosing their financial information are more likely to adopt the standard than others. The findings lastly show that the audit qualityand primary education levelhave no significant impact on the adoption.One possible explanation for this could be that accounting professionalsfrom in developing countries lacked complete knowledge of the international reporting standards even though there was a requirement to comply with them. The study contributes to the literature by providing factors that impact the adoption of the IFRS for SMEs. It helps policymakers to better understand and apply the standard to improve the transparency of financial statements. The benefit of adopting the IFRS for SMEs is significant due to the relaxed and tailored reporting requirements for SMEs, reduced burden on professionals to comply with the standard, and provided transparent financial information to gain access to finance.The results of the study are useful toemerging economies where SMEs are dominant in the economy in informing its evaluation of the adoption of the IFRS for SMEs.Keywords: IFRS for SMEs, international financial reporting standard, adoption, institutional factors
Procedia PDF Downloads 83The Moderating Role of Perceived University Environment in the Formation of Entrepreneurial Intention among Creative Industries Students
Authors: Patrick Ebong Ebewo
Abstract:
The trend of high unemployment levels globally is a growing concern, which suggests that university students especially those studying the creative industries are most likely to face unemployment upon completion of their studies. Therefore the effort of university in fostering entrepreneurial knowledge is equally important to the development of student’s soft skill. The purpose of this paper is to assess the significance of perceived university environment and perceived educational support that influencing University students’ intention in starting their own business in the future. Thus, attempting to answer the question 'How does perceived university environment affect students’ attitude towards entrepreneurship as a career option, perceived entrepreneurial abilities, subjective norm and entrepreneurial intentions?' The study is based on the Theory of Planned Behaviour model adapted from previous studies and empirically tested on graduates at the Tshwane University of Technology. A sample of 150 graduates from the Arts and Design graduates took part in the study and data collected were analysed using structural equation modelling (SEM). Our findings seem to suggest the indirect impact of perceived university environment on entrepreneurial intention through perceived environment support and perceived entrepreneurial abilities. Thus, any increase in perceived university environment might influence students to become entrepreneurs. Based on these results, it is recommended that: (a) Tshwane University of Technology and other universities of technology should establish an ‘Entrepreneurship Internship Programme’ as a tool for stimulated work integrated learning. Post-graduation intervention could be implemented by the development of a ‘Graduate Entrepreneurship Program’ which should be embedded in the Bachelor of Technology (B-Tech now Advance Diploma) and Postgraduate courses; (b) Policymakers should consider the development of a coherent national policy framework that addresses entrepreneurship for the Arts/creative industries sector. This would create the enabling environment for the evolution of Higher Education Institutions from merely Teaching, Learning & Research to becoming drivers for creative entrepreneurship.Keywords: business venture, entrepreneurship education, entrepreneurial intent, university environment
Procedia PDF Downloads 344Attitude in Academic Writing (CAAW): Corpus Compilation and Annotation
Authors: Hortènsia Curell, Ana Fernández-Montraveta
Abstract:
This paper presents the creation, development, and analysis of a corpus designed to study the presence of attitude markers and author’s stance in research articles in two different areas of linguistics (theoretical linguistics and sociolinguistics). These two disciplines are expected to behave differently in this respect, given the disparity in their discursive conventions. Attitude markers in this work are understood as the linguistic elements (adjectives, nouns and verbs) used to convey the writer's stance towards the content presented in the article, and are crucial in understanding writer-reader interaction and the writer's position. These attitude markers are divided into three broad classes: assessment, significance, and emotion. In addition to them, we also consider first-person singular and plural pronouns and possessives, modal verbs, and passive constructions, which are other linguistic elements expressing the author’s stance. The corpus, Corpus of Attitude in Academic Writing (CAAW), comprises a collection of 21 articles, collected from six journals indexed in JCR. These articles were originally written in English by a single native-speaker author from the UK or USA and were published between 2022 and 2023. The total number of words in the corpus is approximately 222,400, with 106,422 from theoretical