Search results for: students with learning disabilities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10816

Search results for: students with learning disabilities

4726 English Pronunciation Materials on TikTok

Authors: Sebastian Leal-Arenas

Abstract:

TikTok’s influence on contemporary society is undeniable. The impact of the mobile app transcends entertainment, as shown by the growing presence of specialized accounts dedicated to providing educational content, particularly as it pertains to language learning. However, the prevailing trend on the platform is vocabulary and grammar acquisition, neglecting a critical component: pronunciation. This study examines English pronunciation materials available on TikTok by taking a comprehensive approach that incorporates established assessment tools, such as the Learning Object Review Instrument and the Framework for Language Learning App Evaluation. Furthermore, novel evaluation categories are introduced to provide a more holistic assessment of these educational resources. 60 English pronunciation videos were part of the analysis. The findings reveal that these audio-visual materials present clear audio bolstered by high-quality video content and automatically generated closed captions. These three components enhance the comprehensibility of the input, making these concise videos valuable assets for language learners. Nevertheless, certain deficiencies are observed, such as the lack of emphasis on specific segments and their relationship with articulators. Improvements and refinements are discussed, as well as their potential utility within the language classroom. This study contributes to the ongoing investigation of multimedia materials used for language teaching and emphasizes the need to adapt pronunciation instruction methods to today’s technology.

Keywords: pronunciation, segments, teaching materials, technology

Procedia PDF Downloads 90
4725 Comparative Analysis of Forensic Medicine Course Evaluation: A Two Year Study

Authors: Prateek Rastogi

Abstract:

Medical teaching in present era concentrates not only on teaching but on effective teaching. For effective teaching a combination of effective carefully designed curriculum, an educated educator, competent learner and fool proof evaluation system is required. Keeping these parameters in mind and study was undertaken at Kasturba Medical College, Mangalore among medical students. In this study, evaluation of Forensic Medicine syllabus along with its teaching and evaluation methodology was done using 20 different parameters. This questionnaire based study was done over a period of two years i.e. 2013 and 2014. Batch of students who just passed the forensic medicine subject was included for study. Carefully designed questionnaire contained questions related to course content, teaching methodology and evaluation system along with provisions to mention merits and demerits of subject. The feedbacks in first round were analyzed and suggestions were implemented before conducting the second round of study. Overall evaluation of course was done as well as it was compared with other subjects of second MBBS. It was noted that Scores improved in 2nd survey thus stressing the importance of course evaluation and student feedback in teaching improvement.

Keywords: teaching methodology, system of evaluation, course content, bioinformatics, biomedicine

Procedia PDF Downloads 360
4724 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 302
4723 The Role of Cultural Expectations in Emotion Regulation among Nepali Adolescents

Authors: Martha Berg, Megan Ramaiya, Andi Schmidt, Susanna Sharma, Brandon Kohrt

Abstract:

Nepali adolescents report tension and negative emotion due to perceived expectations of both academic and social achievement. These societal goals, which are internalized through early-life socialization, drive the development of self-regulatory processes such as emotion regulation. Emotion dysregulation is linked with adverse psychological outcomes such as depression, self-harm, and suicide, which are public health concerns for organizations working with Nepali adolescents. This study examined the relation among socialization, internalized cultural goals, and emotion regulation to inform interventions for reducing depression and suicide in this population. Participants included 102 students in grades 7 through 9 in a post-earthquake school setting in rural Kathmandu valley. All participants completed a tablet-based battery of quantitative measures, comprising transculturally adapted assessments of emotion regulation, depression, and self-harm/suicide ideation and behavior. Qualitative measures included two focus groups and semi-structured interviews with 22 students and 3 parents. A notable proportion of the sample reported depression symptoms in the past 2 weeks (68%), lifetime self-harm ideation (28%), and lifetime suicide attempts (13%). Students who lived with their nuclear family reported lower levels of difficulty than those who lived with more distant relatives (z=2.16, p=.03), which suggests a link between family environment and adolescent emotion regulation, potentially mediated by socialization and internalization of cultural goals. These findings call for further research into the aspects of nuclear versus extended family environments that shape the development of emotion regulation.

