Search results for: extended linear sigma model
13703 Improved Reuse and Storage Performances at Room Temperature of a New Environmental-Friendly Lactate Oxidase Biosensor Made by Ambient Electrospray Deposition
Authors: Antonella Cartoni, Mattea Carmen Castrovilli
Abstract:
A biosensor for lactate detection has been developed using an environmentally friendly approach. The biosensor is based on lactate oxidase (LOX) and has remarkable capabilities for reuse and storage at room temperature. The manufacturing technique employed is ambient electrospray deposition (ESD), which enables efficient and sustainable immobilization of the LOX enzyme on a cost-effective com-mercial screen-printed Prussian blue/carbon electrode (PB/C-SPE). The study demonstrates that the ESD technology allows the biosensor to be stored at ambient pressure and temperature for extended periods without affecting the enzymatic activity. The biosensor can be stored for up to 90 days without requiring specific storage conditions, and it can be reused for up to 24 measurements on both freshly prepared electrodes and electrodes that are three months old. The LOX-based biosensor exhibits a lin-ear range of lactate detection between 0.1 and 1 mM, with a limit of detection of 0.07±0.02 mM. Ad-ditionally, it does not exhibit any memory effects. The immobilization process does not involve the use of entrapment matrices or hazardous chemicals, making it environmentally sustainable and non-toxic compared to current methods. Furthermore, the application of a electrospray deposition cycle on previously used biosensors rejuvenates their performance, making them comparable to freshly made biosensors. This highlights the excellent recycling potential of the technique, eliminating the waste as-sociated with disposable devices.Keywords: green friendly, reuse, storage performance, immobilization, matrix-free, electrospray deposition, biosensor, lactate oxidase, enzyme
Procedia PDF Downloads 7013702 Iterative Method for Lung Tumor Localization in 4D CT
Authors: Sarah K. Hagi, Majdi Alnowaimi
Abstract:
In the last decade, there were immense advancements in the medical imaging modalities. These advancements can scan a whole volume of the lung organ in high resolution images within a short time. According to this performance, the physicians can clearly identify the complicated anatomical and pathological structures of lung. Therefore, these advancements give large opportunities for more advance of all types of lung cancer treatment available and will increase the survival rate. However, lung cancer is still one of the major causes of death with around 19% of all the cancer patients. Several factors may affect survival rate. One of the serious effects is the breathing process, which can affect the accuracy of diagnosis and lung tumor treatment plan. We have therefore developed a semi automated algorithm to localize the 3D lung tumor positions across all respiratory data during respiratory motion. The algorithm can be divided into two stages. First, a lung tumor segmentation for the first phase of the 4D computed tomography (CT). Lung tumor segmentation is performed using an active contours method. Then, localize the tumor 3D position across all next phases using a 12 degrees of freedom of an affine transformation. Two data set where used in this study, a compute simulate for 4D CT using extended cardiac-torso (XCAT) phantom and 4D CT clinical data sets. The result and error calculation is presented as root mean square error (RMSE). The average error in data sets is 0.94 mm ± 0.36. Finally, evaluation and quantitative comparison of the results with a state-of-the-art registration algorithm was introduced. The results obtained from the proposed localization algorithm show a promising result to localize alung tumor in 4D CT data.Keywords: automated algorithm , computed tomography, lung tumor, tumor localization
Procedia PDF Downloads 60713701 Simulation Analysis of Wavelength/Time/Space Codes Using CSRZ and DPSK-RZ Formats for Fiber-Optic CDMA Systems
Authors: Jaswinder Singh
Abstract:
In this paper, comparative analysis is carried out to study the performance of wavelength/time/space optical CDMA codes using two well-known formats; those are CSRZ and DPSK-RZ using RSoft’s OptSIM. The analysis is carried out under the real-like scenario considering the presence of various non-linear effects such as XPM, SPM, SRS, SBS and FWM. Fiber dispersion and the multiple access interference are also considered. The codes used in this analysis are 3-D wavelength/time/space codes. These are converted into 2-D wavelength-time codes so that their requirement of space couplers and fiber ribbons is eliminated. Under the conditions simulated, this is found that CSRZ performs better than DPSK-RZ for fiber-optic CDMA applications.Keywords: Optical CDMA, Multiple access interference (MAI), CSRZ, DPSK-RZ
Procedia PDF Downloads 64913700 Application Reliability Method for Concrete Dams
Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar
Abstract:
Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor
Procedia PDF Downloads 32813699 Analysis on Yogyakarta Istimewa Citygates on Urban Area Arterial Roads