linguistics (Lingua, Linguistic Inquiry and Journal of Linguistics) and 116,022 from sociolinguistics journals (International Journal of the Sociology of Language, Language in Society and Journal of Sociolinguistics). Together with the corpus, we present the tool created for the creation and storage of the corpus, along with a tool for automatic annotation. The steps followed in the compilation of the corpus are as follows. First, the articles were selected according to the parameters explained above. Second, they were downloaded and converted to txt format. Finally, examples, direct quotes, section titles and references were eliminated, since they do not involve the author’s stance. The resulting texts were the input for the annotation of the linguistic features related to stance. As for the annotation, two articles (one from each subdiscipline) were annotated manually by the two researchers. An existing list was used as a baseline, and other attitude markers were identified, together with the other elements mentioned above. Once a consensus was reached, the rest of articles were annotated automatically using the tool created for this purpose. The annotated corpus will serve as a resource for scholars working in discourse analysis (both in linguistics and communication) and related fields, since it offers new insights into the expression of attitude. The tools created for the compilation and annotation of the corpus will be useful to study author’s attitude and stance in articles from any academic discipline: new data can be uploaded and the list of markers can be enlarged. Finally, the tool can be expanded to other languages, which will allow cross-linguistic studies of author’s stance.Keywords: academic writing, attitude, corpus, english
Procedia PDF Downloads 79An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 124Application of MALDI-MS to Differentiate SARS-CoV-2 and Non-SARS-CoV-2 Symptomatic Infections in the Early and Late Phases of the Pandemic
Authors: Dmitriy Babenko, Sergey Yegorov, Ilya Korshukov, Aidana Sultanbekova, Valentina Barkhanskaya, Tatiana Bashirova, Yerzhan Zhunusov, Yevgeniya Li, Viktoriya Parakhina, Svetlana Kolesnichenko, Yeldar Baiken, Aruzhan Pralieva, Zhibek Zhumadilova, Matthew S. Miller, Gonzalo H. Hortelano, Anar Turmuhambetova, Antonella E. Chesca, Irina Kadyrova
Abstract:
Introduction: The rapidly evolving COVID-19 pandemic, along with the re-emergence of pathogens causing acute respiratory infections (ARI), has necessitated the development of novel diagnostic tools to differentiate various causes of ARI. MALDI-MS, due to its wide usage and affordability, has been proposed as a potential instrument for diagnosing SARS-CoV-2 versus non-SARS-CoV-2 ARI. The aim of this study was to investigate the potential of MALDI-MS in conjunction with a machine learning model to accurately distinguish between symptomatic infections caused by SARS-CoV-2 and non-SARS-CoV-2 during both the early and later phases of the pandemic. Furthermore, this study aimed to analyze mass spectrometry (MS) data obtained from nasal swabs of healthy individuals. Methods: We gathered mass spectra from 252 samples, comprising 108 SARS-CoV-2-positive samples obtained in 2020 (Covid 2020), 7 SARS-CoV- 2-positive samples obtained in 2023 (Covid 2023), 71 samples from symptomatic individuals without SARS-CoV-2 (Control non-Covid ARVI), and 66 samples from healthy individuals (Control healthy). All the samples were subjected to RT-PCR testing. For data analysis, we employed the caret R package to train and test seven machine-learning algorithms: C5.0, KNN, NB, RF, SVM-L, SVM-R, and XGBoost. We conducted a training process using a five-fold (outer) nested repeated (five times) ten-fold (inner) cross-validation with a randomized stratified splitting approach. Results: In this study, we utilized the Covid 2020 dataset as a case group and the non-Covid ARVI dataset as a control group to train and test various machine learning (ML) models. Among these models, XGBoost and SVM-R demonstrated the highest performance, with accuracy values of 0.97 [0.93, 0.97] and 0.95 [0.95; 0.97], specificity values of 0.86 [0.71; 0.93] and 0.86 [0.79; 0.87], and sensitivity values of 0.984 [0.984; 1.000] and 1.000 [0.968; 1.000], respectively. When examining the Covid 2023 dataset, the Naive Bayes model achieved the highest classification accuracy of 43%, while XGBoost and SVM-R achieved accuracies of 14%. For the healthy control dataset, the accuracy of the models ranged from 0.27 [0.24; 0.32] for k-nearest neighbors to 0.44 [0.41; 0.45] for the Support Vector Machine with a radial basis function kernel. Conclusion: Therefore, ML models trained on MALDI MS of nasopharyngeal swabs obtained from patients with Covid during the initial phase of the pandemic, as well as symptomatic non-Covid individuals, showed excellent classification performance, which aligns with the results of previous studies. However, when applied to swabs from healthy individuals and a limited sample of patients with Covid in the late phase of the pandemic, ML models exhibited lower classification accuracy.Keywords: SARS-CoV-2, MALDI-TOF MS, ML models, nasopharyngeal swabs, classification