Keywords: adolescent mental health, emotion regulation, Nepal, socialization

Procedia PDF Downloads 278
4722 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of the communication system is to achieve maximum performance. In cognitive radio, any user or transceiver have the ability to sense best suitable channel, while the channel is not in use. It means an unlicensed user can share the spectrum of licensed user without any interference. Though the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper, we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision-making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: artificial neural network, cognitive radio, cognitive radio networks, back propagation, spectrum sensing

Procedia PDF Downloads 615
4721 Helping the Helper: Impact of Teaching Assistantship Program among Psychology Alumni

Authors: Clarissa Delariarte

Abstract:

With the aim of helping the poorest of the poor achieve quality education, Psychology students supported and served as teacher assistants to its Early Childhood Education Center in two barangays since the program began in 1999. Making use of qualitative approach, the impact of the program to 29 alumni who served as teacher assistants between 2000-2014 was assessed. Results show that the impact to the alumni is in cognitive as well as social-emotional in terms of feelings of deep satisfaction and sense of volunteerism which is being carried out in their respective workspaces. They also expressed positive feelings of inspiration, gratefulness and happiness. A wider perspective in life, being confident, creative and resourceful was also articulated as concrete impacts. It is concluded that the program had an impact on helping the helper and is a concrete manifestation of the academe being successful in its commitment of forming individuals into becoming integrated and compassionate in the service of the Church and Society. It implies that more opportunities of helping others be provided to students since, in the final analysis, is actually an opportunity of helping the helper be of better service to others.

Keywords: applied psychology, life skill, qualitative research, quality education

Procedia PDF Downloads 188
4720 Safe Routes to Schools (SRTS): Children’ Safety Improvement Under COVID-19 Pandemic Conditions in Jordan

Authors: Khair Jadaan, Qasem Alqasem

Abstract:

School children are vulnerable road user groups and are particularly at high risk calling for the need to improve their safety. Safe Routes to Schools (SRTS) concept is considered as one safety improvement approach that would effectively help improve school children’s safety. This paper aims to determine the best practice SRTS for Jordan based on the international experience attained through extensive and selected literature review falling under the 5 E’s and additionally on information/data collected through a survey performed using an online predesigned questionnaire to investigate the reactions and attitudes of students and their parents towards the proposed SRTS program. Data are analyzed using SPSS and MS software, especially Excel, in addition to some literature reviews inserted in this study. The results represent some recommendations that are strongly believed to help decision makers to develop the current safety conditions of the school routes. The challenges that the implementation of this program would face including COVID-19 protection for teachers and students are addressed.

Keywords: children, COVID-19, Jordan, safety, school, SRTS, 5 E’s

Procedia PDF Downloads 115
4719 Predicting Low Birth Weight Using Machine Learning: A Study on 53,637 Ethiopian Birth Data

Authors: Kehabtimer Shiferaw Kotiso, Getachew Hailemariam, Abiy Seifu Estifanos

Abstract:

Introduction: Despite the highest share of low birth weight (LBW) for neonatal mortality and morbidity, predicting births with LBW for better intervention preparation is challenging. This study aims to predict LBW using a dataset encompassing 53,637 birth cohorts collected from 36 primary hospitals across seven regions in Ethiopia from February 2022 to June 2024. Methods: We identified ten explanatory variables related to maternal and neonatal characteristics, including maternal education, age, residence, history of miscarriage or abortion, history of preterm birth, type of pregnancy, number of livebirths, number of stillbirths, antenatal care frequency, and sex of the fetus to predict LBW. Using WEKA 3.8.2, we developed and compared seven machine learning algorithms. Data preprocessing included handling missing values, outlier detection, and ensuring data integrity in birth weight records. Model performance was evaluated through metrics such as accuracy, precision, recall, F1-score, and area under the Receiver Operating Characteristic curve (ROC AUC) using 10-fold cross-validation. Results: The results demonstrated that the decision tree, J48, logistic regression, and gradient boosted trees model achieved the highest accuracy (94.5% to 94.6%) with a precision of 93.1% to 93.3%, F1-score of 92.7% to 93.1%, and ROC AUC of 71.8% to 76.6%. Conclusion: This study demonstrates the effectiveness of machine learning models in predicting LBW. The high accuracy and recall rates achieved indicate that these models can serve as valuable tools for healthcare policymakers and providers in identifying at-risk newborns and implementing timely interventions to achieve the sustainable developmental goal (SDG) related to neonatal mortality.