Authors: Nizar Caraka Trihanasia, Suparwoko
Abstract:
The purpose of this paper is to analyze the design model of city gates on arterial roads as Yogyakarta’s “Istimewa” (special) identity. City marketing has become a trend among cities in the past few years. It began to compete with each other in promoting their identity to the world. One of the easiest ways to recognize the identity is by knowing the image of the city which can be seen through architectural buildings or urban elements. The idea is to recognize how the image of the city can represent Yogyakarta’s identity, which is limited to the contribution of the city gates distinctiveness on Yogyakarta urban area. This study has concentrated on the aspect of city gates as built environment that provides a diversity, configuration and scale of development that promotes a sense of place and community. The visual analysis will be conducted to interpreted the existing Yogyakarta city gates (as built environment) focussing on some variables of 1) character and pattern, 2) circulation system establishment, and 3) open space utilisation. Literature review and site survey are also conducted to understand the relationship between the built environment and the sense of place in the community. This study suggests that visually the Yogyakarta city gate model has strong visual characters and pattern by using the concept of a sense of place of Yogyakarta community value.Keywords: visual analysis, model, Yogyakarta “Istimewa”, citygates
Procedia PDF Downloads 26413698 An Integrated Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) Model
Authors: Babak Daneshvar Rouyendegh
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: Decision-Makers (DMs), Multi-Criteria Decision-Making (MCDM), Intuitionistic Fuzzy Elimination Et Choix Traduisant La REalite (IFELECTRE), Intuitionistic Fuzzy Numbers (IFN)
Procedia PDF Downloads 68113697 Liquefaction Potential Prediction of Chi-Chi Earthquake Based on Standard Penetration Test Data Using Gradient Boosting Classifier
Authors: Pravallika Chithuloori, Jin-Man Kim
Abstract:
Soil liquefaction, triggered by increased porewater pressure, poses a significant threat to infrastructure stability in seismically active regions, and its forecasting remains challenging due to intricate nonlinear interactions. This study uses a dataset of 540 samples that includes seismic parameters and standard penetration test (SPT) results to evaluate liquefaction prediction. SPT N60 values, soil fine content (FC), ground water table (GWT), effective stress of overburden (ESO), peak ground acceleration (PGA), and earthquake magnitude (Mw) are key inputs. A gradient boost classifier (GBC) machine learning (ML) model was utilized to classify liquefaction events. The model’s performance was evaluated using metrics such as accuracy, precision, recall, F1-score, confusion matrix analysis, sensitivity analysis, feature importance ranking, and Shapley Additive Explanations (SHAP). According to these evaluations, the most significant variables in predicting liquefaction were PGA, SPT-N60, and GWT. The robustness of the GBC model was further validated through precision-recall curves and k-fold cross-validation, and it achieved an impressive 99.38% prediction accuracy. These results highlight the potential of the GBC technique to advance the reliability of liquefaction forecasting.Keywords: liquefaction, standard penetration test, gradient boost, machine learning, SHAP
Procedia PDF Downloads 613696 Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W
Authors: Abdelatif Gadoum, Djilali Benyoucef, Mouloudj Hadj, Alla Eddine Toubal Maamar, Mohamed Habib Allah Lahoual
Abstract:
Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%.Keywords: hydrogen production, inductively coupled plasma, fluid model, methane plasma
Procedia PDF Downloads 16813695 Using RASCAL Code to Analyze the Postulated UF6 Fire Accident
Authors: J. R. Wang, Y. Chiang, W. S. Hsu, S. H. Chen, J. H. Yang, S. W. Chen, C. Shih, Y. F. Chang, Y. H. Huang, B. R. Shen
Abstract:
In this research, the RASCAL code was used to simulate and analyze the postulated UF6 fire accident which may occur in the Institute of Nuclear Energy Research (INER). There are four main steps in this research. In the first step, the UF6 data of INER were collected. In the second step, the RASCAL analysis methodology and model was established by using these data. Third, this RASCAL model was used to perform the simulation and analysis of the postulated UF6 fire accident. Three cases were simulated and analyzed in this step. Finally, the analysis results of RASCAL were compared with the hazardous levels of the chemicals. According to the compared results of three cases, Case 3 has the maximum danger in human health.Keywords: RASCAL, UF₆, safety, hydrogen fluoride
Procedia PDF Downloads 22713694 Bridging Urban Planning and Environmental Conservation: A Regional Analysis of Northern and Central Kolkata
Authors: Tanmay Bisen, Aastha Shayla
Abstract:
This study introduces an advanced approach to tree canopy detection in urban environments and a regional analysis of Northern and Central Kolkata that delves into the intricate relationship between urban development and environmental conservation. Leveraging high-resolution drone imagery from diverse urban green spaces in Kolkata, we fine-tuned the deep forest model to enhance its precision and accuracy. Our results, characterized by an impressive Intersection over Union (IoU) score of 0.90 and a mean average precision (mAP) of 0.87, underscore the model's robustness in detecting and classifying tree crowns amidst the complexities of aerial imagery. This research not only emphasizes the importance of model customization for specific datasets but also highlights the potential of drone-based remote sensing in urban forestry studies. The study investigates the spatial distribution, density, and environmental impact of trees in Northern and Central Kolkata. The findings underscore the significance of urban green spaces in met-ropolitan cities, emphasizing the need for sustainable urban planning that integrates green infrastructure for ecological balance and human well-being.Keywords: urban greenery, advanced spatial distribution analysis, drone imagery, deep learning, tree detection
Procedia PDF Downloads 5913693 Application of Neural Petri Net to Electric Control System Fault Diagnosis
Authors: Sadiq J. Abou-Loukh
Abstract:
The present work deals with implementation of Petri nets, which own the perfect ability of modeling, are used to establish a fault diagnosis model. Fault diagnosis of a control system received considerable attention in the last decades. The formalism of representing neural networks based on Petri nets has been presented. Neural Petri Net (NPN) reasoning model is investigated and developed for the fault diagnosis process of electric control system. The proposed NPN has the characteristics of easy establishment and high efficiency, and fault status within the system can be described clearly when compared with traditional testing methods. The proposed system is tested and the simulation results are given. The implementation explains the advantages of using NPN method and can be used as a guide for different online applications.Keywords: petri net, neural petri net, electric control system, fault diagnosis
Procedia PDF Downloads 48013692 Synthesis and Anti-Cancer Evaluation of Uranyle Complexes
Authors: Abdol-Hassan Doulah
Abstract:
In this research, some of the inorganic complexes of uranyl with N- donor ligands were synthesized. Complexes were characteriezed by FT-IR and UV spectra, ¹HNMR, ¹³CNMR and some physical properties. The uranyl unit (UO2) is composed of a center of uranium atom with the charge (+6) and two oxygen atom by forming two U=O double bonds. The structure is linear (O=U=O, 180) and usually stable. So other ligands often coordinate to the U atom in the plane perpendicularly to the O=U=O axis. The antitumor activity of some of ligand and their complexes against a panel of human tumor cell lines (HT29: Haman colon adenocarcinoma cell line T47D: human breast adenocarcinoma cell line) were determined by MTT(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. These data suggest that some of these compounds provide good models for the further design of potent antitumor compounds.Keywords: inorganic, uranyl complex-donor ligands, Schiff bases, anticancer activity
Procedia PDF Downloads 45713691 Relation of Electromyography, Strength and Fatigue During Ramp Isometric Contractions
Authors: Cesar Ferreira Amorim, Tamotsu Hirata, Runer Augusto Marson
Abstract:
The purpose of this study was to determine the effect of strength ramp isometric contraction on changes in surface electromyography (sEMG) signal characteristics of the hamstrings muscles. All measurements were obtained from 20 healthy well trained healthy adults (age 19.5 ± 0.8 yrs, body mass 63.4 ± 1.5 kg, height: 1.65 ± 0.05 m). Subjects had to perform isometric ramp contractions in knee flexion with the force gradually increasing from 0 to 40% of the maximal voluntary contraction (MVC) in a 20s period. The root mean square (RMS) amplitude of sEMG signals obtained from the biceps femoris (caput longum) were calculated at four different strength levels (10, 20, 30, and 40% MVC) from the ramp isometric contractions (5s during the 20s task %MVC). The main results were a more pronounced increase non-linear in sEMG-RMS amplitude for the muscles. The protocol described here may provide a useful index for measuring of strength neuromuscular fatigue.Keywords: biosignal, surface electromyography, ramp contractions, strength
Procedia PDF Downloads 48713690 Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction
Authors: Motahar Reza, Rajni Chahal, Neha Sharma
Abstract:
This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter.Keywords: boundary layer flow, nonlinear stretching, Casson fluid, heat transfer, radiation
Procedia PDF Downloads 40413689 Improving the Uptake of Community-Based Multidrug-Resistant Tuberculosis Treatment Model in Nigeria
Authors: A. Abubakar, A. Parsa, S. Walker
Abstract:
Despite advances made in the diagnosis and management of drug-sensitive tuberculosis (TB) over the past decades, treatment of multidrug-resistant tuberculosis (MDR-TB) remains challenging and complex particularly in high burden countries including Nigeria. Treatment of MDR-TB is cost-prohibitive with success rate generally lower compared to drug-sensitive TB and if care is not taken it may become the dominant form of TB in future with many treatment uncertainties and substantial morbidity and mortality. Addressing these challenges requires collaborative efforts thorough sustained researches to evaluate the current treatment guidelines, particularly in high burden countries and prevent progression of resistance. To our best knowledge, there has been no research exploring the acceptability, effectiveness, and cost-effectiveness of community-based-MDR-TB treatment model in Nigeria, which is among the high burden countries. The previous similar qualitative study looks at the home-based management of MDR-TB in rural Uganda. This research aimed to explore patient’s views and acceptability of community-based-MDR-TB treatment model and to evaluate and compare the effectiveness and cost-effectiveness of community-based versus hospital-based MDR-TB treatment model of care from the Nigerian perspective. Knowledge of patient’s views and acceptability of community-based-MDR-TB treatment approach would help in designing future treatment recommendations and in health policymaking. Accordingly, knowledge of effectiveness and cost-effectiveness are part of the evidence needed to inform a decision about whether and how to scale up MDR-TB treatment, particularly in a poor resource setting with limited knowledge of TB. Mixed methods using qualitative and quantitative approach were employed. Qualitative data were obtained using in-depth semi-structured interviews with 21 MDR-TB patients in Nigeria to explore their views and acceptability of community-based MDR-TB treatment model. Qualitative data collection followed an iterative process which allowed adaptation of topic guides until data saturation. In-depth interviews were analyzed using thematic analysis. Quantitative data on treatment outcomes were obtained from medical records of MDR-TB patients to determine the effectiveness and direct and indirect costs were obtained from the patients using validated questionnaire and health system costs from the donor agencies to determine the cost-effectiveness difference between community and hospital-based model from the Nigerian perspective. Findings: Some themes have emerged from the patient’s perspectives indicating preference and high acceptability of community-based-MDR-TB treatment model by the patients and mixed feelings about the risk of MDR-TB transmission within the community due to poor infection control. The result of the modeling from the quantitative data is still on course. Community-based MDR-TB care was seen as the acceptable and most preferred model of care by the majority of the participants because of its convenience which in turn enhanced recovery, enables social interaction and offer more psychosocial benefits as well as averted productivity loss. However, there is a need to strengthen this model of care thorough enhanced strategies that ensure guidelines compliance and infection control in order to prevent the progression of resistance and curtail community transmission.Keywords: acceptability, cost-effectiveness, multidrug-resistant TB treatment, community and hospital approach
Procedia PDF Downloads 12513688 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys
Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio
Abstract:
Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling
Procedia PDF Downloads 22513687 Model-Viewer for Setting Interactive 3D Objects of Electronic Devices and Systems
Authors: Julio Brégains, Ángel Carro, José-Manuel Andión
Abstract:
Virtual 3D objects constitute invaluable tools for teaching practical engineering subjects at all -from basic to advanced- educational levels. For instance, they can be equipped with animation or informative labels, manipulated by mouse movements, and even be immersed in a real environment through augmented reality. In this paper, we present the investigation and description of a set of applications prepared for creating, editing, and making use of interactive 3D models to represent electric and electronic devices and systems. Several examples designed with the described tools are exhibited, mainly to show their capabilities as educational technological aids, applicable not only to the field of electricity and electronics but also to a much wider range of technical areas.Keywords: educational technology, Google model viewer, ICT educational tools, interactive teaching, new tools for teaching
Procedia PDF Downloads 7813686 Coupled Analysis for Hazard Modelling of Debris Flow Due to Extreme Rainfall
Authors: N. V. Nikhil, S. R. Lee, Do Won Park
Abstract:
Korean peninsula receives about two third of the annual rainfall during summer season. The extreme rainfall pattern due to typhoon and heavy rainfall results in severe mountain disasters among which 55% of them are debris flows, a major natural hazard especially when occurring around major settlement areas. The basic mechanism underlined for this kind of failure is the unsaturated shallow slope failure by reduction of matric suction due to infiltration of water and liquefaction of the failed mass due to generation of positive pore water pressure leading to abrupt loss of strength and commencement of flow. However only an empirical model cannot simulate this complex mechanism. Hence, we have employed an empirical-physical based approach for hazard analysis of debris flow using TRIGRS, a debris flow initiation criteria and DAN3D in mountain Woonmyun, South Korea. Debris flow initiation criteria is required to discern the potential landslides which can transform into debris flow. DAN-3D, being a new model, does not have the calibrated values of rheology parameters for Korean conditions. Thus, in our analysis we have used the recent 2011 debris flow event in mountain Woonmyun san for calibration of both TRIGRS model and DAN-3D, thereafter identifying and predicting the debris flow initiation points, path, run out velocity, and area of spreading for future extreme rainfall based scenarios.Keywords: debris flow, DAN-3D, extreme rainfall, hazard analysis
Procedia PDF Downloads 24913685 Exploring Salient Shifts and Transdiagnostic Factors in Eating Disordered Women
Authors: Francesca Favero, Despina Learmonth
Abstract:
Carbohydrate addiction is said to be the sustained dependence on hyperpalatable foods rich in carbohydrates and sugar. This addiction manifests in increased consumption of carbohydrates through binging: a behaviour typically associated with eating disorders. There is a lack of consensus amongst relevant experts as to whether carbohydrates are physiologically or psychologically addictive. With an increased focus on carbohydrate addiction, an outpatient treatment programme, HELP, has been established in Cape Town, South Africa, to specifically address this issue. This research aimed to explore, pre-and post-intervention, the possible presence of, and subsequent shifts in, the maintaining mechanisms identified in the transdiagnostic model for eating disorders. However, the potential for the emergence of other perpetuating factors was not discounted and the nature of the analysis allowed for this possibility. Eight women between the ages of twenty-two and fifty, who had completed the outpatient treatment programme in the last six months, were interviewed. They were asked to speak retrospectively about their personal difficulties, eating and food, and their experience of the treatment. Thematic analysis was employed to identify themes arising from the data. Five themes congruent with the transdiagnostic model’s factors emerged: over-evaluation of weight and shape, core low self-esteem, interpersonal difficulties, clinical perfectionism and mood intolerance. A variety of sub-themes, elaborating upon the various ways in which the disordered eating was maintained, also emerged from the data. Shifts in these maintaining mechanisms were identified. Although not necessarily indicative of recovery, the results suggest that the outpatient HELP programme had a positive overall influence on the participants; and that the transdiagnostic model may be useful in understanding and guiding the treatment of clients who engage in this type of treatment programme.Keywords: eating disorders, binge eating disorder, carbohydrate addiction, transdiagnostic model, maintaining mechanisms, thematic analysis, outpatient treatment
Procedia PDF Downloads 32213684 Energy Use and Econometric Models of Soybean Production in Mazandaran Province of Iran
Authors: Majid AghaAlikhani, Mostafa Hojati, Saeid Satari-Yuzbashkandi
Abstract:
This paper studies energy use patterns and relationship between energy input and yield for soybean (Glycine max (L.) Merrill) in Mazandaran province of Iran. In this study, data were collected by administering a questionnaire in face-to-face interviews. Results revealed that the highest share of energy consumption belongs to chemical fertilizers (29.29%) followed by diesel (23.42%) and electricity (22.80%). Our investigations showed that a total energy input of 23404.1 MJ.ha-1 was consumed for soybean production. The energy productivity, specific energy, and net energy values were estimated as 0.12 kg MJ-1, 8.03 MJ kg-1, and 49412.71 MJ.ha-1, respectively. The ratio of energy outputs to energy inputs was 3.11. Obtained results indicated that direct, indirect, renewable and non-renewable energies were (56.83%), (43.17%), (15.78%) and (84.22%), respectively. Three econometric models were also developed to estimate the impact of energy inputs on yield. The results of econometric models revealed that impact of chemical, fertilizer, and water on yield were significant at 1% probability level. Also, direct and non-renewable energies were found to be rather high. Cost analysis revealed that total cost of soybean production per ha was around 518.43$. Accordingly, the benefit-cost ratio was estimated as 2.58. The energy use efficiency in soybean production was found as 3.11. This reveals that the inputs used in soybean production are used efficiently. However, due to higher rate of nitrogen fertilizer consumption, sustainable agriculture should be extended and extension staff could be proposed substitution of chemical fertilizer by biological fertilizer or green manure.Keywords: Cobbe Douglas function, economical analysis, energy efficiency, energy use patterns, soybean