Procedia PDF Downloads 115Nurturing Scientific Minds: Enhancing Scientific Thinking in Children (Ages 5-9) through Experiential Learning in Kids Science Labs (STEM)
Authors: Aliya K. Salahova
Abstract:
Scientific thinking, characterized by purposeful knowledge-seeking and the harmonization of theory and facts, holds a crucial role in preparing young minds for an increasingly complex and technologically advanced world. This abstract presents a research study aimed at fostering scientific thinking in early childhood, focusing on children aged 5 to 9 years, through experiential learning in Kids Science Labs (STEM). The study utilized a longitudinal exploration design, spanning 240 weeks from September 2018 to April 2023, to evaluate the effectiveness of the Kids Science Labs program in developing scientific thinking skills. Participants in the research comprised 72 children drawn from local schools and community organizations. Through a formative psychology-pedagogical experiment, the experimental group engaged in weekly STEM activities carefully designed to stimulate scientific thinking, while the control group participated in daily art classes for comparison. To assess the scientific thinking abilities of the participants, a registration table with evaluation criteria was developed. This table included indicators such as depth of questioning, resource utilization in research, logical reasoning in hypotheses, procedural accuracy in experiments, and reflection on research processes. The data analysis revealed dynamic fluctuations in the number of children at different levels of scientific thinking proficiency. While the development was not uniform across all participants, a main leading factor emerged, indicating that the Kids Science Labs program and formative experiment exerted a positive impact on enhancing scientific thinking skills in children within this age range. The study's findings support the hypothesis that systematic implementation of STEM activities effectively promotes and nurtures scientific thinking in children aged 5-9 years. Enriching education with a specially planned STEM program, tailoring scientific activities to children's psychological development, and implementing well-planned diagnostic and corrective measures emerged as essential pedagogical conditions for enhancing scientific thinking abilities in this age group. The results highlight the significant and positive impact of the systematic-activity approach in developing scientific thinking, leading to notable progress and growth in children's scientific thinking abilities over time. These findings have promising implications for educators and researchers, emphasizing the importance of incorporating STEM activities into educational curricula to foster scientific thinking from an early age. This study contributes valuable insights to the field of science education and underscores the potential of STEM-based interventions in shaping the future scientific minds of young children.Keywords: Scientific thinking, education, STEM, intervention, Psychology, Pedagogy, collaborative learning, longitudinal study
Procedia PDF Downloads 64The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia
Authors: Sameerah A. Al-Hariri Al-Zahrani
Abstract:
The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school
Procedia PDF Downloads 166Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 276Designing a Tool for Software Maintenance
Authors: Amir Ngah, Masita Abdul Jalil, Zailani Abdullah
Abstract:
The aim of software maintenance is to maintain the software system in accordance with advancement in software and hardware technology. One of the early works on software maintenance is to extract information at higher level of abstraction. In this paper, we present the process of how to design an information extraction tool for software maintenance. The tool can extract the basic information from old program such as about variables, based classes, derived classes, objects of classes, and functions. The tool have two main part; the lexical analyzer module that can read the input file character by character, and the searching module which is user can get the basic information from existing program. We implemented this tool for a patterned sub-C++ language as an input file.Keywords: extraction tool, software maintenance, reverse engineering, C++
Procedia PDF Downloads 497Narratives and Meta-Narratives in the News of People Killed in 2022 Iranian Protests
Authors: Abbas Rezaei Samarin
Abstract:
In October 2022, protests began following the death of Mahsa Amini and were followed by the deaths of those arrested by Iran's morality police which Iran's official media and foreign Persian-language satellite channels presented to the audience different narratives of how they were killed. These two types of media produced two different and sometimes conflicting narratives when faced with the news of a certain person's death, and the conflict is found between the narratives in some cases. This study has focused on the semiotics of these narratives, the interpretation of discourses supporting the narratives, and finally, their analysis within the framework of narrative theories. In the present study, the researcher has used a qualitative approach and has concluded that the narrative of both types of media is structured around the functions of the existing and ideal political system.Keywords: narrative, iran, fake news, protests, manipulation of reality