Keywords: low birth weight, machine learning, classification, neonatal mortality, Ethiopia

Procedia PDF Downloads 32
4718 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients

Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan

Abstract:

This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.

Keywords: empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer

Procedia PDF Downloads 304
4717 Importance of an E-Learning Program in Stress Field for Postgraduate Courses of Doctors

Authors: Ramona-Niculina Jurcau, Ioana-Marieta Jurcau

Abstract:

Background: Preparing in the stress field (SF) is, increasingly, a concern for doctors of different specialties. Aims: The aim was to evaluate the importance of an e-learning program for doctors postgraduate courses, in SF. Methods: Doctors (n= 40 male, 40 female) of different specialties and ages (31-71 years), who attended postgraduate courses in SF, voluntarily responded to a questionnaire that included the following themes: Importance of SF courses for specialty practiced by each respondent doctor (using visual analogue scale, VAS); What SF themes would be indicated as e-learning (EL); Preferred form of SF information assimilation: Classical lectures (CL), EL or a combination of these methods (CL+EL); Which information on the SF course are facilitated by EL model versus CL; In their view which are the first four advantages and the first four disadvantages of EL compared to CL, for SF. Results: To most respondents, the SF courses are important for the specialty they practiced (VAS by an average of 4). The SF themes suggested to be done as EL were: Stress mechanisms; stress factor models for different medical specialties; stress assessment methods; primary stress management methods for different specialties. Preferred form of information assimilation was CL+EL. Aspects of the course facilitated by EL versus CL model: Active reading of theoretical information, with fast access to keywords details; watching documentaries in everyone's favorite order; practice through tests and the rapid control of results. The first four EL advantages, mentioned for SF were: Autonomy in managing the time allocated to the study; saving time for traveling to the venue; the ability to read information in various contexts of time and space; communication with colleagues, in good times for everyone. The first three EL disadvantages, mentioned for SF were: It decreases capabilities for group discussion and mobilization for active participation; EL information accession may depend on electrical source or/and Internet; learning slowdown can appear, by temptation of postponing the implementation. Answering questions was partially influenced by the respondent's age and genre. Conclusions: 1) Post-graduate courses in SF are of interest to doctors of different specialties. 2) The majority of participating doctors preferred EL, but combined with CL (CL+EL). 3) Preference for EL was manifested mainly by young or middle age men doctors. 4) It is important to balance the proper formula for chosen EL, to be the most efficient, interesting, useful and agreeable.

Keywords: stress field, doctors’ postgraduate courses, classical lectures, e-learning lecture

Procedia PDF Downloads 242
4716 Vocational and Technical Educators’ Acceptance and Use of Digital Learning Environments Beyond Working Hours: Implications for Work-Life Balance and the Role of Integration Preference

Authors: Jacinta Ifeoma Obidile

Abstract:

Teachers (vocational and technical educators inclusive) use Information and Communications Technology (ICT) for tasks outside of their normal working hours. This expansion of work duties to non-work time challenges their work-life balance. However, there has been inconsistency in the results on how these relationships correlate. This, therefore, calls for further research studies to examine the moderating mechanisms of such relationships. The present study, therefore, ascertained how vocational and technical educators’ technology acceptance relates to their work-related ICT use beyond their working hours and work-life balance, as well as how their integration affects these relationships. The population of the study comprised 320 Vocational and Technical Educators from the Southeast geopolitical zone of Nigeria. Data were collected from the respondents using the structured questionnaire. The questionnaire was validated by three experts. The reliability of the study was conducted using 20 vocational and technical educators from the South who were not part of the population. The overall reliability coefficient of 0.81 was established using Cronbach’s alpha method. The data collected was analyzed using Structural equation modeling. Findings, among others, revealed that vocational and technical educators’ work-life balance was mediated by increased digital learning environment use after work hours, although reduced by social influence.