Procedia PDF Downloads 33913683 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 34313682 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions
Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban
Abstract:
The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics
Procedia PDF Downloads 41413681 Predicting Wearable Technology Readiness in a South African Government Department: Exploring the Influence of Wearable Technology Acceptance and Positive Attitude
Authors: Henda J Thomas, Cornelia PJ Harmse, Cecile Schultz
Abstract:
Wearables are one of the technologies that will flourish within the fourth industrial revolution and digital transformation arenas, allowing employers to integrate collected data into organisational information systems. The study aimed to investigate whether wearable technology readiness can predict employees’ acceptance to wear wearables in the workplace. The factors of technology readiness predisposition that predict acceptance and positive attitudes towards wearable use in the workplace were examined. A quantitative research approach was used. The population consisted of 8 081 South African Department of Employment and Labour employees (DEL). Census sampling was used, and questionnaires to collect data were sent electronically to all 8 081 employees, 351 questionnaires were received back. The measuring instrument called the Technology Readiness and Acceptance Model (TRAM) was used in this study. Four hypotheses were formulated to investigate the relationship between readiness and acceptance of wearables in the workplace. The results found consistent predictions of technology acceptance (TA) by eagerness, optimism, and discomfort in the technology readiness (TR) scales. The TR scales of optimism and eagerness were consistent positive predictors of the TA scales, while discomfort proved to be a negative predictor for two of the three TA scales. Insecurity was found not to be a predictor of TA. It was recommended that the digital transformation policy of the DEL should be revised. Wearables in the workplace should be embraced from the viewpoint of convenience, automation, and seamless integration with the DEL information systems. The empirical contribution of this study can be seen in the fact that positive attitude emerged as a factor that extends the TRAM. In this study, positive attitude is identified as a new dimension to the TRAM not found in the original TA model and subsequent studies of the TRAM. Furthermore, this study found that Perceived Usefulness (PU) and Behavioural Intention to Use and (BIU) could not be separated but formed one factor. The methodological contribution of this study can lead to the development of a Wearable Readiness and Acceptance Model (WRAM). To the best of our knowledge, no author has yet introduced the WRAM into the body of knowledge.Keywords: technology acceptance model, technology readiness index, technology readiness and acceptance model, wearable devices, wearable technology, fourth industrial revolution
Procedia PDF Downloads 9213680 A Description Logics Based Approach for Building Multi-Viewpoints Ontologies
Authors: M. Hemam, M. Djezzar, T. Djouad
Abstract:
We are interested in the problem of building an ontology in a heterogeneous organization, by taking into account different viewpoints and different terminologies of communities in the organization. Such ontology, that we call multi-viewpoint ontology, confers to the same universe of discourse, several partial descriptions, where each one is relative to a particular viewpoint. In addition, these partial descriptions share at global level, ontological elements constituent a consensus between the various viewpoints. In order to provide response elements to this problem we define a multi-viewpoints knowledge model based on viewpoint and ontology notions. The multi-viewpoints knowledge model is used to formalize the multi-viewpoints ontology in description logics language.Keywords: description logic, knowledge engineering, ontology, viewpoint
Procedia PDF Downloads 31413679 Maintenance Objective-Based Asset Maintenance Maturity Model
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Peter Chemweno
Abstract:
The fast-changing business and operational environment are forcing organizations to adopt asset performance management strategies, not only to reduce costs but also maintain operational and production policies while addressing demand. To attain optimal asset performance management, a framework that ensures a continuous and systematic approach to analyzing an organization’s current maturity level and expected improvement regarding asset maintenance processes, strategies, technologies, capabilities, and systems is essential. Moreover, this framework while addressing maintenance-intensive organizations should consider the diverse business, operational and technical context (often dynamic) an organization is in and realistically prescribe or relate to the appropriate tools and systems the organization can potentially employ in the respective level, to improve and attain their maturity goals. This paper proposes an asset maintenance maturity model to assess the current capabilities, strength and weaknesses of maintenance processes an organization is using and analyze gaps for improvement via structuring set levels of achievement. At the epicentre of the proposed framework is the utilization of maintenance objective selected by an organization for various maintenance optimization programs. The framework adapts the Capability Maturity Model of assessing the maintenance process maturity levels in the organization.Keywords: asset maintenance, maturity models, maintenance objectives, optimization