Procedia PDF Downloads 100A Case Study on Theme-Based Approach in Health Technology Engineering Education: Customer Oriented Software Applications
Authors: Mikael Soini, Kari Björn
Abstract:
Metropolia University of Applied Sciences (MUAS) Information and Communication Technology (ICT) Degree Programme provides full-time Bachelor-level undergraduate studies. ICT Degree Programme has seven different major options; this paper focuses on Health Technology. In Health Technology, a significant curriculum change in 2014 enabled transition from fragmented curriculum including dozens of courses to a new integrated curriculum built around three 30 ECTS themes. This paper focuses especially on the second theme called Customer Oriented Software Applications. From students’ point of view, the goal of this theme is to get familiar with existing health related ICT solutions and systems, understand business around health technology, recognize social and healthcare operating principles and services, and identify customers and users and their special needs and perspectives. This also acts as a background for health related web application development. Built web application is tested, developed and evaluated with real users utilizing versatile user centred development methods. This paper presents experiences obtained from the first implementation of Customer Oriented Software Applications theme. Student feedback was gathered with two questionnaires, one in the middle of the theme and other at the end of the theme. Questionnaires had qualitative and quantitative parts. Similar questionnaire was implemented in the first theme; this paper evaluates how the theme-based integrated curriculum has progressed in Health Technology major by comparing results between theme 1 and 2. In general, students were satisfied for the implementation, timing and synchronization of the courses, and the amount of work. However there is still room for development. Student feedback and teachers’ observations have been and will be used to develop the content and operating principles of the themes and whole curriculum.Keywords: engineering education, integrated curriculum, learning and teaching methods, learning experience
Procedia PDF Downloads 324Effects of Merging Personal and Social Responsibility with Sports Education Model on Students' Game Performance and Responsibility
Authors: Yi-Hsiang Pan, Chen-Hui Huang, Wei-Ting Hsu
Abstract:
The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education.Keywords: curriculum and teaching model, sports self-efficacy, sport enthusiastic, character education
Procedia PDF Downloads 316BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network
Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour
Abstract:
Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network
Procedia PDF Downloads 173Psycholinguistic Analysis on Stuttering Treatment through Systemic Functional Grammar in Tom Hooper’s The King’s Speech
Authors: Nurvita Wijayanti
Abstract:
The movie titled The King’s Speech is based on a true story telling an English king suffers from stuttering and how he gets the treatment from the therapist, so that he can reduce the high frequency on stuttering. The treatment uses the unique approach implying the linguistic principles. This study shows how the language works significantly in order to treat the stuttering sufferer using psychological approach. Therefore, the linguistic study is done to analyze the treatment activity. Halliday’s Systemic Functional Grammar is used as the main approach in this study along with qualitative descriptive method. The study finds that the therapist though using the orthodox approach applies the psycholinguistic method to overcome the king’s stuttering.Keywords: psycholinguistics, stuttering, systemic functional grammar, treatment
Procedia PDF Downloads 253Student Participation in Higher Education Quality Assurance Processes
Authors: Tomasz Zarebski
Abstract:
A very important element of the education system is its evaluation procedure. Each education system should be systematically evaluated and improved. Among the criteria subject to evaluation, attention should be paid to the following: structure of the study programme, implementation of the study programme, admission to studies, verification of learning outcomes achievement by students, giving credit for individual semesters and years, and awarding diplomas, competence, experience, qualifications and the number of staff providing education, staff development, and in-service training, education infrastructure, cooperation with social and economic stakeholders on the development, conditions for and methods of improving the internationalisation of education provided as part of the degree programme, supporting learning, social, academic or professional development of students and their entry on the labour market, public access to information about the study programme and quality