Keywords: vocational and technical educators, digital learning environment, working hours, work-life balance, integration preference

Procedia PDF Downloads 71
4715 Influences of Socioeconomic Status and Age on Child Creativity: An Exploratory Study Applied to School Children in Poland

Authors: Bernard Vaernes

Abstract:

Creativity is thought to be of importance for educational success. Educational institutions vary greatly in regard to socioeconomic status (SES) and curricular emphasis on creativity. Research is needed to clarify the effects of age and SES on creativity. The objective of this study will be to compare the creative performance of children with different SES, low or high, and age. It is hypothesized that younger children will score higher than older children, independent of their SES. Children aged 15, 12, and 9 from four different junior and secondary schools in Warsaw, Poland, will participate in the study. The schools will differ in terms of socioeconomic, geographic localization. To assess creative performance, a Polish adaptation of the Torrance Test of Creative Thinking (TTCT) will be used. In order to select low and high SES individuals for SES grouping, a Polish adaptation of the MacArthur Scale of Subjective Social Status will be given to all participants. To control for individual differences in personality traits, a Polish adaptation of the Big Five Questionnaire for Children (BFQ-C) will be used. These measures will allow to compare the creative performance of children with different age and SES and eliminate confound variables. It is predicted that younger children, as well as high SES children, will score higher on the TTCT than older children, and low SES children. The findings of this study may provide useful insight into socioeconomic and age differences in creativity, as well as facilitating teacher’s adjustment of learning styles and emphasis on creativity in relation to the SES and age of their students.

Keywords: big five questionnaire for children, children, creativity, socioeconomic status, Torrance test of creative thinking, TTCT

Procedia PDF Downloads 146
4714 Austrian Secondary School Teachers’ Perspectives on Character Education and Life Skills: First Quantitative Insights from a Mixed Methods Study

Authors: Evelyn Kropfreiter, Roland Bernhard

Abstract:

There has been an increased interest in school-based whole-child development in the Austrian education system in the last few years. Although there is a consensus among academics that teachers' beliefs are an essential component of their professional competence, there are hardly any studies in the German-speaking world examining teachers' beliefs about school-based character education. To close this gap, we are conducting a mixed methods study combining qualitative interviews and a questionnaire in Austria (doctoral thesis at the University of Salzburg). In this paper, we present preliminary insights into the quantitative strand of the project. In contrast to German-speaking countries, the Anglo-Saxon world has a long tradition of explicit character education in schools. There has been a rising interest in approaches focusing on a neo-Aristotelian form of character education in England. The Jubilee Centre strongly influences the "renaissance" of papers on neo-Aristotelian character education for Character and Virtues, founded in 2012. The quantitative questionnaire study (n = 264) is an online survey of teachers and school principals conducted in four different federal states in spring 2023. Most respondents (n = 264) from lower secondary schools (AHS-Unterstufe and Mittelschule) believe that character education in schools for 10-14-year-olds is more important for society than good exam results. Many teachers state that they consider themselves prepared to promote their students' personal development and life skills through their education and to attend further training courses. However, there are many obstacles in the education system to ensure that a comprehensive education reaches the students. Many teachers state that they consider themselves prepared to promote their students' character strengths and life skills through their education and to attend further training courses. However, there are many obstacles in the education system to ensure that a comprehensive education reaches the students. Among the most cited difficulties, teachers mention the time factor associated with an overcrowded curriculum and a strong focus on performance, which often leaves them needing more time to keep an eye on nurturing the whole person. The fact that character education is not a separate subject, and its implementation needs to be monitored also makes it challenging to implement it in everyday school life. Austrian teachers prioritize moral virtues such as compassion and honesty as character strengths in everyday school life and resilience and commitment in the next place. Our results are like those reported in other studies on teacher's beliefs about character education. They indicate that Austrian teachers want to teach character in their schools but see systemic constraints such as the curriculum, in which personality roles play a subordinate role, and the focus on performance testing in the school system and the associated lack of time as obstacles to fostering more character development in students.