Procedia PDF Downloads 23313678 Recommender Systems Using Ensemble Techniques
Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim
Abstract:
This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.Keywords: product recommender system, ensemble technique, association rules, decision tree, artificial neural networks
Procedia PDF Downloads 29813677 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model
Authors: Tanu Khanuja, Harikrishnan N. Unni
Abstract:
Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress
Procedia PDF Downloads 16513676 Impact Assessment of Climate Change on Water Resources in the Kabul River Basin
Authors: Tayib Bromand, Keisuke Sato
Abstract:
This paper presents the introduction to current water balance and climate change assessment in the Kabul river basin. The historical and future impacts of climate change on different components of water resources and hydrology in the Kabul river basin. The eastern part of Afghanistan, the Kabul river basin was chosen due to rapid population growth and land degradation to quantify the potential influence of Gobal Climate Change on its hydrodynamic characteristics. Luck of observed meteorological data was the main limitation of present research, few existed precipitation stations in the plain area of Kabul basin selected to compare with TRMM precipitation records, the result has been evaluated satisfactory based on regression and normal ratio methods. So the TRMM daily precipitation and NCEP temperature data set applied in the SWAT model to evaluate water balance for 2008 to 2012. Middle of the twenty – first century (2064) selected as the target period to assess impacts of climate change on hydrology aspects in the Kabul river basin. For this purpose three emission scenarios, A2, A1B and B1 and four GCMs, such as MIROC 3.2 (Med), CGCM 3.1 (T47), GFDL-CM2.0 and CNRM-CM3 have been selected, to estimate the future initial conditions of the proposed model. The outputs of the model compared and calibrated based on (R2) satisfactory. The assessed hydrodynamic characteristics and precipitation pattern. The results show that there will be significant impacts on precipitation patter such as decreasing of snowfall in the mountainous area of the basin in the Winter season due to increasing of 2.9°C mean annual temperature and land degradation due to deforestation.Keywords: climate change, emission scenarios, hydrological components, Kabul river basin, SWAT model
Procedia PDF Downloads 46913675 Hedonic Price Analysis of Consumer Preference for Musa spp in Northern Nigeria
Authors: Yakubu Suleiman, S. A. Musa
Abstract:
The research was conducted to determine the physical characteristics of banana fruits that influenced consumer preferences for the fruit in Northern Nigeria. Socio-economic characteristics of the respondents were also identified. Simple descriptive statistics and Hedonic prices model were used to analyze the data collected for socio-economic and consumer preference respectively with the aid of 1000 structured questionnaires. The result revealed the value of R2 to be 0.633, meaning that, 63.3% of the variation in the banana price was brought about by the explanatory variables included in the model and the variables are: colour, size, degree of ripeness, softness, surface blemish, cleanliness of the fruits, weight, length, and cluster size of fruits. However, the remaining 36.7% could be attributed to the error term or random disturbance in the model. It could also be seen from the calculated result that the intercept was 1886.5 and was statistically significant (P < 0.01), meaning that about N1886.5 worth of banana fruits could be bought by consumers without considering the variables of banana included in the model. Moreover, consumers showed that they have significant preference for colours, size, degree of ripeness, softness, weight, length and cluster size of banana fruits and they were tested to be significant at either P < 0.01, P < 0.05, and P < 0.1 . Moreover, the result also shows that consumers did not show significance preferences to surface blemish, cleanliness and variety of the banana fruit as all of them showed non-significance level with negative signs. Based on the findings of the research, it is hereby recommended that plant breeders and research institutes should concentrate on the production of banana fruits that have those physical characteristics that were found to be statistically significance like cluster size, degree of ripeness,’ softness, length, size, and skin colour.Keywords: analysis, consumers, preference, variables
Procedia PDF Downloads 34613674 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 65