assurance policy. Concerning the assessment process and the individual assessment indicators, the participation of students in these processes is essential. The purpose of this paper is to analyse the rules of student participation in accreditation processes on the example of individual countries in Europe. The rules of students' participation in the work of accreditation committees and their influence on the final grade of the committee were analysed. Most of the higher education institutions follow similar rules for accreditation. The general model gives the individual institution freedom to organize its own quality assurance, as long as the system lives up to the criteria for quality and relevance laid down in the particular provisions. This point also applies to students. The regulations of the following countries were examined in the legal-comparative aspect: Poland (Polish Accreditation Committee), Denmark (The Danish Accreditation Institution), France (High Council for the Evaluation of Research and Higher Education), Germany (Agency for Quality Assurance through Accreditation of Study Programmes) and Italy (National Agency for the Evaluation of Universities and Research Institutes).Keywords: accreditation, student, study programme, quality assurance in higher education
Procedia PDF Downloads 177Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 440The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 163Machine Learning Analysis of Eating Disorders Risk, Physical Activity and Psychological Factors in Adolescents: A Community Sample Study
Authors: Marc Toutain, Pascale Leconte, Antoine Gauthier
Abstract:
Introduction: Eating Disorders (ED), such as anorexia, bulimia, and binge eating, are psychiatric illnesses that mostly affect young people. The main symptoms concern eating (restriction, excessive food intake) and weight control behaviors (laxatives, vomiting). Psychological comorbidities (depression, executive function disorders, etc.) and problematic behaviors toward physical activity (PA) are commonly associated with ED. Acquaintances on ED risk factors are still lacking, and more community sample studies are needed to improve prevention and early detection. To our knowledge, studies are needed to specifically investigate the link between ED risk level, PA, and psychological risk factors in a community sample of adolescents. The aim of this study is to assess the relation between ED risk level, exercise (type, frequency, and motivations for engaging in exercise), and psychological factors based on the Jacobi risk factors model. We suppose that a high risk of ED will be associated with the practice of high caloric cost PA, motivations oriented to weight and shape control, and psychological disturbances. Method: An online survey destined for students has been sent to several middle schools and colleges in northwest France. This survey combined several questionnaires, the Eating Attitude Test-26 assessing ED risk; the Exercise Motivation Inventory–2 assessing motivations toward PA; the Hospital Anxiety and Depression Scale assessing anxiety and depression, the Contour Drawing Rating Scale; and the Body Esteem Scale assessing body dissatisfaction, Rosenberg Self-esteem Scale assessing self-esteem, the Exercise Dependence Scale-Revised assessing PA dependence, the Multidimensional Assessment of Interoceptive Awareness assessing interoceptive awareness and the Frost Multidimensional Perfectionism Scale assessing perfectionism. Machine learning analysis will be performed in order to constitute groups with a tree-based model clustering method, extract risk profile(s) with a bootstrap method comparison, and predict ED risk with a prediction method based on a decision tree-based model. Expected results: 1044 complete records have already been collected, and the survey will be closed at the end of May 2022. Records will be analyzed with a clustering method and a bootstrap method in order to reveal risk profile(s). Furthermore, a predictive tree decision method will be done to extract an accurate predictive model of ED risk. This analysis will confirm typical main risk factors and will give more data on presumed strong risk factors such as exercise motivations and interoceptive deficit. Furthermore, it will enlighten particular risk profiles with a strong level of proof and greatly contribute to improving the early detection of ED and contribute to a better understanding of ED risk factors.Keywords: eating disorders, risk factors, physical activity, machine learning
Procedia PDF Downloads 88Parallel Querying of Distributed Ontologies with Shared Vocabulary
Authors: Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane
Abstract:
Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web.Keywords: distributed ontologies, parallel querying, semantic indexing, shared vocabulary, SPARQL
Procedia PDF Downloads 208Seismic Perimeter Surveillance System (Virtual Fence) for Threat Detection and Characterization Using Multiple ML Based Trained Models in Weighted Ensemble Voting
Authors: Vivek Mahadev, Manoj Kumar, Neelu Mathur, Brahm Dutt Pandey
Abstract:
Perimeter guarding and protection of critical installations require prompt intrusion detection and assessment to take effective countermeasures. Currently, visual and electronic surveillance are the primary methods used for perimeter guarding. These methods can be costly and complicated, requiring careful planning according to the location and terrain. Moreover, these methods often struggle to detect stealthy and camouflaged insurgents. The object of the present work is to devise a surveillance technique using seismic sensors that overcomes the limitations of existing systems. The aim is to improve intrusion detection, assessment, and characterization by utilizing seismic sensors. Most of the similar systems have only two types of intrusion detection capability viz., human or vehicle. In our work we could even categorize further to identify types of intrusion activity such as walking, running, group walking, fence jumping, tunnel digging and vehicular movements. A virtual fence of 60 meters at GCNEP, Bahadurgarh, Haryana, India, was created by installing four underground geophones at a distance of 15 meters each. The signals received from these geophones are then processed to find unique seismic signatures called features. Various feature optimization and selection methodologies, such as LightGBM, Boruta, Random Forest, Logistics, Recursive Feature Elimination, Chi-2 and Pearson Ratio were used to identify the best features for training the machine learning models. The trained models were developed using algorithms such as supervised support vector machine (SVM) classifier, kNN, Decision Tree, Logistic Regression, Naïve Bayes, and Artificial Neural Networks. These models were then used to predict the category of events, employing weighted ensemble voting to analyze and combine their results. The models were trained with 1940 training events and results were evaluated with 831 test events. It was observed that using the weighted ensemble voting increased the efficiency of predictions. In this study we successfully developed and deployed the virtual fence using geophones. Since these sensors are passive, do not radiate any energy and are installed underground, it is impossible for intruders to locate and nullify them. Their flexibility, quick and easy installation, low costs, hidden deployment and unattended surveillance make such systems especially suitable for critical installations and remote facilities with difficult terrain. This work demonstrates the potential of utilizing seismic sensors for creating better perimeter guarding and protection systems using multiple machine learning models in weighted ensemble voting. In this study the virtual fence achieved an intruder detection efficiency of over 97%.Keywords: geophone, seismic perimeter surveillance, machine learning, weighted ensemble method
Procedia PDF Downloads 85A Summary-Based Text Classification Model for Graph Attention Networks
Authors: Shuo Liu
Abstract:
In Chinese text classification tasks, redundant words and phrases can interfere with the formation of extracted and analyzed text information, leading to a decrease in the accuracy of the classification model. To reduce irrelevant elements, extract and utilize text content information more efficiently and improve the accuracy of text classification models. In this paper, the text in the corpus is first extracted using the TextRank algorithm for abstraction, the words in the abstract are used as nodes to construct a text graph, and then the graph attention network (GAT) is used to complete the task of classifying the text. Testing on a Chinese dataset from the network, the classification accuracy was improved over the direct method of generating graph structures using text.Keywords: Chinese natural language processing, text classification, abstract extraction, graph attention network
Procedia PDF Downloads 107Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 89English Loanwords in Nigerian Languages: Sociolinguistic Survey
Authors: Surajo Ladan
Abstract:
English has been in existence in Nigeria since colonial period. The advent of English in Nigeria has caused a lot of linguistic changes in Nigerian languages especially among the educated elites and to some extent, even the ordinary people were not spared from this phenomenon. This scenario has generated a linguistic situation which culminated into the creation of Nigerian Pidgin that are conglomeration of English and other Nigerian languages. English has infiltrated the Nigerian languages to a point that a typical Nigerian can hardly talk without code-switching or using one English word or the other. The existence of English loanwords in Nigerian languages has taken another dimension in this scientific and technological age. Most of scientific and technological inventions are products of English language which are virtually adopted into the languages with phonological, morphological, and sometimes semantic variations. This paper is of the view that there should be a re-think and agitation from Nigerians to protect their languages from the linguistic genocide of English which are invariably facing extinction.Keywords: linguistic change, loanword, phenomenon, pidgin
Procedia PDF Downloads 872Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 209