Keywords: character education, life skills, teachers' beliefs, virtues

Procedia PDF Downloads 89
4713 Online Escape Room for Intergenerational Play

Authors: David Kaufman

Abstract:

Despite the ‘silver Tsunami’ that is occurring worldwide, ageism is still a problem in modern society. As well, families are becoming increasingly separated geographically. This paper will discuss these issues and one potential solution - an online escape room game that is played by two players over the internet while talking to each other. The payers can be two seniors or one senior and one youth, e.g., a grandchild. Each player sees a different view of the game environment and players must collaborate in order to solve the puzzles presented and escape from the three rooms, all connected by a maze. The game was developed by Masters students at the Centre for Digital Media in Vancouver, BC in collaboration with a team of post-doctoral scholar, graduate students and faculty member, as well as 10 seniors who assisted. This paper will describe the game, development process and results of our pilot studies. The research study conducted comprises several stages: 1. several formative evaluation sessions with seniors to obtain feedback to assist further design, and 2. field testing of the game. Preliminary results have been extremely positive and results of our field tests will be presented in this paper.

Keywords: digital game, online escape room, intergenerational play, seniors

Procedia PDF Downloads 373
4712 A Low-Cost Experimental Approach for Teaching Energy Quantization: Determining the Planck Constant with Arduino and Led

Authors: Gastão Soares Ximenes de Oliveira, Richar Nicolás Durán, Romeo Micah Szmoski, Eloiza Aparecida Avila de Matos, Elano Gustavo Rein

Abstract:

This article aims to present an experimental method to determine Planck's constant by calculating the cutting potential V₀ from LEDs with different wavelengths. The experiment is designed using Arduino as a central tool in order to make the experimental activity more engaging and attractive for students with the use of digital technologies. From the characteristic curves of each LED, graphical analysis was used to obtain the cutting potential, and knowing the corresponding wavelength, it was possible to calculate Planck's constant. This constant was also obtained from the linear adjustment of the cutting potential graph by the frequency of each LED. Given the relevance of Planck's constant in physics, it is believed that this experiment can offer teachers the opportunity to approach concepts from modern physics, such as the quantization of energy, in a more accessible and applied way in the classroom. This will not only enrich students' understanding of the fundamental nature of matter but also encourage deeper engagement with the principles of quantum physics.

Keywords: physics teaching, educational technology, modern physics, Planck constant, Arduino

Procedia PDF Downloads 80
4711 Levels of Reflection in Engineers EFL Learners: The Path to Content and Language Integrated Learning Implementation in Chilean Higher Education

Authors: Sebastián Olivares Lizana, Marianna Oyanedel González

Abstract:

This study takes part of a major project based on implementing a CLIL program (Content and Language Integrated Learning) at Universidad Técnica Federico Santa María, a leading Chilean tertiary Institution. It aims at examining the relationship between the development of Reflective Processes (RP) and Cognitive Academic Language Proficiency (CALP) in weekly learning logs written by faculty members, participants of an initial professional development online course on English for Academic Purposes (EAP). Such course was designed with a genre-based approach, and consists of multiple tasks directed to academic writing proficiency. The results of this analysis will be described and classified in a scale of key indicators that represent both the Reflective Processes and the advances in CALP, and that also consider linguistic proficiency and task progression. Such indicators will evidence affordances and constrains of using a genre-based approach in an EFL Engineering CLIL program implementation at tertiary level in Chile, and will serve as the starting point to the design of a professional development course directed to teaching methodologies in a CLIL EFL environment in Engineering education at Universidad Técnica Federico Santa María.

Keywords: EFL, EAL, genre, CLIL, engineering

Procedia PDF Downloads 400
4710 Intensive Intercultural English Language Pedagogy among Parents from Culturally and Linguistically Diverse Backgrounds (CALD)

Authors: Ann Dashwood

Abstract:

Using Standard Australian English with confidence is a cultural expectation of parents of primary school aged children who want to engage effectively with their children’s teachers and school administration. That confidence in support of their children’s learning at school is seldom experienced by parents whose first language is not English. Sharing language with competence in an intercultural environment is the common denominator for meaningful communication and engagement to occur in a school community. Experience in relevant, interactive sessions is known to enhance engagement and participation. The purpose of this paper is to identify a pedagogy for parents otherwise isolated from daily use of functional Australian cultural language learned to engage effectively in their children’s learning at school. The outcomes measure parents’ intercultural engagement with classroom teachers and attention to the school’s administrative procedures using quantitative and qualitative methods. A principled communicative task-based language learning approach, combined with intercultural communication strategies provide the theoretical base for intensive English inquiry-based learning and engagement. The quantitative analysis examines data samples collected by classroom teachers and administrators and parents’ writing samples. Interviews and observations qualitatively inform the study. Currently, significant numbers of projects are active in community centers and schools to enhance English language knowledge of parents from Language Backgrounds Other Than English (LBOTE). The study is significant to explore the effects of an intensive English pedagogy with parents of varied English language backgrounds, by targeting inquiry-based language use for social interactions in the school and wider community, specific engagement and cultural interaction with teachers and school activities and procedures.

Keywords: engagement, intercultural communication, language teaching pedagogy, LBOTE, school community

Procedia PDF Downloads 124
4709 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms

Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna

Abstract:

In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.

Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove

Procedia PDF Downloads 307
4708 Longitudinal Study of the Phenomenon of Acting White in Hungarian Elementary Schools Analysed by Fixed and Random Effects Models

Authors: Lilla Dorina Habsz, Marta Rado

Abstract:

Popularity is affected by a variety of factors in the primary school such as academic achievement and ethnicity. The main goal of our study was to analyse whether acting white exists in Hungarian elementary schools. In other words, we observed whether Roma students penalize those in-group members who obtain the high academic achievement. Furthermore, to show how popularity is influenced by changes in academic achievement in inter-ethnic relations. The empirical basis of our research was the 'competition and negative networks' longitudinal dataset, which was collected by the MTA TK 'Lendület' RECENS research group. This research followed 11 and 12-year old students for a two-year period. The survey was analysed using fixed and random effect models. Overall, we found a positive correlation between grades and popularity, but no evidence for the acting white effect. However, better grades were more positively evaluated within the majority group than within the minority group, which may further increase inequalities.

Keywords: academic achievement, elementary school, ethnicity, popularity

Procedia PDF Downloads 204
4707 The Effect of Realizing Emotional Synchrony with Teachers or Peers on Children’s Linguistic Proficiency: The Case Study of Uji Elementary School

Authors: Reiko Yamamoto

Abstract:

This paper reports on a joint research project in which a researcher in applied linguistics and elementary school teachers in Japan explored new ways to realize emotional synchrony in a classroom in childhood education. The primary purpose of this project was to develop a cross-curriculum of the first language (L1) and second language (L2) based on the concept of plurilingualism. This concept is common in Europe, and can-do statements are used in forming the standard of linguistic proficiency in any language; these are attributed to the action-oriented approach in the Common European Framework of Reference for Languages (CEFR). CEFR has a basic tenet of language education: improving communicative competence. Can-do statements are classified into five categories based on the tenet: reading, writing, listening, speaking/ interaction, and speaking/ speech. The first approach of this research was to specify the linguistic proficiency of the children, who are still developing their L1. Elementary school teachers brainstormed and specified the linguistic proficiency of the children as the competency needed to synchronize with others – teachers or peers – physically and mentally. The teachers formed original can-do statements in language proficiency on the basis of the idea that emotional synchrony leads to understanding others in communication. The research objectives are to determine the effect of language education based on the newly developed curriculum and can-do statements. The participants of the experiment were 72 third-graders in Uji Elementary School, Japan. For the experiment, 17 items were developed from the can-do statements formed by the teachers and divided into the same five categories as those of CEFR. A can-do checklist consisting of the items was created. The experiment consisted of three steps: first, the students evaluated themselves using the can-do checklist at the beginning of the school year. Second, one year of instruction was given to the students in Japanese and English classes (six periods a week). Third, the students evaluated themselves using the same can-do checklist at the end of the school year. The results of statistical analysis showed an enhancement of linguistic proficiency of the students. The average results of the post-check exceeded that of the pre-check in 12 out of the 17 items. Moreover, significant differences were shown in four items, three of which belonged to the same category: speaking/ interaction. It is concluded that children can get to understand others’ minds through physical and emotional synchrony. In particular, emotional synchrony is what teachers should aim at in childhood education.

Keywords: elementary school education, emotional synchrony, language proficiency, sympathy with others

Procedia PDF Downloads 173
4706 The Impact of Neonatal Methamphetamine on Spatial Learning and Memory of Females in Adulthood

Authors: Ivana Hrebickova, Maria Sevcikova, Romana Slamberova

Abstract:

The present study was aimed at evaluation of cognitive changes following scheduled neonatal methamphetamine exposure in combination with long-term exposure in adulthood of female Wistar rats. Pregnant mothers were divided into two groups: group with indirect exposure (methamphetamine in dose 5 mg/ml/kg, saline in dose 1 ml/kg) during early lactation period (postnatal day 1–11) - progeny of these mothers were exposed to the effects of methamphetamine or saline indirectly via the breast milk; and the second group with direct exposure – all mothers were left intact for the entire lactation period, while progeny was treated with methamphetamine (5 mg/ml/kg) by injection or the control group, which was received needle pick (shame, not saline) at the same time each day of period of application (postnatal day 1–11). Learning ability and memory consolidation were tested in the Morris Water Maze, which consisted of three types of tests: ‘Place Navigation Test ‘; ‘Probe Test ‘; and ‘Memory Recall Test ‘. Adult female progeny were injected daily, after completion last trial with saline or methamphetamine (1 mg/ml/kg). We compared the effects of indirect/direct neonatal methamphetamine exposure and adult methamphetamine treatment on cognitive function of female rats. Statistical analyses showed that neonatal methamphetamine exposure worsened spatial learning and ability to remember the position of the platform. The present study demonstrated that direct methamphetamine exposure has more significant impact on process of learning and memory than indirect exposure. Analyses of search strategies (thigmotaxis, scanning) used by females during the Place Navigation Test and Memory Recall Test confirm all these results.

Keywords: methamphetamine, Morris water maze, neonatal exposure, strategies, Wistar rats

Procedia PDF Downloads 270
4705 Fraud Detection in Credit Cards with Machine Learning

Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf

Abstract:

Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.

Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine

Procedia PDF Downloads 153
4704 Parents of Mentally Disabled Children in Iran: A Study of Their Parenting Stress Levels and Mental Health

Authors: Mohsen Amiri

Abstract:

This study aimed at investigating the relationship between familial functioning, child characteristics, demographic variables and parenting stress and mental health among parents of children with mental disabilities. 200 parents (130 mothers and 70 fathers) were studied and they completed the Parenting Stress Index, General Health Questionnaire, Family Assessment Device and demographic questionnaires for parents and children. Data were analyzed using correlation and regression analysis. Regression analysis showed that child characteristics, familial functioning and parents demographic factors could predict 8, 4 and 17 percent of variance in parental stress and 3.6, 16 and 10 percent of variance in mental health, respectively. Familial functioning, child characteristics and parental demographic variables correlated with mental health and parental stress and could predict them.

Keywords: parenting stress, mental health, mentally disabled children, familial functioning, demographic variables

Procedia PDF Downloads 450
4703 Creative Experience and Revisit Intention of Handmade Oriental Parasol Umbrella in Kaohsiung

Authors: Yi-Ju Lee

Abstract:

This study identified the hypothesised relationship between creative experience, and revisit intention of handmade oriental parasol umbrella in Kaohsiung, Taiwan. A face-to-face questionnaire survey was administered in Meinong town, Kaohsiung. The components of creative experience were found as “sense of achievement”, “unique learning” and “interaction with instructors” in creative tourism. The result also revealed significant positive relationships between creative experience and revisit intention in handmade activities. This paper provides additional suggestions for enhancing revisit intention and guidance regarding creative tourism.

Keywords: creative tourism, sense of achievement, unique learning, interaction with instructors, folk art

Procedia PDF Downloads 281
4702 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania

Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga

Abstract:

Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.

Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment

Procedia PDF Downloads 287
4701 Evolving Convolutional Filter Using Genetic Algorithm for Image Classification

Authors: Rujia Chen, Ajit Narayanan

Abstract:

Convolutional neural networks (CNN), as typically applied in deep learning, use layer-wise backpropagation (BP) to construct filters and kernels for feature extraction. Such filters are 2D or 3D groups of weights for constructing feature maps at subsequent layers of the CNN and are shared across the entire input. BP as a gradient descent algorithm has well-known problems of getting stuck at local optima. The use of genetic algorithms (GAs) for evolving weights between layers of standard artificial neural networks (ANNs) is a well-established area of neuroevolution. In particular, the use of crossover techniques when optimizing weights can help to overcome problems of local optima. However, the application of GAs for evolving the weights of filters and kernels in CNNs is not yet an established area of neuroevolution. In this paper, a GA-based filter development algorithm is proposed. The results of the proof-of-concept experiments described in this paper show the proposed GA algorithm can find filter weights through evolutionary techniques rather than BP learning. For some simple classification tasks like geometric shape recognition, the proposed algorithm can achieve 100% accuracy. The results for MNIST classification, while not as good as possible through standard filter learning through BP, show that filter and kernel evolution warrants further investigation as a new subarea of neuroevolution for deep architectures.

Keywords: neuroevolution, convolutional neural network, genetic algorithm, filters, kernels

Procedia PDF Downloads 192
4700 Developing an Indigenous Mathematics, Science and Technology Education Master’s Program: A Three Universities Collaboration

Authors: Mishack Thiza Gumbo

Abstract:

The participatory action research study reported in this paper aims to explore indigenous mathematics, science, and technology to develop an indigenous Mathematics, Science and Technology Education Master’s Programme ultimately. The study is based on an ongoing collaborative project between the Mathematics, Science and Technology Education Departments of the University of South Africa, University of Botswana and Chinhoyi University of Technology. The study targets the Mathematics, Science and Technology Education Master’s students and indigenous knowledge holders in these three contexts as research participants. They will be interviewed; documents of existing Mathematics, Science and Technology Education Master’s Programmes will be analysed; mathematics, science and technology-related artefacts will also be collected and analysed. Mathematics, Science, and Technology Education are traditionally referred to as gateway subjects because the world economy revolves around them. Scores of scholars call for the indigenisation of research and methodologies so that research can suit and advance indigenous knowledge and sustainable development. There are ethnomathematics, ethnoscience and ethnotechnology which exist in indigenous contexts such as blacksmithing, woodcarving, textile-weaving and dyeing, but the current curricula and research in institutions of learning reflect the Western notions of these subjects. Indigenisation of the academic programmecontributes toward the decolonisation of education. Hence, the development of an indigenous Mathematics, Science and Technology Education Master’s Programme, which will be jointly offered by the three universities mentioned above, will contribute to the transformation of higher education in this sense.

Keywords: indigenous, mathematics, science, technology, master's program, universities, collaboration

Procedia PDF Downloads 165
4699 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure

Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani

Abstract:

Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.

Keywords: cognitive impairment, heavy metal exposure, predictive models, aging

Procedia PDF Downloads 8
4698 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 140
4697 Using Gene Expression Programming in Learning Process of Rough Neural Networks

Authors: Sanaa Rashed Abdallah, Yasser F. Hassan

Abstract:

The paper will introduce an approach where a rough sets, gene expression programming and rough neural networks are used cooperatively for learning and classification support. The Objective of gene expression programming rough neural networks (GEP-RNN) approach is to obtain new classified data with minimum error in training and testing process. Starting point of gene expression programming rough neural networks (GEP-RNN) approach is an information system and the output from this approach is a structure of rough neural networks which is including the weights and thresholds with minimum classification error.

Keywords: rough sets, gene expression programming, rough neural networks, classification

Procedia PDF Downloads 388